2213dc1206581b936641647c1826cb8d6328bc59
[project/opkg-lede.git] / libopkg / md5.c
1 /* Functions to compute MD5 message digest of files or memory blocks.
2 according to the definition of MD5 in RFC 1321 from April 1992.
3 Copyright (C) 1995,1996,1997,1999,2000,2001,2005,2006,2008
4 Free Software Foundation, Inc.
5 This file is part of the GNU C Library.
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software Foundation,
19 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 /* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. */
22
23 #include <config.h>
24
25 #include "md5.h"
26
27 #include <stddef.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <sys/types.h>
31
32 #if USE_UNLOCKED_IO
33 # include "unlocked-io.h"
34 #endif
35
36 #ifdef _LIBC
37 # include <endian.h>
38 # if __BYTE_ORDER == __BIG_ENDIAN
39 # define WORDS_BIGENDIAN 1
40 # endif
41 /* We need to keep the namespace clean so define the MD5 function
42 protected using leading __ . */
43 # define md5_init_ctx __md5_init_ctx
44 # define md5_process_block __md5_process_block
45 # define md5_process_bytes __md5_process_bytes
46 # define md5_finish_ctx __md5_finish_ctx
47 # define md5_read_ctx __md5_read_ctx
48 # define md5_stream __md5_stream
49 # define md5_buffer __md5_buffer
50 #endif
51
52 #ifdef WORDS_BIGENDIAN
53 # define SWAP(n) \
54 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
55 #else
56 # define SWAP(n) (n)
57 #endif
58
59 #define BLOCKSIZE 4096
60 #if BLOCKSIZE % 64 != 0
61 # error "invalid BLOCKSIZE"
62 #endif
63
64 /* This array contains the bytes used to pad the buffer to the next
65 64-byte boundary. (RFC 1321, 3.1: Step 1) */
66 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
67
68
69 /* Initialize structure containing state of computation.
70 (RFC 1321, 3.3: Step 3) */
71 void
72 md5_init_ctx (struct md5_ctx *ctx)
73 {
74 ctx->A = 0x67452301;
75 ctx->B = 0xefcdab89;
76 ctx->C = 0x98badcfe;
77 ctx->D = 0x10325476;
78
79 ctx->total[0] = ctx->total[1] = 0;
80 ctx->buflen = 0;
81 }
82
83 /* Copy the 4 byte value from v into the memory location pointed to by *cp,
84 If your architecture allows unaligned access this is equivalent to
85 * (uint32_t *) cp = v */
86 static inline void
87 set_uint32 (char *cp, uint32_t v)
88 {
89 memcpy (cp, &v, sizeof v);
90 }
91
92 /* Put result from CTX in first 16 bytes following RESBUF. The result
93 must be in little endian byte order. */
94 void *
95 md5_read_ctx (const struct md5_ctx *ctx, void *resbuf)
96 {
97 char *r = resbuf;
98 set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A));
99 set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B));
100 set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C));
101 set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D));
102
103 return resbuf;
104 }
105
106 /* Process the remaining bytes in the internal buffer and the usual
107 prolog according to the standard and write the result to RESBUF. */
108 void *
109 md5_finish_ctx (struct md5_ctx *ctx, void *resbuf)
110 {
111 /* Take yet unprocessed bytes into account. */
112 uint32_t bytes = ctx->buflen;
113 size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
114
115 /* Now count remaining bytes. */
116 ctx->total[0] += bytes;
117 if (ctx->total[0] < bytes)
118 ++ctx->total[1];
119
120 /* Put the 64-bit file length in *bits* at the end of the buffer. */
121 ctx->buffer[size - 2] = SWAP (ctx->total[0] << 3);
122 ctx->buffer[size - 1] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
123
124 memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
125
126 /* Process last bytes. */
127 md5_process_block (ctx->buffer, size * 4, ctx);
128
129 return md5_read_ctx (ctx, resbuf);
130 }
131
132 /* Compute MD5 message digest for bytes read from STREAM. The
133 resulting message digest number will be written into the 16 bytes
134 beginning at RESBLOCK. */
135 int
136 md5_stream (FILE *stream, void *resblock)
137 {
138 struct md5_ctx ctx;
139 char buffer[BLOCKSIZE + 72];
140 size_t sum;
141
142 /* Initialize the computation context. */
143 md5_init_ctx (&ctx);
144
145 /* Iterate over full file contents. */
146 while (1)
147 {
148 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
149 computation function processes the whole buffer so that with the
150 next round of the loop another block can be read. */
151 size_t n;
152 sum = 0;
153
154 /* Read block. Take care for partial reads. */
155 while (1)
156 {
157 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
158
159 sum += n;
160
161 if (sum == BLOCKSIZE)
162 break;
163
164 if (n == 0)
165 {
166 /* Check for the error flag IFF N == 0, so that we don't
167 exit the loop after a partial read due to e.g., EAGAIN
168 or EWOULDBLOCK. */
169 if (ferror (stream))
170 return 1;
171 goto process_partial_block;
172 }
173
174 /* We've read at least one byte, so ignore errors. But always
175 check for EOF, since feof may be true even though N > 0.
