b3dc53c20f839d3fb2e5caf6059f9abc41d6879f
[openwrt/staging/noltari.git] / target / linux / bmips / files / drivers / net / ethernet / broadcom / bcm6368-enetsw.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * BCM6368 Ethernet Switch Controller Driver
4 *
5 * Copyright (C) 2021 Álvaro Fernández Rojas <noltari@gmail.com>
6 * Copyright (C) 2015 Jonas Gorski <jonas.gorski@gmail.com>
7 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
8 */
9
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/ethtool.h>
15 #include <linux/if_vlan.h>
16 #include <linux/interrupt.h>
17 #include <linux/of_clk.h>
18 #include <linux/of_net.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_domain.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/reset.h>
23
24 /* MTU */
25 #define ENETSW_TAG_SIZE 6
26 #define ENETSW_MTU_OVERHEAD (VLAN_ETH_HLEN + VLAN_HLEN + \
27 ENETSW_TAG_SIZE)
28 #define ENETSW_FRAG_SIZE(x) (SKB_DATA_ALIGN(NET_SKB_PAD + x + \
29 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))))
30
31 /* default number of descriptor */
32 #define ENETSW_DEF_RX_DESC 64
33 #define ENETSW_DEF_TX_DESC 32
34 #define ENETSW_DEF_CPY_BREAK 128
35
36 /* maximum burst len for dma (4 bytes unit) */
37 #define ENETSW_DMA_MAXBURST 8
38
39 /* DMA channels */
40 #define DMA_CHAN_WIDTH 0x10
41
42 /* Controller Configuration Register */
43 #define DMA_CFG_REG 0x0
44 #define DMA_CFG_EN_SHIFT 0
45 #define DMA_CFG_EN_MASK (1 << DMA_CFG_EN_SHIFT)
46 #define DMA_CFG_FLOWCH_MASK(x) (1 << ((x >> 1) + 1))
47
48 /* Flow Control Descriptor Low Threshold register */
49 #define DMA_FLOWCL_REG(x) (0x4 + (x) * 6)
50
51 /* Flow Control Descriptor High Threshold register */
52 #define DMA_FLOWCH_REG(x) (0x8 + (x) * 6)
53
54 /* Flow Control Descriptor Buffer Alloca Threshold register */
55 #define DMA_BUFALLOC_REG(x) (0xc + (x) * 6)
56 #define DMA_BUFALLOC_FORCE_SHIFT 31
57 #define DMA_BUFALLOC_FORCE_MASK (1 << DMA_BUFALLOC_FORCE_SHIFT)
58
59 /* Channel Configuration register */
60 #define DMAC_CHANCFG_REG 0x0
61 #define DMAC_CHANCFG_EN_SHIFT 0
62 #define DMAC_CHANCFG_EN_MASK (1 << DMAC_CHANCFG_EN_SHIFT)
63 #define DMAC_CHANCFG_PKTHALT_SHIFT 1
64 #define DMAC_CHANCFG_PKTHALT_MASK (1 << DMAC_CHANCFG_PKTHALT_SHIFT)
65 #define DMAC_CHANCFG_BUFHALT_SHIFT 2
66 #define DMAC_CHANCFG_BUFHALT_MASK (1 << DMAC_CHANCFG_BUFHALT_SHIFT)
67 #define DMAC_CHANCFG_CHAINING_SHIFT 2
68 #define DMAC_CHANCFG_CHAINING_MASK (1 << DMAC_CHANCFG_CHAINING_SHIFT)
69 #define DMAC_CHANCFG_WRAP_EN_SHIFT 3
70 #define DMAC_CHANCFG_WRAP_EN_MASK (1 << DMAC_CHANCFG_WRAP_EN_SHIFT)
71 #define DMAC_CHANCFG_FLOWC_EN_SHIFT 4
72 #define DMAC_CHANCFG_FLOWC_EN_MASK (1 << DMAC_CHANCFG_FLOWC_EN_SHIFT)
73
74 /* Interrupt Control/Status register */
75 #define DMAC_IR_REG 0x4
76 #define DMAC_IR_BUFDONE_MASK (1 << 0)
77 #define DMAC_IR_PKTDONE_MASK (1 << 1)
78 #define DMAC_IR_NOTOWNER_MASK (1 << 2)
79
80 /* Interrupt Mask register */
81 #define DMAC_IRMASK_REG 0x8
82
83 /* Maximum Burst Length */
84 #define DMAC_MAXBURST_REG 0xc
85
86 /* Ring Start Address register */
87 #define DMAS_RSTART_REG 0x0
88
89 /* State Ram Word 2 */
90 #define DMAS_SRAM2_REG 0x4
91
92 /* State Ram Word 3 */
93 #define DMAS_SRAM3_REG 0x8
94
95 /* State Ram Word 4 */
96 #define DMAS_SRAM4_REG 0xc
97
98 struct bcm6368_enetsw_desc {
99 u32 len_stat;
100 u32 address;
101 };
102
103 /* control */
104 #define DMADESC_LENGTH_SHIFT 16
105 #define DMADESC_LENGTH_MASK (0xfff << DMADESC_LENGTH_SHIFT)
106 #define DMADESC_OWNER_MASK (1 << 15)
107 #define DMADESC_EOP_MASK (1 << 14)
108 #define DMADESC_SOP_MASK (1 << 13)
109 #define DMADESC_ESOP_MASK (DMADESC_EOP_MASK | DMADESC_SOP_MASK)
110 #define DMADESC_WRAP_MASK (1 << 12)
111 #define DMADESC_USB_NOZERO_MASK (1 << 1)
112 #define DMADESC_USB_ZERO_MASK (1 << 0)
113
114 /* status */
115 #define DMADESC_UNDER_MASK (1 << 9)
116 #define DMADESC_APPEND_CRC (1 << 8)
117 #define DMADESC_OVSIZE_MASK (1 << 4)
118 #define DMADESC_RXER_MASK (1 << 2)
