mediatek: add an upstreamed spi-nand driver
[openwrt/staging/mkresin.git] / target / linux / mediatek / patches-5.15 / 120-12-spi-add-driver-for-MTK-SPI-NAND-Flash-Interface.patch
1 From 8170bafa8936e9fbfdce992932a63bd20eca3bc3 Mon Sep 17 00:00:00 2001
2 From: Chuanhong Guo <gch981213@gmail.com>
3 Date: Sat, 2 Apr 2022 10:16:11 +0800
4 Subject: [PATCH v6 2/5] spi: add driver for MTK SPI NAND Flash Interface
5
6 This driver implements support for the SPI-NAND mode of MTK NAND Flash
7 Interface as a SPI-MEM controller with pipelined ECC capability.
8
9 Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
10 Tested-by: Daniel Golle <daniel@makrotopia.org>
11 ---
12 Change since v1:
13 fix CI warnings
14
15 Changes since v2:
16 use streamed DMA api to avoid an extra memory copy during read
17 make ECC engine config a per-nand context
18 take user-requested ECC strength into account
19
20 Change since v3: none
21 Changes since v4:
22 fix missing OOB write
23 print page format with dev_dbg
24 replace uint*_t copied from vendor driver with u*
25
26 Changes since v5:
27 add missing nfi mode register configuration in probe
28 fix an off-by-one bug in mtk_snand_mac_io
29
30 drivers/spi/Kconfig | 10 +
31 drivers/spi/Makefile | 1 +
32 drivers/spi/spi-mtk-snfi.c | 1470 ++++++++++++++++++++++++++++++++++++
33 3 files changed, 1481 insertions(+)
34 create mode 100644 drivers/spi/spi-mtk-snfi.c
35
36 diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig
37 index 6c28ca232444..83c3c2b57a22 100644
38 --- a/drivers/spi/Kconfig
39 +++ b/drivers/spi/Kconfig
40 @@ -590,6 +590,16 @@ config SPI_MTK_NOR
41 SPI interface as well as several SPI NOR specific instructions
42 via SPI MEM interface.
43
44 +config SPI_MTK_SNFI
45 + tristate "MediaTek SPI NAND Flash Interface"
46 + depends on ARCH_MEDIATEK || COMPILE_TEST
47 + depends on MTD_NAND_ECC_MEDIATEK
48 + help
49 + This enables support for SPI-NAND mode on the MediaTek NAND
50 + Flash Interface found on MediaTek ARM SoCs. This controller
51 + is implemented as a SPI-MEM controller with pipelined ECC
52 + capcability.
53 +
54 config SPI_NPCM_FIU
55 tristate "Nuvoton NPCM FLASH Interface Unit"
56 depends on ARCH_NPCM || COMPILE_TEST
57 diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile
58 index 3aa28ed3f761..51541ff17e67 100644
59 --- a/drivers/spi/Makefile
60 +++ b/drivers/spi/Makefile
61 @@ -76,6 +76,7 @@ obj-$(CONFIG_SPI_MPC52xx) += spi-mpc52xx.o
62 obj-$(CONFIG_SPI_MT65XX) += spi-mt65xx.o
63 obj-$(CONFIG_SPI_MT7621) += spi-mt7621.o
64 obj-$(CONFIG_SPI_MTK_NOR) += spi-mtk-nor.o
65 +obj-$(CONFIG_SPI_MTK_SNFI) += spi-mtk-snfi.o
66 obj-$(CONFIG_SPI_MXIC) += spi-mxic.o
67 obj-$(CONFIG_SPI_MXS) += spi-mxs.o
68 obj-$(CONFIG_SPI_NPCM_FIU) += spi-npcm-fiu.o
69 diff --git a/drivers/spi/spi-mtk-snfi.c b/drivers/spi/spi-mtk-snfi.c
70 new file mode 100644
71 index 000000000000..2c556e304673
72 --- /dev/null
73 +++ b/drivers/spi/spi-mtk-snfi.c
74 @@ -0,0 +1,1470 @@
75 +// SPDX-License-Identifier: GPL-2.0
76 +//
77 +// Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
78 +//
79 +// Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com>
80 +//
81 +// This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
82 +//
83 +// Copyright (C) 2020 MediaTek Inc.
