Support tabs as seaprators when parsing fs config
[project/make_ext4fs.git] / contents.c
1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <sys/stat.h>
18 #include <string.h>
19 #include <stdio.h>
20
21 #ifdef HAVE_ANDROID_OS
22 #include <linux/capability.h>
23 #else
24 #include <private/android_filesystem_capability.h>
25 #endif
26
27 #define XATTR_SELINUX_SUFFIX "selinux"
28 #define XATTR_CAPS_SUFFIX "capability"
29
30 #include "ext4_utils.h"
31 #include "make_ext4fs.h"
32 #include "allocate.h"
33 #include "contents.h"
34 #include "extent.h"
35 #include "indirect.h"
36
37 #ifdef USE_MINGW
38 #define S_IFLNK 0 /* used by make_link, not needed under mingw */
39 #endif
40
41 static struct block_allocation* saved_allocation_head = NULL;
42
43 struct block_allocation* get_saved_allocation_chain() {
44 return saved_allocation_head;
45 }
46
47 static u32 dentry_size(u32 entries, struct dentry *dentries)
48 {
49 u32 len = 24;
50 unsigned int i;
51 unsigned int dentry_len;
52
53 for (i = 0; i < entries; i++) {
54 dentry_len = 8 + EXT4_ALIGN(strlen(dentries[i].filename), 4);
55 if (len % info.block_size + dentry_len > info.block_size)
56 len += info.block_size - (len % info.block_size);
57 len += dentry_len;
58 }
59
60 return len;
61 }
62
63 static struct ext4_dir_entry_2 *add_dentry(u8 *data, u32 *offset,
64 struct ext4_dir_entry_2 *prev, u32 inode, const char *name,
65 u8 file_type)
66 {
67 u8 name_len = strlen(name);
68 u16 rec_len = 8 + EXT4_ALIGN(name_len, 4);
69 struct ext4_dir_entry_2 *dentry;
70
71 u32 start_block = *offset / info.block_size;
72 u32 end_block = (*offset + rec_len - 1) / info.block_size;
73 if (start_block != end_block) {
74 /* Adding this dentry will cross a block boundary, so pad the previous
75 dentry to the block boundary */
76 if (!prev)
77 critical_error("no prev");
78 prev->rec_len += end_block * info.block_size - *offset;
79 *offset = end_block * info.block_size;
80 }
81
82 dentry = (struct ext4_dir_entry_2 *)(data + *offset);
83 dentry->inode = inode;
84 dentry->rec_len = rec_len;
85 dentry->name_len = name_len;
86 dentry->file_type = file_type;
87 memcpy(dentry->name, name, name_len);
88
89 *offset += rec_len;
90 return dentry;
91 }
92
93 /* Creates a directory structure for an array of directory entries, dentries,
94 and stores the location of the structure in an inode. The new inode's
95 .. link is set to dir_inode_num. Stores the location of the inode number
96 of each directory entry into dentries[i].inode, to be filled in later
97 when the inode for the entry is allocated. Returns the inode number of the
98 new directory */
99 u32 make_directory(u32 dir_inode_num, u32 entries, struct dentry *dentries,
100 u32 dirs)
101 {
102 struct ext4_inode *inode;
103 u32 blocks;
104 u32 len;
105 u32 offset = 0;
106 u32 inode_num;
107 u8 *data;
108 unsigned int i;
109 struct ext4_dir_entry_2 *dentry;
110
111 blocks = DIV_ROUND_UP(dentry_size(entries, dentries), info.block_size);
112 len = blocks * info.block_size;
113
114 if (dir_inode_num) {
115 inode_num = allocate_inode(info);
116 } else {
117 dir_inode_num = EXT4_ROOT_INO;
118 inode_num = EXT4_ROOT_INO;
119 }
120
121 if (inode_num == EXT4_ALLOCATE_FAILED) {
122 error("failed to allocate inode\n");
123 return EXT4_ALLOCATE_FAILED;
124 }
125
126 add_directory(inode_num);
127
128 inode = get_inode(inode_num);
129 if (inode == NULL) {
130 error("failed to get inode %u", inode_num);
131 return EXT4_ALLOCATE_FAILED;
132 }
133
134 data = inode_allocate_data_extents(inode, len, len);
135 if (data == NULL) {
136 error("failed to allocate %u extents", len);
137 return EXT4_ALLOCATE_FAILED;
138 }
139
140 inode->i_mode = S_IFDIR;
141 inode->i_links_count = dirs + 2;
142 inode->i_flags |= aux_info.default_i_flags;
143
144 dentry = NULL;