119 #define DMADESC_CRC_MASK (1 << 1)
120 #define DMADESC_OV_MASK (1 << 0)
121 #define DMADESC_ERR_MASK (DMADESC_UNDER_MASK | \
122 DMADESC_OVSIZE_MASK | \
123 DMADESC_RXER_MASK | \
124 DMADESC_CRC_MASK | \
125 DMADESC_OV_MASK)
126
127 struct bcm6368_enetsw {
128 void __iomem *dma_base;
129 void __iomem *dma_chan;
130 void __iomem *dma_sram;
131
132 struct device **pm;
133 struct device_link **link_pm;
134 int num_pms;
135
136 struct clk **clock;
137 unsigned int num_clocks;
138
139 struct reset_control **reset;
140 unsigned int num_resets;
141
142 int copybreak;
143
144 int irq_rx;
145 int irq_tx;
146
147 /* hw view of rx & tx dma ring */
148 dma_addr_t rx_desc_dma;
149 dma_addr_t tx_desc_dma;
150
151 /* allocated size (in bytes) for rx & tx dma ring */
152 unsigned int rx_desc_alloc_size;
153 unsigned int tx_desc_alloc_size;
154
155 struct napi_struct napi;
156
157 /* dma channel id for rx */
158 int rx_chan;
159
160 /* number of dma desc in rx ring */
161 int rx_ring_size;
162
163 /* cpu view of rx dma ring */
164 struct bcm6368_enetsw_desc *rx_desc_cpu;
165
166 /* current number of armed descriptor given to hardware for rx */
167 int rx_desc_count;
168
169 /* next rx descriptor to fetch from hardware */
170 int rx_curr_desc;
171
172 /* next dirty rx descriptor to refill */
173 int rx_dirty_desc;
174
175 /* size of allocated rx buffer */
176 unsigned int rx_buf_size;
177
178 /* size of allocated rx frag */
179 unsigned int rx_frag_size;
180
181 /* list of buffer given to hw for rx */
182 unsigned char **rx_buf;
183
184 /* used when rx buffer allocation failed, so we defer rx queue
185 * refill */
186 struct timer_list rx_timeout;
187
188 /* lock rx_timeout against rx normal operation */
189 spinlock_t rx_lock;
190
191 /* dma channel id for tx */
192 int tx_chan;
193
194 /* number of dma desc in tx ring */
195 int tx_ring_size;
196
197 /* maximum dma burst size */
198 int dma_maxburst;
199
200 /* cpu view of rx dma ring */
201 struct bcm6368_enetsw_desc *tx_desc_cpu;
202
203 /* number of available descriptor for tx */
204 int tx_desc_count;
205
206 /* next tx descriptor avaiable */
207 int tx_curr_desc;
208
209 /* next dirty tx descriptor to reclaim */
210 int tx_dirty_desc;
211
212 /* list of skb given to hw for tx */
213 struct sk_buff **tx_skb;
214
215 /* lock used by tx reclaim and xmit */
216 spinlock_t tx_lock;
217
218 /* network device reference */
219 struct net_device *net_dev;
220
221 /* platform device reference */
222 struct platform_device *pdev;
223
224 /* dma channel enable mask */
225 u32 dma_chan_en_mask;
226
227 /* dma channel interrupt mask */
228 u32 dma_chan_int_mask;
229
230 /* dma channel width */
231 unsigned int dma_chan_width;
232 };
233
234 static inline void dma_writel(struct bcm6368_enetsw *priv, u32 val, u32 off)
235 {
236 __raw_writel(val, priv->dma_base + off);
237 }
238
239 static inline u32 dma_readl(struct bcm6368_enetsw *priv, u32 off, int chan)
240 {
241 return __raw_readl(priv->dma_chan + off + chan * priv->dma_chan_width);
242 }
243
244 static inline void dmac_writel(struct bcm6368_enetsw *priv, u32 val,
245 u32 off, int chan)
246 {
247 __raw_writel(val, priv->dma_chan + off + chan * priv->dma_chan_width);
248 }
249
250 static inline void dmas_writel(struct bcm6368_enetsw *priv, u32 val,
251 u32 off, int chan)
252 {
253 __raw_writel(val, priv->dma_sram + off + chan * priv->dma_chan_width);
254 }
255
256 /*
257 * refill rx queue
258 */
259 static int bcm6368_enetsw_refill_rx(struct net_device *dev, bool napi_mode)
260 {
261 struct bcm6368_enetsw *priv = netdev_priv(dev);
262
263 while (priv->rx_desc_count < priv->rx_ring_size) {
264 struct bcm6368_enetsw_desc *desc;
265 int desc_idx;
266 u32 len_stat;
267
268 desc_idx = priv->rx_dirty_desc;
269 desc = &priv->rx_desc_cpu[desc_idx];
270
271 if (!priv->rx_buf[desc_idx]) {
272 unsigned char *buf;
273
274 if (likely(napi_mode))
275 buf = napi_alloc_frag(priv->rx_frag_size);
276 else
277 buf = netdev_alloc_frag(priv->rx_frag_size);