84 +// Author: Weijie Gao <weijie.gao@mediatek.com>
85 +//
86 +// This controller organize the page data as several interleaved sectors
87 +// like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
88 +// +---------+------+------+---------+------+------+-----+
89 +// | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
90 +// +---------+------+------+---------+------+------+-----+
91 +// With auto-format turned on, DMA only returns this part:
92 +// +---------+---------+-----+
93 +// | Sector1 | Sector2 | ... |
94 +// +---------+---------+-----+
95 +// The FDM data will be filled to the registers, and ECC parity data isn't
96 +// accessible.
97 +// With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
98 +// in it's original order shown in the first table. ECC can't be turned on when
99 +// auto-format is off.
100 +//
101 +// However, Linux SPI-NAND driver expects the data returned as:
102 +// +------+-----+
103 +// | Page | OOB |
104 +// +------+-----+
105 +// where the page data is continuously stored instead of interleaved.
106 +// So we assume all instructions matching the page_op template between ECC
107 +// prepare_io_req and finish_io_req are for page cache r/w.
108 +// Here's how this spi-mem driver operates when reading:
109 +// 1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
110 +// 2. Perform page ops and let the controller fill the DMA bounce buffer with
111 +// de-interleaved sector data and set FDM registers.
112 +// 3. Return the data as:
113 +// +---------+---------+-----+------+------+-----+
114 +// | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
115 +// +---------+---------+-----+------+------+-----+
116 +// 4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
117 +// read the data with auto-format off into the bounce buffer and copy
118 +// needed data to the buffer specified in the request.
119 +//
120 +// Write requests operates in a similar manner.
121 +// As a limitation of this strategy, we won't be able to access any ECC parity
122 +// data at all in Linux.
123 +//
124 +// Here's the bad block mark situation on MTK chips:
125 +// In older chips like mt7622, MTK uses the first FDM byte in the first sector
126 +// as the bad block mark. After de-interleaving, this byte appears at [pagesize]
127 +// in the returned data, which is the BBM position expected by kernel. However,
128 +// the conventional bad block mark is the first byte of the OOB, which is part
129 +// of the last sector data in the interleaved layout. Instead of fixing their
130 +// hardware, MTK decided to address this inconsistency in software. On these
131 +// later chips, the BootROM expects the following:
132 +// 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
133 +// (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
134 +// 2. The original byte stored at that position in the DMA buffer will be stored
135 +// as the first byte of the FDM section in the last sector.
136 +// We can't disagree with the BootROM, so after de-interleaving, we need to
137 +// perform the following swaps in read:
138 +// 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
139 +// which is the expected BBM position by kernel.
140 +// 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
141 +// [page_size - (nsectors - 1) * spare_size]
142 +// Similarly, when writing, we need to perform swaps in the other direction.
143 +
144 +#include <linux/kernel.h>
145 +#include <linux/module.h>
146 +#include <linux/init.h>
147 +#include <linux/device.h>
148 +#include <linux/mutex.h>
149 +#include <linux/clk.h>
150 +#include <linux/interrupt.h>
151 +#include <linux/dma-mapping.h>
152 +#include <linux/iopoll.h>
153 +#include <linux/of_platform.h>
154 +#include <linux/mtd/nand-ecc-mtk.h>
155 +#include <linux/spi/spi.h>
156 +#include <linux/spi/spi-mem.h>
157 +#include <linux/mtd/nand.h>
158 +
159 +// NFI registers
160 +#define NFI_CNFG 0x000