145
146 dentry = add_dentry(data, &offset, NULL, inode_num, ".", EXT4_FT_DIR);
147 if (!dentry) {
148 error("failed to add . directory");
149 return EXT4_ALLOCATE_FAILED;
150 }
151
152 dentry = add_dentry(data, &offset, dentry, dir_inode_num, "..", EXT4_FT_DIR);
153 if (!dentry) {
154 error("failed to add .. directory");
155 return EXT4_ALLOCATE_FAILED;
156 }
157
158 for (i = 0; i < entries; i++) {
159 dentry = add_dentry(data, &offset, dentry, 0,
160 dentries[i].filename, dentries[i].file_type);
161 if (offset > len || (offset == len && i != entries - 1))
162 critical_error("internal error: dentry for %s ends at %d, past %d\n",
163 dentries[i].filename, offset, len);
164 dentries[i].inode = &dentry->inode;
165 if (!dentry) {
166 error("failed to add directory");
167 return EXT4_ALLOCATE_FAILED;
168 }
169 }
170
171 /* pad the last dentry out to the end of the block */
172 dentry->rec_len += len - offset;
173
174 return inode_num;
175 }
176
177 /* Creates a file on disk. Returns the inode number of the new file */
178 u32 make_file(const char *filename, u64 len)
179 {
180 struct ext4_inode *inode;
181 u32 inode_num;
182
183 inode_num = allocate_inode(info);
184 if (inode_num == EXT4_ALLOCATE_FAILED) {
185 error("failed to allocate inode\n");
186 return EXT4_ALLOCATE_FAILED;
187 }
188
189 inode = get_inode(inode_num);
190 if (inode == NULL) {
191 error("failed to get inode %u", inode_num);
192 return EXT4_ALLOCATE_FAILED;
193 }
194
195 if (len > 0) {
196 struct block_allocation* alloc = inode_allocate_file_extents(inode, len, filename);
197 if (alloc) {
198 alloc->filename = strdup(filename);
199 alloc->next = saved_allocation_head;
200 saved_allocation_head = alloc;
201 }
202 }
203
204 inode->i_mode = S_IFREG;
205 inode->i_links_count = 1;
206 inode->i_flags |= aux_info.default_i_flags;
207
208 return inode_num;
209 }
210
211 /* Creates a file on disk. Returns the inode number of the new file */
212 u32 make_link(const char *link)
213 {
214 struct ext4_inode *inode;
215 u32 inode_num;
216 u32 len = strlen(link);
217
218 inode_num = allocate_inode(info);
219 if (inode_num == EXT4_ALLOCATE_FAILED) {
220 error("failed to allocate inode\n");
221 return EXT4_ALLOCATE_FAILED;
222 }
223
224 inode = get_inode(inode_num);
225 if (inode == NULL) {
226 error("failed to get inode %u", inode_num);
227 return EXT4_ALLOCATE_FAILED;
228 }
229
230 inode->i_mode = S_IFLNK;
231 inode->i_links_count = 1;
232 inode->i_flags |= aux_info.default_i_flags;
233 inode->i_size_lo = len;
234
235 if (len + 1 <= sizeof(inode->i_block)) {
236 /* Fast symlink */
237 memcpy((char*)inode->i_block, link, len);
238 } else {
239 u8 *data = inode_allocate_data_indirect(inode, info.block_size, info.block_size);
240 memcpy(data, link, len);
241 inode->i_blocks_lo = info.block_size / 512;
242 }
243
244 return inode_num;
245 }
246
247 /* Creates a special file on disk. Returns the inode number of the new file */
248 u32 make_special(const char *path)
249 {
250 struct ext4_inode *inode;
251 struct stat s;
252 u32 inode_num;
253
254 if (stat(path, &s)) {
255 error("failed to stat file\n");
256 return EXT4_ALLOCATE_FAILED;
257 }
258
259 inode_num = allocate_inode(info);
260 if (inode_num == EXT4_ALLOCATE_FAILED) {
261 error("failed to allocate inode\n");
262 return EXT4_ALLOCATE_FAILED;
263 }
264
265 inode = get_inode(inode_num);
266 if (inode == NULL) {
267 error("failed to get inode %u", inode_num);
268 return EXT4_ALLOCATE_FAILED;
269 }
270
271 inode->i_mode = s.st_mode & S_IFMT;
272 inode->i_links_count = 1;
273 inode->i_flags |= aux_info.default_i_flags;
274
275 ((u8 *)inode->i_block)[0] = major(s.st_rdev);
276 ((u8 *)inode->i_block)[1] = minor(s.st_rdev);
277
278 return inode_num;
279 }
280
281 int inode_set_permissions(u32 inode_num, u16 mode, u16 uid, u16 gid, u32 mtime)