278
279 if (unlikely(!buf))
280 break;
281
282 priv->rx_buf[desc_idx] = buf;
283 desc->address = dma_map_single(&priv->pdev->dev,
284 buf + NET_SKB_PAD,
285 priv->rx_buf_size,
286 DMA_FROM_DEVICE);
287 }
288
289 len_stat = priv->rx_buf_size << DMADESC_LENGTH_SHIFT;
290 len_stat |= DMADESC_OWNER_MASK;
291 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
292 len_stat |= DMADESC_WRAP_MASK;
293 priv->rx_dirty_desc = 0;
294 } else {
295 priv->rx_dirty_desc++;
296 }
297 wmb();
298 desc->len_stat = len_stat;
299
300 priv->rx_desc_count++;
301
302 /* tell dma engine we allocated one buffer */
303 dma_writel(priv, 1, DMA_BUFALLOC_REG(priv->rx_chan));
304 }
305
306 /* If rx ring is still empty, set a timer to try allocating
307 * again at a later time. */
308 if (priv->rx_desc_count == 0 && netif_running(dev)) {
309 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
310 priv->rx_timeout.expires = jiffies + HZ;
311 add_timer(&priv->rx_timeout);
312 }
313
314 return 0;
315 }
316
317 /*
318 * timer callback to defer refill rx queue in case we're OOM
319 */
320 static void bcm6368_enetsw_refill_rx_timer(struct timer_list *t)
321 {
322 struct bcm6368_enetsw *priv = from_timer(priv, t, rx_timeout);
323 struct net_device *dev = priv->net_dev;
324
325 spin_lock(&priv->rx_lock);
326 bcm6368_enetsw_refill_rx(dev, false);
327 spin_unlock(&priv->rx_lock);
328 }
329
330 /*
331 * extract packet from rx queue
332 */
333 static int bcm6368_enetsw_receive_queue(struct net_device *dev, int budget)
334 {
335 struct bcm6368_enetsw *priv = netdev_priv(dev);
336 struct device *kdev = &priv->pdev->dev;
337 struct list_head rx_list;
338 struct sk_buff *skb;
339 int processed = 0;
340
341 INIT_LIST_HEAD(&rx_list);
342
343 /* don't scan ring further than number of refilled
344 * descriptor */
345 if (budget > priv->rx_desc_count)
346 budget = priv->rx_desc_count;
347
348 do {
349 struct bcm6368_enetsw_desc *desc;
350 unsigned int frag_size;
351 unsigned char *buf;
352 int desc_idx;
353 u32 len_stat;
354 unsigned int len;
355
356 desc_idx = priv->rx_curr_desc;
357 desc = &priv->rx_desc_cpu[desc_idx];
358
359 /* make sure we actually read the descriptor status at
360 * each loop */
361 rmb();
362
363 len_stat = desc->len_stat;
364
365 /* break if dma ownership belongs to hw */
366 if (len_stat & DMADESC_OWNER_MASK)
367 break;
368
369 processed++;
370 priv->rx_curr_desc++;
371 if (priv->rx_curr_desc == priv->rx_ring_size)
372 priv->rx_curr_desc = 0;
373
374 /* if the packet does not have start of packet _and_
375 * end of packet flag set, then just recycle it */
376 if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
377 dev->stats.rx_dropped++;
378 continue;
379 }
380
381 /* valid packet */
382 buf = priv->rx_buf[desc_idx];
383 len = (len_stat & DMADESC_LENGTH_MASK)
384 >> DMADESC_LENGTH_SHIFT;
385 /* don't include FCS */
386 len -= 4;
387
388 if (len < priv->copybreak) {
389 unsigned int nfrag_size = ENETSW_FRAG_SIZE(len);
390 unsigned char *nbuf = napi_alloc_frag(nfrag_size);
391
392 if (unlikely(!nbuf)) {
393 /* forget packet, just rearm desc */
394 dev->stats.rx_dropped++;
395 continue;
396 }
397
398 dma_sync_single_for_cpu(kdev, desc->address,
399 len, DMA_FROM_DEVICE);
400 memcpy(nbuf + NET_SKB_PAD, buf + NET_SKB_PAD, len);
401 dma_sync_single_for_device(kdev, desc->address,
402 len, DMA_FROM_DEVICE);
403 buf = nbuf;
404 frag_size = nfrag_size;
405 } else {
406 dma_unmap_single(kdev, desc->address,
407 priv->rx_buf_size, DMA_FROM_DEVICE);
408 priv->rx_buf[desc_idx] = NULL;
409 frag_size = priv->rx_frag_size;
410 }
411
412 skb = napi_build_skb(buf, frag_size);
413 if (unlikely(!skb)) {
414 skb_free_frag(buf);
415 dev->stats.rx_dropped++;
416 continue;
417 }
418
419 skb_reserve(skb, NET_SKB_PAD);
420 skb_put(skb, len);
421 dev->stats.rx_packets++;
422 dev->stats.rx_bytes += len;
423 list_add_tail(&skb->list, &rx_list);
424 } while (processed < budget);
425
426 list_for_each_entry(skb, &rx_list, list)