161 +#define CNFG_OP_MODE_S 12
162 +#define CNFG_OP_MODE_CUST 6
163 +#define CNFG_OP_MODE_PROGRAM 3
164 +#define CNFG_AUTO_FMT_EN BIT(9)
165 +#define CNFG_HW_ECC_EN BIT(8)
166 +#define CNFG_DMA_BURST_EN BIT(2)
167 +#define CNFG_READ_MODE BIT(1)
168 +#define CNFG_DMA_MODE BIT(0)
169 +
170 +#define NFI_PAGEFMT 0x0004
171 +#define NFI_SPARE_SIZE_LS_S 16
172 +#define NFI_FDM_ECC_NUM_S 12
173 +#define NFI_FDM_NUM_S 8
174 +#define NFI_SPARE_SIZE_S 4
175 +#define NFI_SEC_SEL_512 BIT(2)
176 +#define NFI_PAGE_SIZE_S 0
177 +#define NFI_PAGE_SIZE_512_2K 0
178 +#define NFI_PAGE_SIZE_2K_4K 1
179 +#define NFI_PAGE_SIZE_4K_8K 2
180 +#define NFI_PAGE_SIZE_8K_16K 3
181 +
182 +#define NFI_CON 0x008
183 +#define CON_SEC_NUM_S 12
184 +#define CON_BWR BIT(9)
185 +#define CON_BRD BIT(8)
186 +#define CON_NFI_RST BIT(1)
187 +#define CON_FIFO_FLUSH BIT(0)
188 +
189 +#define NFI_INTR_EN 0x010
190 +#define NFI_INTR_STA 0x014
191 +#define NFI_IRQ_INTR_EN BIT(31)
192 +#define NFI_IRQ_CUS_READ BIT(8)
193 +#define NFI_IRQ_CUS_PG BIT(7)
194 +
195 +#define NFI_CMD 0x020
196 +#define NFI_CMD_DUMMY_READ 0x00
197 +#define NFI_CMD_DUMMY_WRITE 0x80
198 +
199 +#define NFI_STRDATA 0x040
200 +#define STR_DATA BIT(0)
201 +
202 +#define NFI_STA 0x060
203 +#define NFI_NAND_FSM GENMASK(28, 24)
204 +#define NFI_FSM GENMASK(19, 16)
205 +#define READ_EMPTY BIT(12)
206 +
207 +#define NFI_FIFOSTA 0x064
208 +#define FIFO_WR_REMAIN_S 8
209 +#define FIFO_RD_REMAIN_S 0
210 +
211 +#define NFI_ADDRCNTR 0x070
212 +#define SEC_CNTR GENMASK(16, 12)
213 +#define SEC_CNTR_S 12
214 +#define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
215 +
216 +#define NFI_STRADDR 0x080
217 +
218 +#define NFI_BYTELEN 0x084
219 +#define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
220 +
221 +#define NFI_FDM0L 0x0a0
222 +#define NFI_FDM0M 0x0a4
223 +#define NFI_FDML(n) (NFI_FDM0L + (n)*8)
224 +#define NFI_FDMM(n) (NFI_FDM0M + (n)*8)
225 +
226 +#define NFI_DEBUG_CON1 0x220
227 +#define WBUF_EN BIT(2)
228 +
229 +#define NFI_MASTERSTA 0x224
230 +#define MAS_ADDR GENMASK(11, 9)
231 +#define MAS_RD GENMASK(8, 6)
232 +#define MAS_WR GENMASK(5, 3)
233 +#define MAS_RDDLY GENMASK(2, 0)
234 +#define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
235 +
236 +// SNFI registers
237 +#define SNF_MAC_CTL 0x500
238 +#define MAC_XIO_SEL BIT(4)
239 +#define SF_MAC_EN BIT(3)
240 +#define SF_TRIG BIT(2)
241 +#define WIP_READY BIT(1)
242 +#define WIP BIT(0)
243 +
244 +#define SNF_MAC_OUTL 0x504
245 +#define SNF_MAC_INL 0x508
246 +
247 +#define SNF_RD_CTL2 0x510
248 +#define DATA_READ_DUMMY_S 8
249 +#define DATA_READ_MAX_DUMMY 0xf
250 +#define DATA_READ_CMD_S 0
251 +
252 +#define SNF_RD_CTL3 0x514
253 +
254 +#define SNF_PG_CTL1 0x524
255 +#define PG_LOAD_CMD_S 8
256 +
257 +#define SNF_PG_CTL2 0x528
258 +
259 +#define SNF_MISC_CTL 0x538
260 +#define SW_RST BIT(28)
261 +#define FIFO_RD_LTC_S 25
262 +#define PG_LOAD_X4_EN BIT(20)
263 +#define DATA_READ_MODE_S 16
264 +#define DATA_READ_MODE GENMASK(18, 16)
265 +#define DATA_READ_MODE_X1 0
266 +#define DATA_READ_MODE_X2 1
267 +#define DATA_READ_MODE_X4 2
268 +#define DATA_READ_MODE_DUAL 5
269 +#define DATA_READ_MODE_QUAD 6
270 +#define PG_LOAD_CUSTOM_EN BIT(7)
271 +#define DATARD_CUSTOM_EN BIT(6)
272 +#define CS_DESELECT_CYC_S 0
273 +
274 +#define SNF_MISC_CTL2 0x53c
275 +#define PROGRAM_LOAD_BYTE_NUM_S 16
276 +#define READ_DATA_BYTE_NUM_S 11
277 +
278 +#define SNF_DLY_CTL3 0x548
279 +#define SFCK_SAM_DLY_S 0
280 +
281 +#define SNF_STA_CTL1 0x550
282 +#define CUS_PG_DONE BIT(28)
283 +#define CUS_READ_DONE BIT(27)
284 +#define SPI_STATE_S 0
285 +#define SPI_STATE GENMASK(3, 0)
286 +
287 +#define SNF_CFG 0x55c
288 +#define SPI_MODE BIT(0)
289 +
290 +#define SNF_GPRAM 0x800
291 +#define SNF_GPRAM_SIZE 0xa0
292 +
293 +#define SNFI_POLL_INTERVAL 1000000
294 +
295 +static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };
296 +
297 +struct mtk_snand_caps {
298 + u16 sector_size;