282 {
283 struct ext4_inode *inode = get_inode(inode_num);
284
285 if (!inode)
286 return -1;
287
288 inode->i_mode |= mode;
289 inode->i_uid = uid;
290 inode->i_gid = gid;
291 inode->i_mtime = mtime;
292 inode->i_atime = mtime;
293 inode->i_ctime = mtime;
294
295 return 0;
296 }
297
298 /*
299 * Returns the amount of free space available in the specified
300 * xattr region
301 */
302 static size_t xattr_free_space(struct ext4_xattr_entry *entry, char *end)
303 {
304 while(!IS_LAST_ENTRY(entry) && (((char *) entry) < end)) {
305 end -= EXT4_XATTR_SIZE(le32_to_cpu(entry->e_value_size));
306 entry = EXT4_XATTR_NEXT(entry);
307 }
308
309 if (((char *) entry) > end) {
310 error("unexpected read beyond end of xattr space");
311 return 0;
312 }
313
314 return end - ((char *) entry);
315 }
316
317 /*
318 * Returns a pointer to the free space immediately after the
319 * last xattr element
320 */
321 static struct ext4_xattr_entry* xattr_get_last(struct ext4_xattr_entry *entry)
322 {
323 for (; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
324 // skip entry
325 }
326 return entry;
327 }
328
329 /*
330 * assert that the elements in the ext4 xattr section are in sorted order
331 *
332 * The ext4 filesystem requires extended attributes to be sorted when
333 * they're not stored in the inode. The kernel ext4 code uses the following
334 * sorting algorithm:
335 *
336 * 1) First sort extended attributes by their name_index. For example,
337 * EXT4_XATTR_INDEX_USER (1) comes before EXT4_XATTR_INDEX_SECURITY (6).
338 * 2) If the name_indexes are equal, then sorting is based on the length
339 * of the name. For example, XATTR_SELINUX_SUFFIX ("selinux") comes before
340 * XATTR_CAPS_SUFFIX ("capability") because "selinux" is shorter than "capability"
341 * 3) If the name_index and name_length are equal, then memcmp() is used to determine
342 * which name comes first. For example, "selinux" would come before "yelinux".
343 *
344 * This method is intended to implement the sorting function defined in
345 * the Linux kernel file fs/ext4/xattr.c function ext4_xattr_find_entry().
346 */
347 static void xattr_assert_sane(struct ext4_xattr_entry *entry)
348 {
349 for( ; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
350 struct ext4_xattr_entry *next = EXT4_XATTR_NEXT(entry);
351 if (IS_LAST_ENTRY(next)) {
352 return;
353 }
354
355 int cmp = next->e_name_index - entry->e_name_index;
356 if (cmp == 0)
357 cmp = next->e_name_len - entry->e_name_len;
358 if (cmp == 0)
359 cmp = memcmp(next->e_name, entry->e_name, next->e_name_len);
360 if (cmp < 0) {
361 error("BUG: extended attributes are not sorted\n");
362 return;
363 }
364 if (cmp == 0) {
365 error("BUG: duplicate extended attributes detected\n");
366 return;
367 }
368 }
369 }
370
371 #define NAME_HASH_SHIFT 5
372 #define VALUE_HASH_SHIFT 16
373
374 static void ext4_xattr_hash_entry(struct ext4_xattr_header *header,
375 struct ext4_xattr_entry *entry)
376 {
377 u32 hash = 0;
378 char *name = entry->e_name;
379 int n;
380
381 for (n = 0; n < entry->e_name_len; n++) {
382 hash = (hash << NAME_HASH_SHIFT) ^
383 (hash >> (8*sizeof(hash) - NAME_HASH_SHIFT)) ^
384 *name++;
385 }
386
387 if (entry->e_value_block == 0 && entry->e_value_size != 0) {
388 u32 *value = (u32 *)((char *)header +
389 le16_to_cpu(entry->e_value_offs));
390 for (n = (le32_to_cpu(entry->e_value_size) +
391 EXT4_XATTR_ROUND) >> EXT4_XATTR_PAD_BITS; n; n--) {
392 hash = (hash << VALUE_HASH_SHIFT) ^
393 (hash >> (8*sizeof(hash) - VALUE_HASH_SHIFT)) ^
394 le32_to_cpu(*value++);
395 }
396 }
397 entry->e_hash = cpu_to_le32(hash);
398 }
399
400 #undef NAME_HASH_SHIFT
401 #undef VALUE_HASH_SHIFT
402
403 static struct ext4_xattr_entry* xattr_addto_range(