427 skb->protocol = eth_type_trans(skb, dev);
428 netif_receive_skb_list(&rx_list);
429 priv->rx_desc_count -= processed;
430
431 if (processed || !priv->rx_desc_count) {
432 bcm6368_enetsw_refill_rx(dev, true);
433
434 /* kick rx dma */
435 dmac_writel(priv, priv->dma_chan_en_mask,
436 DMAC_CHANCFG_REG, priv->rx_chan);
437 }
438
439 return processed;
440 }
441
442 /*
443 * try to or force reclaim of transmitted buffers
444 */
445 static int bcm6368_enetsw_tx_reclaim(struct net_device *dev, int force)
446 {
447 struct bcm6368_enetsw *priv = netdev_priv(dev);
448 unsigned int bytes = 0;
449 int released = 0;
450
451 while (priv->tx_desc_count < priv->tx_ring_size) {
452 struct bcm6368_enetsw_desc *desc;
453 struct sk_buff *skb;
454
455 /* We run in a bh and fight against start_xmit, which
456 * is called with bh disabled */
457 spin_lock(&priv->tx_lock);
458
459 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
460
461 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
462 spin_unlock(&priv->tx_lock);
463 break;
464 }
465
466 /* ensure other field of the descriptor were not read
467 * before we checked ownership */
468 rmb();
469
470 skb = priv->tx_skb[priv->tx_dirty_desc];
471 priv->tx_skb[priv->tx_dirty_desc] = NULL;
472 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
473 DMA_TO_DEVICE);
474
475 priv->tx_dirty_desc++;
476 if (priv->tx_dirty_desc == priv->tx_ring_size)
477 priv->tx_dirty_desc = 0;
478 priv->tx_desc_count++;
479
480 spin_unlock(&priv->tx_lock);
481
482 if (desc->len_stat & DMADESC_UNDER_MASK)
483 dev->stats.tx_errors++;
484
485 bytes += skb->len;
486 napi_consume_skb(skb, !force);
487 released++;
488 }
489
490 netdev_completed_queue(dev, released, bytes);
491
492 if (netif_queue_stopped(dev) && released)
493 netif_wake_queue(dev);
494
495 return released;
496 }
497
498 /*
499 * poll func, called by network core
500 */
501 static int bcm6368_enetsw_poll(struct napi_struct *napi, int budget)
502 {
503 struct bcm6368_enetsw *priv = container_of(napi, struct bcm6368_enetsw, napi);
504 struct net_device *dev = priv->net_dev;
505 int rx_work_done;
506
507 /* ack interrupts */
508 dmac_writel(priv, priv->dma_chan_int_mask,
509 DMAC_IR_REG, priv->rx_chan);
510 dmac_writel(priv, priv->dma_chan_int_mask,
511 DMAC_IR_REG, priv->tx_chan);
512
513 /* reclaim sent skb */
514 bcm6368_enetsw_tx_reclaim(dev, 0);
515
516 spin_lock(&priv->rx_lock);
517 rx_work_done = bcm6368_enetsw_receive_queue(dev, budget);
518 spin_unlock(&priv->rx_lock);
519
520 if (rx_work_done >= budget) {
521 /* rx queue is not yet empty/clean */
522 return rx_work_done;
523 }
524
525 /* no more packet in rx/tx queue, remove device from poll
526 * queue */
527 napi_complete_done(napi, rx_work_done);
528
529 /* restore rx/tx interrupt */
530 dmac_writel(priv, priv->dma_chan_int_mask,
531 DMAC_IRMASK_REG, priv->rx_chan);
532 dmac_writel(priv, priv->dma_chan_int_mask,
533 DMAC_IRMASK_REG, priv->tx_chan);
534
535 return rx_work_done;
536 }
537
538 /*
539 * rx/tx dma interrupt handler
540 */
541 static irqreturn_t bcm6368_enetsw_isr_dma(int irq, void *dev_id)
542 {
543 struct net_device *dev = dev_id;
544 struct bcm6368_enetsw *priv = netdev_priv(dev);
545
546 /* mask rx/tx interrupts */
547 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
548 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
549
550 napi_schedule(&priv->napi);
551
552 return IRQ_HANDLED;
553 }
554
555 /*
556 * tx request callback
557 */
558 static netdev_tx_t
559 bcm6368_enetsw_start_xmit(struct sk_buff *skb, struct net_device *dev)
560 {
561 struct bcm6368_enetsw *priv = netdev_priv(dev);
562 struct bcm6368_enetsw_desc *desc;
563 u32 len_stat;
564 netdev_tx_t ret;
565
566 /* lock against tx reclaim */
567 spin_lock(&priv->tx_lock);
568
569 /* make sure the tx hw queue is not full, should not happen
570 * since we stop queue before it's the case */
571 if (unlikely(!priv->tx_desc_count)) {
572 netif_stop_queue(dev);