299 + u16 max_sectors;
300 + u16 fdm_size;
301 + u16 fdm_ecc_size;
302 + u16 fifo_size;
303 +
304 + bool bbm_swap;
305 + bool empty_page_check;
306 + u32 mastersta_mask;
307 +
308 + const u8 *spare_sizes;
309 + u32 num_spare_size;
310 +};
311 +
312 +static const struct mtk_snand_caps mt7622_snand_caps = {
313 + .sector_size = 512,
314 + .max_sectors = 8,
315 + .fdm_size = 8,
316 + .fdm_ecc_size = 1,
317 + .fifo_size = 32,
318 + .bbm_swap = false,
319 + .empty_page_check = false,
320 + .mastersta_mask = NFI_MASTERSTA_MASK_7622,
321 + .spare_sizes = mt7622_spare_sizes,
322 + .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
323 +};
324 +
325 +static const struct mtk_snand_caps mt7629_snand_caps = {
326 + .sector_size = 512,
327 + .max_sectors = 8,
328 + .fdm_size = 8,
329 + .fdm_ecc_size = 1,
330 + .fifo_size = 32,
331 + .bbm_swap = true,
332 + .empty_page_check = false,
333 + .mastersta_mask = NFI_MASTERSTA_MASK_7622,
334 + .spare_sizes = mt7622_spare_sizes,
335 + .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
336 +};
337 +
338 +struct mtk_snand_conf {
339 + size_t page_size;
340 + size_t oob_size;
341 + u8 nsectors;
342 + u8 spare_size;
343 +};
344 +
345 +struct mtk_snand {
346 + struct spi_controller *ctlr;
347 + struct device *dev;
348 + struct clk *nfi_clk;
349 + struct clk *pad_clk;
350 + void __iomem *nfi_base;
351 + int irq;
352 + struct completion op_done;
353 + const struct mtk_snand_caps *caps;
354 + struct mtk_ecc_config *ecc_cfg;
355 + struct mtk_ecc *ecc;
356 + struct mtk_snand_conf nfi_cfg;
357 + struct mtk_ecc_stats ecc_stats;
358 + struct nand_ecc_engine ecc_eng;
359 + bool autofmt;
360 + u8 *buf;
361 + size_t buf_len;
362 +};
363 +
364 +static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
365 +{
366 + struct nand_ecc_engine *eng = nand->ecc.engine;
367 +
368 + return container_of(eng, struct mtk_snand, ecc_eng);
369 +}
370 +
371 +static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
372 +{
373 + if (snf->buf_len >= size)
374 + return 0;
375 + kfree(snf->buf);
376 + snf->buf = kmalloc(size, GFP_KERNEL);
377 + if (!snf->buf)
378 + return -ENOMEM;
379 + snf->buf_len = size;
380 + memset(snf->buf, 0xff, snf->buf_len);
381 + return 0;
382 +}
383 +
384 +static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
385 +{
386 + return readl(snf->nfi_base + reg);
387 +}
388 +
389 +static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
390 +{
391 + writel(val, snf->nfi_base + reg);
392 +}
393 +
394 +static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
395 +{
396 + writew(val, snf->nfi_base + reg);
397 +}
398 +
399 +static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
400 +{
401 + u32 val;
402 +
403 + val = readl(snf->nfi_base + reg);
404 + val &= ~clr;
405 + val |= set;
406 + writel(val, snf->nfi_base + reg);
407 +}
408 +
409 +static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
410 +{
411 + u32 i, val = 0, es = sizeof(u32);
412 +
413 + for (i = reg; i < reg + len; i++) {
414 + if (i == reg || i % es == 0)
415 + val = nfi_read32(snf, i & ~(es - 1));
416 +
417 + *data++ = (u8)(val >> (8 * (i % es)));
418 + }
419 +}
420 +
421 +static int mtk_nfi_reset(struct mtk_snand *snf)
422 +{
423 + u32 val, fifo_mask;
424 + int ret;
425 +
426 + nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
427 +
428 + ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
429 + !(val & snf->caps->mastersta_mask), 0,
430 + SNFI_POLL_INTERVAL);
431 + if (ret) {
432 + dev_err(snf->dev, "NFI master is still busy after reset\n");
433 + return ret;
434 + }
435 +
436 + ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
437 + !(val & (NFI_FSM | NFI_NAND_FSM)), 0,
438 + SNFI_POLL_INTERVAL);
439 + if (ret) {
440 + dev_err(snf->dev, "Failed to reset NFI\n");
441 + return ret;
442 + }
443 +
444 + fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
445 + ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