176 Otherwise, we could end up calling fread after EOF. */
177 if (feof (stream))
178 goto process_partial_block;
179 }
180
181 /* Process buffer with BLOCKSIZE bytes. Note that
182 BLOCKSIZE % 64 == 0
183 */
184 md5_process_block (buffer, BLOCKSIZE, &ctx);
185 }
186
187 process_partial_block:
188
189 /* Process any remaining bytes. */
190 if (sum > 0)
191 md5_process_bytes (buffer, sum, &ctx);
192
193 /* Construct result in desired memory. */
194 md5_finish_ctx (&ctx, resblock);
195 return 0;
196 }
197
198 /* Compute MD5 message digest for LEN bytes beginning at BUFFER. The
199 result is always in little endian byte order, so that a byte-wise
200 output yields to the wanted ASCII representation of the message
201 digest. */
202 void *
203 md5_buffer (const char *buffer, size_t len, void *resblock)
204 {
205 struct md5_ctx ctx;
206
207 /* Initialize the computation context. */
208 md5_init_ctx (&ctx);
209
210 /* Process whole buffer but last len % 64 bytes. */
211 md5_process_bytes (buffer, len, &ctx);
212
213 /* Put result in desired memory area. */
214 return md5_finish_ctx (&ctx, resblock);
215 }
216
217
218 void
219 md5_process_bytes (const void *buffer, size_t len, struct md5_ctx *ctx)
220 {
221 /* When we already have some bits in our internal buffer concatenate
222 both inputs first. */
223 if (ctx->buflen != 0)
224 {
225 size_t left_over = ctx->buflen;
226 size_t add = 128 - left_over > len ? len : 128 - left_over;
227
228 memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
229 ctx->buflen += add;
230
231 if (ctx->buflen > 64)
232 {
233 md5_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
234
235 ctx->buflen &= 63;
236 /* The regions in the following copy operation cannot overlap. */
237 memcpy (ctx->buffer,
238 &((char *) ctx->buffer)[(left_over + add) & ~63],
239 ctx->buflen);
240 }
241
242 buffer = (const char *) buffer + add;
243 len -= add;
244 }
245
246 /* Process available complete blocks. */
247 if (len >= 64)
248 {
249 #if !_STRING_ARCH_unaligned
250 # define alignof(type) offsetof (struct { char c; type x; }, x)
251 # define UNALIGNED_P(p) (((size_t) p) % alignof (uint32_t) != 0)
252 if (UNALIGNED_P (buffer))
253 while (len > 64)
254 {
255 md5_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
256 buffer = (const char *) buffer + 64;
257 len -= 64;
258 }
259 else
260 #endif
261 {
262 md5_process_block (buffer, len & ~63, ctx);
263 buffer = (const char *) buffer + (len & ~63);
264 len &= 63;
265 }
266 }
267
268 /* Move remaining bytes in internal buffer. */
269 if (len > 0)
270 {
271 size_t left_over = ctx->buflen;
272
273 memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
274 left_over += len;
275 if (left_over >= 64)
276 {
277 md5_process_block (ctx->buffer, 64, ctx);
278 left_over -= 64;
279 memcpy (ctx->buffer, &ctx->buffer[16], left_over);
280 }
281 ctx->buflen = left_over;
282 }
283 }
284
285
286 /* These are the four functions used in the four steps of the MD5 algorithm
287 and defined in the RFC 1321. The first function is a little bit optimized
288 (as found in Colin Plumbs public domain implementation). */
289 /* #define FF(b, c, d) ((b & c) | (~b & d)) */
290 #define FF(b, c, d) (d ^ (b & (c ^ d)))
291 #define FG(b, c, d) FF (d, b, c)
292 #define FH(b, c, d) (b ^ c ^ d)
293 #define FI(b, c, d) (c ^ (b | ~d))
294
295 /* Process LEN bytes of BUFFER, accumulating context into CTX.