573 dev_err(&priv->pdev->dev, "xmit called with no tx desc "
574 "available?\n");
575 ret = NETDEV_TX_BUSY;
576 goto out_unlock;
577 }
578
579 /* pad small packets */
580 if (skb->len < (ETH_ZLEN + ETH_FCS_LEN)) {
581 int needed = (ETH_ZLEN + ETH_FCS_LEN) - skb->len;
582 char *data;
583
584 if (unlikely(skb_tailroom(skb) < needed)) {
585 struct sk_buff *nskb;
586
587 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
588 if (!nskb) {
589 ret = NETDEV_TX_BUSY;
590 goto out_unlock;
591 }
592
593 dev_kfree_skb(skb);
594 skb = nskb;
595 }
596 data = skb_put_zero(skb, needed);
597 }
598
599 /* point to the next available desc */
600 desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
601 priv->tx_skb[priv->tx_curr_desc] = skb;
602
603 /* fill descriptor */
604 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
605 DMA_TO_DEVICE);
606
607 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
608 len_stat |= DMADESC_ESOP_MASK | DMADESC_APPEND_CRC |
609 DMADESC_OWNER_MASK;
610
611 priv->tx_curr_desc++;
612 if (priv->tx_curr_desc == priv->tx_ring_size) {
613 priv->tx_curr_desc = 0;
614 len_stat |= DMADESC_WRAP_MASK;
615 }
616 priv->tx_desc_count--;
617
618 /* dma might be already polling, make sure we update desc
619 * fields in correct order */
620 wmb();
621 desc->len_stat = len_stat;
622 wmb();
623
624 netdev_sent_queue(dev, skb->len);
625
626 /* kick tx dma */
627 dmac_writel(priv, priv->dma_chan_en_mask, DMAC_CHANCFG_REG,
628 priv->tx_chan);
629
630 /* stop queue if no more desc available */
631 if (!priv->tx_desc_count)
632 netif_stop_queue(dev);
633
634 dev->stats.tx_bytes += skb->len;
635 dev->stats.tx_packets++;
636 ret = NETDEV_TX_OK;
637
638 out_unlock:
639 spin_unlock(&priv->tx_lock);
640 return ret;
641 }
642
643 /*
644 * disable dma in given channel
645 */
646 static void bcm6368_enetsw_disable_dma(struct bcm6368_enetsw *priv, int chan)
647 {
648 int limit = 1000;
649
650 dmac_writel(priv, 0, DMAC_CHANCFG_REG, chan);
651
652 do {
653 u32 val;
654
655 val = dma_readl(priv, DMAC_CHANCFG_REG, chan);
656 if (!(val & DMAC_CHANCFG_EN_MASK))
657 break;
658
659 udelay(1);
660 } while (limit--);
661 }
662
663 static int bcm6368_enetsw_open(struct net_device *dev)
664 {
665 struct bcm6368_enetsw *priv = netdev_priv(dev);
666 struct device *kdev = &priv->pdev->dev;
667 int i, ret;
668 unsigned int size;
669 void *p;
670 u32 val;
671
672 /* mask all interrupts and request them */
673 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
674 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
675
676 ret = request_irq(priv->irq_rx, bcm6368_enetsw_isr_dma,
677 0, dev->name, dev);
678 if (ret)
679 goto out_freeirq;
680
681 if (priv->irq_tx != -1) {
682 ret = request_irq(priv->irq_tx, bcm6368_enetsw_isr_dma,
683 0, dev->name, dev);
684 if (ret)
685 goto out_freeirq_rx;
686 }
687
688 /* allocate rx dma ring */
689 size = priv->rx_ring_size * sizeof(struct bcm6368_enetsw_desc);
690 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
691 if (!p) {
692 dev_err(kdev, "cannot allocate rx ring %u\n", size);
693 ret = -ENOMEM;
694 goto out_freeirq_tx;
695 }
696
697 memset(p, 0, size);
698 priv->rx_desc_alloc_size = size;
699 priv->rx_desc_cpu = p;
700
701 /* allocate tx dma ring */
702 size = priv->tx_ring_size * sizeof(struct bcm6368_enetsw_desc);
703 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
704 if (!p) {
705 dev_err(kdev, "cannot allocate tx ring\n");
706 ret = -ENOMEM;
707 goto out_free_rx_ring;
708 }
709
710 memset(p, 0, size);
711 priv->tx_desc_alloc_size = size;
712 priv->tx_desc_cpu = p;
713
714 priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
715 GFP_KERNEL);
716 if (!priv->tx_skb) {
717 dev_err(kdev, "cannot allocate tx skb queue\n");
718 ret = -ENOMEM;
719 goto out_free_tx_ring;
720 }
721
722 priv->tx_desc_count = priv->tx_ring_size;
723 priv->tx_dirty_desc = 0;
724 priv->tx_curr_desc = 0;
725 spin_lock_init(&priv->tx_lock);
726
727 /* init & fill rx ring with buffers */