446 + ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
447 + !(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
448 + if (ret) {
449 + dev_err(snf->dev, "NFI FIFOs are not empty\n");
450 + return ret;
451 + }
452 +
453 + return 0;
454 +}
455 +
456 +static int mtk_snand_mac_reset(struct mtk_snand *snf)
457 +{
458 + int ret;
459 + u32 val;
460 +
461 + nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
462 +
463 + ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
464 + !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
465 + if (ret)
466 + dev_err(snf->dev, "Failed to reset SNFI MAC\n");
467 +
468 + nfi_write32(snf, SNF_MISC_CTL,
469 + (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));
470 +
471 + return ret;
472 +}
473 +
474 +static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
475 +{
476 + int ret;
477 + u32 val;
478 +
479 + nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
480 + nfi_write32(snf, SNF_MAC_OUTL, outlen);
481 + nfi_write32(snf, SNF_MAC_INL, inlen);
482 +
483 + nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
484 +
485 + ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
486 + val & WIP_READY, 0, SNFI_POLL_INTERVAL);
487 + if (ret) {
488 + dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
489 + goto cleanup;
490 + }
491 +
492 + ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
493 + 0, SNFI_POLL_INTERVAL);
494 + if (ret)
495 + dev_err(snf->dev, "Timed out waiting for WIP cleared\n");
496 +
497 +cleanup:
498 + nfi_write32(snf, SNF_MAC_CTL, 0);
499 +
500 + return ret;
501 +}
502 +
503 +static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
504 +{
505 + u32 rx_len = 0;
506 + u32 reg_offs = 0;
507 + u32 val = 0;
508 + const u8 *tx_buf = NULL;
509 + u8 *rx_buf = NULL;
510 + int i, ret;
511 + u8 b;
512 +
513 + if (op->data.dir == SPI_MEM_DATA_IN) {
514 + rx_len = op->data.nbytes;
515 + rx_buf = op->data.buf.in;
516 + } else {
517 + tx_buf = op->data.buf.out;
518 + }
519 +
520 + mtk_snand_mac_reset(snf);
521 +
522 + for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
523 + b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
524 + val |= b << (8 * (reg_offs % 4));
525 + if (reg_offs % 4 == 3) {
526 + nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
527 + val = 0;
528 + }
529 + }
530 +
531 + for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
532 + b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
533 + val |= b << (8 * (reg_offs % 4));
534 + if (reg_offs % 4 == 3) {
535 + nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
536 + val = 0;
537 + }
538 + }
539 +
540 + for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
541 + if (reg_offs % 4 == 3) {
542 + nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
543 + val = 0;
544 + }
545 + }
546 +
547 + if (op->data.dir == SPI_MEM_DATA_OUT) {
548 + for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
549 + val |= tx_buf[i] << (8 * (reg_offs % 4));
550 + if (reg_offs % 4 == 3) {
551 + nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
552 + val = 0;
553 + }
554 + }
555 + }
556 +
557 + if (reg_offs % 4)
558 + nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);
559 +
560 + for (i = 0; i < reg_offs; i += 4)
561 + dev_dbg(snf->dev, "%d: %08X", i,
562 + nfi_read32(snf, SNF_GPRAM + i));
563 +
564 + dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);
565 +
566 + ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
567 + if (ret)
568 + return ret;
569 +
570 + if (!rx_len)
571 + return 0;
572 +
573 + nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
574 + return 0;
575 +}
576 +
577 +static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
578 + u32 oob_size)
579 +{
580 + int spare_idx = -1;
581 + u32 spare_size, spare_size_shift, pagesize_idx;
582 + u32 sector_size_512;
583 + u8 nsectors;
584 + int i;
585 +
586 + // skip if it's already configured as required.