404 void *block_start,
405 void *block_end,
406 struct ext4_xattr_entry *first,
407 int name_index,
408 const char *name,
409 const void *value,
410 size_t value_len)
411 {
412 size_t name_len = strlen(name);
413 if (name_len > 255)
414 return NULL;
415
416 size_t available_size = xattr_free_space(first, block_end);
417 size_t needed_size = EXT4_XATTR_LEN(name_len) + EXT4_XATTR_SIZE(value_len);
418
419 if (needed_size > available_size)
420 return NULL;
421
422 struct ext4_xattr_entry *new_entry = xattr_get_last(first);
423 memset(new_entry, 0, EXT4_XATTR_LEN(name_len));
424
425 new_entry->e_name_len = name_len;
426 new_entry->e_name_index = name_index;
427 memcpy(new_entry->e_name, name, name_len);
428 new_entry->e_value_block = 0;
429 new_entry->e_value_size = cpu_to_le32(value_len);
430
431 char *val = (char *) new_entry + available_size - EXT4_XATTR_SIZE(value_len);
432 size_t e_value_offs = val - (char *) block_start;
433
434 new_entry->e_value_offs = cpu_to_le16(e_value_offs);
435 memset(val, 0, EXT4_XATTR_SIZE(value_len));
436 memcpy(val, value, value_len);
437
438 xattr_assert_sane(first);
439 return new_entry;
440 }
441
442 static int xattr_addto_inode(struct ext4_inode *inode, int name_index,
443 const char *name, const void *value, size_t value_len)
444 {
445 struct ext4_xattr_ibody_header *hdr = (struct ext4_xattr_ibody_header *) (inode + 1);
446 struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (hdr + 1);
447 char *block_end = ((char *) inode) + info.inode_size;
448
449 struct ext4_xattr_entry *result =
450 xattr_addto_range(first, block_end, first, name_index, name, value, value_len);
451
452 if (result == NULL)
453 return -1;
454
455 hdr->h_magic = cpu_to_le32(EXT4_XATTR_MAGIC);
456 inode->i_extra_isize = cpu_to_le16(sizeof(struct ext4_inode) - EXT4_GOOD_OLD_INODE_SIZE);
457
458 return 0;
459 }
460
461 static int xattr_addto_block(struct ext4_inode *inode, int name_index,
462 const char *name, const void *value, size_t value_len)
463 {
464 struct ext4_xattr_header *header = get_xattr_block_for_inode(inode);
465 if (!header)
466 return -1;
467
468 struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (header + 1);
469 char *block_end = ((char *) header) + info.block_size;
470
471 struct ext4_xattr_entry *result =
472 xattr_addto_range(header, block_end, first, name_index, name, value, value_len);
473
474 if (result == NULL)
475 return -1;
476
477 ext4_xattr_hash_entry(header, result);
478 return 0;
479 }
480
481
482 static int xattr_add(u32 inode_num, int name_index, const char *name,
483 const void *value, size_t value_len)
484 {
485 if (!value)
486 return 0;
487
488 struct ext4_inode *inode = get_inode(inode_num);
489
490 if (!inode)
491 return -1;
492
493 int result = xattr_addto_inode(inode, name_index, name, value, value_len);
494 if (result != 0) {
495 result = xattr_addto_block(inode, name_index, name, value, value_len);
496 }
497 return result;
498 }
499
500 int inode_set_selinux(u32 inode_num, const char *secon)
501 {
502 if (!secon)
503 return 0;
504
505 return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
506 XATTR_SELINUX_SUFFIX, secon, strlen(secon) + 1);
507 }
508
509 int inode_set_capabilities(u32 inode_num, uint64_t capabilities) {
510 if (capabilities == 0)
511 return 0;
512
513 struct vfs_cap_data cap_data;
514 memset(&cap_data, 0, sizeof(cap_data));
515
516 cap_data.magic_etc = VFS_CAP_REVISION | VFS_CAP_FLAGS_EFFECTIVE;
517 cap_data.data[0].permitted = (uint32_t) (capabilities & 0xffffffff);
518 cap_data.data[0].inheritable = 0;
519 cap_data.data[1].permitted = (uint32_t) (capabilities >> 32);
520 cap_data.data[1].inheritable = 0;
521
522 return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
523 XATTR_CAPS_SUFFIX, &cap_data, sizeof(cap_data));
524 }