728 priv->rx_buf = kzalloc(sizeof(unsigned char *) * priv->rx_ring_size,
729 GFP_KERNEL);
730 if (!priv->rx_buf) {
731 dev_err(kdev, "cannot allocate rx buffer queue\n");
732 ret = -ENOMEM;
733 goto out_free_tx_skb;
734 }
735
736 priv->rx_desc_count = 0;
737 priv->rx_dirty_desc = 0;
738 priv->rx_curr_desc = 0;
739
740 /* initialize flow control buffer allocation */
741 dma_writel(priv, DMA_BUFALLOC_FORCE_MASK | 0,
742 DMA_BUFALLOC_REG(priv->rx_chan));
743
744 if (bcm6368_enetsw_refill_rx(dev, false)) {
745 dev_err(kdev, "cannot allocate rx buffer queue\n");
746 ret = -ENOMEM;
747 goto out;
748 }
749
750 /* write rx & tx ring addresses */
751 dmas_writel(priv, priv->rx_desc_dma,
752 DMAS_RSTART_REG, priv->rx_chan);
753 dmas_writel(priv, priv->tx_desc_dma,
754 DMAS_RSTART_REG, priv->tx_chan);
755
756 /* clear remaining state ram for rx & tx channel */
757 dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->rx_chan);
758 dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->tx_chan);
759 dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->rx_chan);
760 dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->tx_chan);
761 dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->rx_chan);
762 dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->tx_chan);
763
764 /* set dma maximum burst len */
765 dmac_writel(priv, priv->dma_maxburst,
766 DMAC_MAXBURST_REG, priv->rx_chan);
767 dmac_writel(priv, priv->dma_maxburst,
768 DMAC_MAXBURST_REG, priv->tx_chan);
769
770 /* set flow control low/high threshold to 1/3 / 2/3 */
771 val = priv->rx_ring_size / 3;
772 dma_writel(priv, val, DMA_FLOWCL_REG(priv->rx_chan));
773 val = (priv->rx_ring_size * 2) / 3;
774 dma_writel(priv, val, DMA_FLOWCH_REG(priv->rx_chan));
775
776 /* all set, enable mac and interrupts, start dma engine and
777 * kick rx dma channel
778 */
779 wmb();
780 dma_writel(priv, DMA_CFG_EN_MASK, DMA_CFG_REG);
781 dmac_writel(priv, DMAC_CHANCFG_EN_MASK,
782 DMAC_CHANCFG_REG, priv->rx_chan);
783
784 /* watch "packet transferred" interrupt in rx and tx */
785 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
786 DMAC_IR_REG, priv->rx_chan);
787 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
788 DMAC_IR_REG, priv->tx_chan);
789
790 /* make sure we enable napi before rx interrupt */
791 napi_enable(&priv->napi);
792
793 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
794 DMAC_IRMASK_REG, priv->rx_chan);
795 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
796 DMAC_IRMASK_REG, priv->tx_chan);
797
798 netif_carrier_on(dev);
799 netif_start_queue(dev);
800
801 return 0;
802
803 out:
804 for (i = 0; i < priv->rx_ring_size; i++) {
805 struct bcm6368_enetsw_desc *desc;
806
807 if (!priv->rx_buf[i])
808 continue;
809
810 desc = &priv->rx_desc_cpu[i];
811 dma_unmap_single(kdev, desc->address, priv->rx_buf_size,
812 DMA_FROM_DEVICE);
813 skb_free_frag(priv->rx_buf[i]);
814 }
815 kfree(priv->rx_buf);
816
817 out_free_tx_skb:
818 kfree(priv->tx_skb);
819
820 out_free_tx_ring:
821 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
822 priv->tx_desc_cpu, priv->tx_desc_dma);
823
824 out_free_rx_ring:
825 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
826 priv->rx_desc_cpu, priv->rx_desc_dma);
827
828 out_freeirq_tx:
829 if (priv->irq_tx != -1)
830 free_irq(priv->irq_tx, dev);
831
832 out_freeirq_rx:
833 free_irq(priv->irq_rx, dev);
834
835 out_freeirq:
836 return ret;
837 }
838
839 static int bcm6368_enetsw_stop(struct net_device *dev)
840 {
841 struct bcm6368_enetsw *priv = netdev_priv(dev);
842 struct device *kdev = &priv->pdev->dev;
843 int i;
844
845 netif_stop_queue(dev);
846 napi_disable(&priv->napi);
847 del_timer_sync(&priv->rx_timeout);
848
849 /* mask all interrupts */
850 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
851 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
852
853 /* disable dma & mac */
854 bcm6368_enetsw_disable_dma(priv, priv->tx_chan);