296 It is assumed that LEN % 64 == 0. */
297
298 void
299 md5_process_block (const void *buffer, size_t len, struct md5_ctx *ctx)
300 {
301 uint32_t correct_words[16];
302 const uint32_t *words = buffer;
303 size_t nwords = len / sizeof (uint32_t);
304 const uint32_t *endp = words + nwords;
305 uint32_t A = ctx->A;
306 uint32_t B = ctx->B;
307 uint32_t C = ctx->C;
308 uint32_t D = ctx->D;
309
310 /* First increment the byte count. RFC 1321 specifies the possible
311 length of the file up to 2^64 bits. Here we only compute the
312 number of bytes. Do a double word increment. */
313 ctx->total[0] += len;
314 if (ctx->total[0] < len)
315 ++ctx->total[1];
316
317 /* Process all bytes in the buffer with 64 bytes in each round of
318 the loop. */
319 while (words < endp)
320 {
321 uint32_t *cwp = correct_words;
322 uint32_t A_save = A;
323 uint32_t B_save = B;
324 uint32_t C_save = C;
325 uint32_t D_save = D;
326
327 /* First round: using the given function, the context and a constant
328 the next context is computed. Because the algorithms processing
329 unit is a 32-bit word and it is determined to work on words in
330 little endian byte order we perhaps have to change the byte order
331 before the computation. To reduce the work for the next steps
332 we store the swapped words in the array CORRECT_WORDS. */
333
334 #define OP(a, b, c, d, s, T) \
335 do \
336 { \
337 a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T; \
338 ++words; \
339 CYCLIC (a, s); \
340 a += b; \
341 } \
342 while (0)
343
344 /* It is unfortunate that C does not provide an operator for
345 cyclic rotation. Hope the C compiler is smart enough. */
346 #define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
347
348 /* Before we start, one word to the strange constants.
349 They are defined in RFC 1321 as
350
351 T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
352
353 Here is an equivalent invocation using Perl:
354
355 perl -e 'foreach(1..64){printf "0x%08x\n", int (4294967296 * abs (sin $_))}'
356 */
357
358 /* Round 1. */
359 OP (A, B, C, D, 7, 0xd76aa478);
360 OP (D, A, B, C, 12, 0xe8c7b756);
361 OP (C, D, A, B, 17, 0x242070db);
362 OP (B, C, D, A, 22, 0xc1bdceee);
363 OP (A, B, C, D, 7, 0xf57c0faf);
364 OP (D, A, B, C, 12, 0x4787c62a);
365 OP (C, D, A, B, 17, 0xa8304613);
366 OP (B, C, D, A, 22, 0xfd469501);
367 OP (A, B, C, D, 7, 0x698098d8);
368 OP (D, A, B, C, 12, 0x8b44f7af);
369 OP (C, D, A, B, 17, 0xffff5bb1);
370 OP (B, C, D, A, 22, 0x895cd7be);
371 OP (A, B, C, D, 7, 0x6b901122);
372 OP (D, A, B, C, 12, 0xfd987193);
373 OP (C, D, A, B, 17, 0xa679438e);
374 OP (B, C, D, A, 22, 0x49b40821);
375
376 /* For the second to fourth round we have the possibly swapped words
377 in CORRECT_WORDS. Redefine the macro to take an additional first