855 bcm6368_enetsw_disable_dma(priv, priv->rx_chan);
856
857 /* force reclaim of all tx buffers */
858 bcm6368_enetsw_tx_reclaim(dev, 1);
859
860 /* free the rx buffer ring */
861 for (i = 0; i < priv->rx_ring_size; i++) {
862 struct bcm6368_enetsw_desc *desc;
863
864 if (!priv->rx_buf[i])
865 continue;
866
867 desc = &priv->rx_desc_cpu[i];
868 dma_unmap_single_attrs(kdev, desc->address, priv->rx_buf_size,
869 DMA_FROM_DEVICE,
870 DMA_ATTR_SKIP_CPU_SYNC);
871 skb_free_frag(priv->rx_buf[i]);
872 }
873
874 /* free remaining allocated memory */
875 kfree(priv->rx_buf);
876 kfree(priv->tx_skb);
877 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
878 priv->rx_desc_cpu, priv->rx_desc_dma);
879 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
880 priv->tx_desc_cpu, priv->tx_desc_dma);
881 if (priv->irq_tx != -1)
882 free_irq(priv->irq_tx, dev);
883 free_irq(priv->irq_rx, dev);
884
885 netdev_reset_queue(dev);
886
887 return 0;
888 }
889
890 static const struct net_device_ops bcm6368_enetsw_ops = {
891 .ndo_open = bcm6368_enetsw_open,
892 .ndo_stop = bcm6368_enetsw_stop,
893 .ndo_start_xmit = bcm6368_enetsw_start_xmit,
894 };
895
896 static int bcm6368_enetsw_probe(struct platform_device *pdev)
897 {
898 struct bcm6368_enetsw *priv;
899 struct device *dev = &pdev->dev;
900 struct device_node *node = dev->of_node;
901 struct net_device *ndev;
902 struct resource *res;
903 unsigned i;
904 int ret;
905
906 ndev = alloc_etherdev(sizeof(*priv));
907 if (!ndev)
908 return -ENOMEM;
909
910 priv = netdev_priv(ndev);
911
912 priv->num_pms = of_count_phandle_with_args(node, "power-domains",
913 "#power-domain-cells");
914 if (priv->num_pms > 1) {
915 priv->pm = devm_kcalloc(dev, priv->num_pms,
916 sizeof(struct device *), GFP_KERNEL);
917 if (!priv->pm)
918 return -ENOMEM;
919
920 priv->link_pm = devm_kcalloc(dev, priv->num_pms,
921 sizeof(struct device_link *),
922 GFP_KERNEL);
923 if (!priv->link_pm)
924 return -ENOMEM;
925
926 for (i = 0; i < priv->num_pms; i++) {
927 priv->pm[i] = genpd_dev_pm_attach_by_id(dev, i);
928 if (IS_ERR(priv->pm[i])) {
929 dev_err(dev, "error getting pm %d\n", i);
930 return -EINVAL;
931 }
932
933 priv->link_pm[i] = device_link_add(dev, priv->pm[i],
934 DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME |
935 DL_FLAG_RPM_ACTIVE);
936 }
937 }
938
939 pm_runtime_enable(dev);
940 pm_runtime_no_callbacks(dev);
941 ret = pm_runtime_get_sync(dev);
942 if (ret < 0) {
943 pm_runtime_disable(dev);
944 dev_info(dev, "PM prober defer: ret=%d\n", ret);
945 return -EPROBE_DEFER;
946 }
947
948 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
949 priv->dma_base = devm_ioremap_resource(dev, res);
950 if (IS_ERR(priv->dma_base))
951 return PTR_ERR(priv->dma_base);
952
953 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
954 "dma-channels");
955 priv->dma_chan = devm_ioremap_resource(dev, res);
956 if (IS_ERR(priv->dma_chan))
957 return PTR_ERR(priv->dma_chan);
958
959 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma-sram");
960 priv->dma_sram = devm_ioremap_resource(dev, res);
961 if (IS_ERR(priv->dma_sram))
962 return PTR_ERR(priv->dma_sram);
963
964 priv->irq_rx = platform_get_irq_byname(pdev, "rx");
965 if (!priv->irq_rx)
966 return -ENODEV;
967
968 priv->irq_tx = platform_get_irq_byname(pdev, "tx");
969 if (!priv->irq_tx)
970 return -ENODEV;
971 else if (priv->irq_tx < 0)
972 priv->irq_tx = -1;
973
974 if (device_property_read_u32(dev, "dma-rx", &priv->rx_chan))
975 return -ENODEV;
976
977 if (device_property_read_u32(dev, "dma-tx", &priv->tx_chan))
978 return -ENODEV;
979
980 priv->rx_ring_size = ENETSW_DEF_RX_DESC;
981 priv->tx_ring_size = ENETSW_DEF_TX_DESC;
982
983 priv->dma_maxburst = ENETSW_DMA_MAXBURST;
984
985 priv->copybreak = ENETSW_DEF_CPY_BREAK;
986
987 priv->dma_chan_en_mask = DMAC_CHANCFG_EN_MASK;
988 priv->dma_chan_int_mask = DMAC_IR_PKTDONE_MASK;
989 priv->dma_chan_width = DMA_CHAN_WIDTH;
990
991 of_get_mac_address(node, ndev->dev_addr);
992 if (is_valid_ether_addr(ndev->dev_addr)) {
993 dev_info(dev, "mtd mac %pM\n", ndev->dev_addr);
994 } else {
995 random_ether_addr(ndev->dev_addr);
996 dev_info(dev, "random mac %pM\n", ndev->dev_addr);
997 }
998
999 priv->rx_buf_size = ALIGN(ndev->mtu + ENETSW_MTU_OVERHEAD,
1000 priv->dma_maxburst * 4);
1001
1002 priv->rx_frag_size = ENETSW_FRAG_SIZE(priv->rx_buf_size);
1003
1004 priv->num_clocks = of_clk_get_parent_count(node);
1005 if (priv->num_clocks) {
1006 priv->clock = devm_kcalloc(dev, priv->num_clocks,
1007 sizeof(struct clk *), GFP_KERNEL);
1008 if (!priv->clock)
1009 return -ENOMEM;
1010 }
1011 for (i = 0; i < priv->num_clocks; i++) {
1012 priv->clock[i] = of_clk_get(node, i);
1013 if (IS_ERR(priv->clock[i])) {
1014 dev_err(dev, "error getting clock %d\n", i);
1015 return -EINVAL;
1016 }
1017
1018 ret = clk_prepare_enable(priv->clock[i]);
1019 if (ret) {
1020 dev_err(dev, "error enabling clock %d\n", i);
1021 return ret;
1022 }
1023 }
1024
1025 priv->num_resets = of_count_phandle_with_args(node, "resets",
1026 "#reset-cells");
1027 if (priv->num_resets) {
1028 priv->reset = devm_kcalloc(dev, priv->num_resets,
1029 sizeof(struct reset_control *),
1030 GFP_KERNEL);
1031 if (!priv->reset)
1032 return -ENOMEM;
1033 }
1034 for (i = 0; i < priv->num_resets; i++) {
1035 priv->reset[i] = devm_reset_control_get_by_index(dev, i);
1036 if (IS_ERR(priv->reset[i])) {
1037 dev_err(dev, "error getting reset %d\n", i);
1038 return -EINVAL;
1039 }
1040
1041 ret = reset_control_reset(priv->reset[i]);
1042 if (ret) {
1043 dev_err(dev, "error performing reset %d\n", i);
1044 return ret;
1045 }
1046 }
1047
1048 spin_lock_init(&priv->rx_lock);
1049
1050 timer_setup(&priv->rx_timeout, bcm6368_enetsw_refill_rx_timer, 0);
1051
1052 /* register netdevice */
1053 ndev->netdev_ops = &bcm6368_enetsw_ops;
1054 ndev->min_mtu = ETH_ZLEN;
1055 ndev->mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
1056 ndev->max_mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
1057 netif_napi_add(ndev, &priv->napi, bcm6368_enetsw_poll, 16);
1058 SET_NETDEV_DEV(ndev, dev);
1059
1060 ret = register_netdev(ndev);
1061 if (ret)
1062 goto out_disable_clk;
1063
1064 netif_carrier_off(ndev);
1065 platform_set_drvdata(pdev, ndev);
1066 priv->pdev = pdev;
1067 priv->net_dev = ndev;
1068
1069 return 0;
1070
1071 out_disable_clk:
1072 for (i = 0; i < priv->num_resets; i++)
1073 reset_control_assert(priv->reset[i]);
1074
1075 for (i = 0; i < priv->num_clocks; i++)
1076 clk_disable_unprepare(priv->clock[i]);
1077
1078 return ret;
1079 }
1080
1081 static int bcm6368_enetsw_remove(struct platform_device *pdev)
1082 {
1083 struct device *dev = &pdev->dev;
1084 struct net_device *ndev = platform_get_drvdata(pdev);
1085 struct bcm6368_enetsw *priv = netdev_priv(ndev);
1086 unsigned int i;
1087
1088 unregister_netdev(ndev);
1089
1090 pm_runtime_put_sync(dev);
1091 for (i = 0; priv->pm && i < priv->num_pms; i++) {
1092 dev_pm_domain_detach(priv->pm[i], true);
1093 device_link_del(priv->link_pm[i]);
1094 }
1095
1096 for (i = 0; i < priv->num_resets; i++)
1097 reset_control_assert(priv->reset[i]);
1098
1099 for (i = 0; i < priv->num_clocks; i++)
1100 clk_disable_unprepare(priv->clock[i]);
1101
1102 free_netdev(ndev);
1103
1104 return 0;
1105 }
1106
1107 static const struct of_device_id bcm6368_enetsw_of_match[] = {
1108 { .compatible = "brcm,bcm6318-enetsw", },
1109 { .compatible = "brcm,bcm6328-enetsw", },
1110 { .compatible = "brcm,bcm6362-enetsw", },
1111 { .compatible = "brcm,bcm6368-enetsw", },
1112 { .compatible = "brcm,bcm63268-enetsw", },
1113 { /* sentinel */ }
1114 };
1115 MODULE_DEVICE_TABLE(of, bcm6368_enetsw_of_match);
1116
1117 static struct platform_driver bcm6368_enetsw_driver = {
1118 .driver = {
1119 .name = "bcm6368-enetsw",
1120 .of_match_table = of_match_ptr(bcm6368_enetsw_of_match),
1121 },
1122 .probe = bcm6368_enetsw_probe,
1123 .remove = bcm6368_enetsw_remove,
1124 };
1125 module_platform_driver(bcm6368_enetsw_driver);