378 argument specifying the function to use. */
379 #undef OP
380 #define OP(f, a, b, c, d, k, s, T) \
381 do \
382 { \
383 a += f (b, c, d) + correct_words[k] + T; \
384 CYCLIC (a, s); \
385 a += b; \
386 } \
387 while (0)
388
389 /* Round 2. */
390 OP (FG, A, B, C, D, 1, 5, 0xf61e2562);
391 OP (FG, D, A, B, C, 6, 9, 0xc040b340);
392 OP (FG, C, D, A, B, 11, 14, 0x265e5a51);
393 OP (FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
394 OP (FG, A, B, C, D, 5, 5, 0xd62f105d);
395 OP (FG, D, A, B, C, 10, 9, 0x02441453);
396 OP (FG, C, D, A, B, 15, 14, 0xd8a1e681);
397 OP (FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
398 OP (FG, A, B, C, D, 9, 5, 0x21e1cde6);
399 OP (FG, D, A, B, C, 14, 9, 0xc33707d6);
400 OP (FG, C, D, A, B, 3, 14, 0xf4d50d87);
401 OP (FG, B, C, D, A, 8, 20, 0x455a14ed);
402 OP (FG, A, B, C, D, 13, 5, 0xa9e3e905);
403 OP (FG, D, A, B, C, 2, 9, 0xfcefa3f8);
404 OP (FG, C, D, A, B, 7, 14, 0x676f02d9);
405 OP (FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
406
407 /* Round 3. */
408 OP (FH, A, B, C, D, 5, 4, 0xfffa3942);
409 OP (FH, D, A, B, C, 8, 11, 0x8771f681);
410 OP (FH, C, D, A, B, 11, 16, 0x6d9d6122);
411 OP (FH, B, C, D, A, 14, 23, 0xfde5380c);
412 OP (FH, A, B, C, D, 1, 4, 0xa4beea44);
413 OP (FH, D, A, B, C, 4, 11, 0x4bdecfa9);
414 OP (FH, C, D, A, B, 7, 16, 0xf6bb4b60);
415 OP (FH, B, C, D, A, 10, 23, 0xbebfbc70);
416 OP (FH, A, B, C, D, 13, 4, 0x289b7ec6);
417 OP (FH, D, A, B, C, 0, 11, 0xeaa127fa);
418 OP (FH, C, D, A, B, 3, 16, 0xd4ef3085);
419 OP (FH, B, C, D, A, 6, 23, 0x04881d05);
420 OP (FH, A, B, C, D, 9, 4, 0xd9d4d039);
421 OP (FH, D, A, B, C, 12, 11, 0xe6db99e5);
422 OP (FH, C, D, A, B, 15, 16, 0x1fa27cf8);
423 OP (FH, B, C, D, A, 2, 23, 0xc4ac5665);
424
425 /* Round 4. */
426 OP (FI, A, B, C, D, 0, 6, 0xf4292244);
427 OP (FI, D, A, B, C, 7, 10, 0x432aff97);
428 OP (FI, C, D, A, B, 14, 15, 0xab9423a7);
429 OP (FI, B, C, D, A, 5, 21, 0xfc93a039);
430 OP (FI, A, B, C, D, 12, 6, 0x655b59c3);
431 OP (FI, D, A, B, C, 3, 10, 0x8f0ccc92);
432 OP (FI, C, D, A, B, 10, 15, 0xffeff47d);
433 OP (FI, B, C, D, A, 1, 21, 0x85845dd1);
434 OP (FI, A, B, C, D, 8, 6, 0x6fa87e4f);
435 OP (FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
436 OP (FI, C, D, A, B, 6, 15, 0xa3014314);
437 OP (FI, B, C, D, A, 13, 21, 0x4e0811a1);
438 OP (FI, A, B, C, D, 4, 6, 0xf7537e82);
439 OP (FI, D, A, B, C, 11, 10, 0xbd3af235);
440 OP (FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
441 OP (FI, B, C, D, A, 9, 21, 0xeb86d391);
442
443 /* Add the starting values of the context. */
444 A += A_save;
445 B += B_save;
446 C += C_save;
447 D += D_save;
448 }
449
450 /* Put checksum in context given as argument. */
451 ctx->A = A;
452 ctx->B = B;
453 ctx->C = C;
454 ctx->D = D;
455 }