587 + if (snf->nfi_cfg.page_size == page_size &&
588 + snf->nfi_cfg.oob_size == oob_size)
589 + return 0;
590 +
591 + nsectors = page_size / snf->caps->sector_size;
592 + if (nsectors > snf->caps->max_sectors) {
593 + dev_err(snf->dev, "too many sectors required.\n");
594 + goto err;
595 + }
596 +
597 + if (snf->caps->sector_size == 512) {
598 + sector_size_512 = NFI_SEC_SEL_512;
599 + spare_size_shift = NFI_SPARE_SIZE_S;
600 + } else {
601 + sector_size_512 = 0;
602 + spare_size_shift = NFI_SPARE_SIZE_LS_S;
603 + }
604 +
605 + switch (page_size) {
606 + case SZ_512:
607 + pagesize_idx = NFI_PAGE_SIZE_512_2K;
608 + break;
609 + case SZ_2K:
610 + if (snf->caps->sector_size == 512)
611 + pagesize_idx = NFI_PAGE_SIZE_2K_4K;
612 + else
613 + pagesize_idx = NFI_PAGE_SIZE_512_2K;
614 + break;
615 + case SZ_4K:
616 + if (snf->caps->sector_size == 512)
617 + pagesize_idx = NFI_PAGE_SIZE_4K_8K;
618 + else
619 + pagesize_idx = NFI_PAGE_SIZE_2K_4K;
620 + break;
621 + case SZ_8K:
622 + if (snf->caps->sector_size == 512)
623 + pagesize_idx = NFI_PAGE_SIZE_8K_16K;
624 + else
625 + pagesize_idx = NFI_PAGE_SIZE_4K_8K;
626 + break;
627 + case SZ_16K:
628 + pagesize_idx = NFI_PAGE_SIZE_8K_16K;
629 + break;
630 + default:
631 + dev_err(snf->dev, "unsupported page size.\n");
632 + goto err;
633 + }
634 +
635 + spare_size = oob_size / nsectors;
636 + // If we're using the 1KB sector size, HW will automatically double the
637 + // spare size. We should only use half of the value in this case.
638 + if (snf->caps->sector_size == 1024)
639 + spare_size /= 2;
640 +
641 + for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
642 + if (snf->caps->spare_sizes[i] <= spare_size) {
643 + spare_size = snf->caps->spare_sizes[i];
644 + if (snf->caps->sector_size == 1024)
645 + spare_size *= 2;
646 + spare_idx = i;
647 + break;
648 + }
649 + }
650 +
651 + if (spare_idx < 0) {
652 + dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
653 + goto err;
654 + }
655 +
656 + nfi_write32(snf, NFI_PAGEFMT,
657 + (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
658 + (snf->caps->fdm_size << NFI_FDM_NUM_S) |
659 + (spare_idx << spare_size_shift) |
660 + (pagesize_idx << NFI_PAGE_SIZE_S) |
661 + sector_size_512);
662 +
663 + snf->nfi_cfg.page_size = page_size;
664 + snf->nfi_cfg.oob_size = oob_size;
665 + snf->nfi_cfg.nsectors = nsectors;
666 + snf->nfi_cfg.spare_size = spare_size;
667 +
668 + dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
669 + snf->caps->sector_size, spare_size, nsectors);
670 + return snand_prepare_bouncebuf(snf, page_size + oob_size);
671 +err:
672 + dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
673 + oob_size);
674 + return -EOPNOTSUPP;
675 +}
676 +
677 +static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
678 + struct mtd_oob_region *oobecc)
679 +{
680 + // ECC area is not accessible
681 + return -ERANGE;
682 +}
683 +
684 +static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
685 + struct mtd_oob_region *oobfree)
686 +{
687 + struct nand_device *nand = mtd_to_nanddev(mtd);
688 + struct mtk_snand *ms = nand_to_mtk_snand(nand);
689 +
690 + if (section >= ms->nfi_cfg.nsectors)
691 + return -ERANGE;
692 +
693 + oobfree->length = ms->caps->fdm_size - 1;
694 + oobfree->offset = section * ms->caps->fdm_size + 1;
695 + return 0;
696 +}
697 +
698 +static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
699 + .ecc = mtk_snand_ooblayout_ecc,
700 + .free = mtk_snand_ooblayout_free,
701 +};
702 +
703 +static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
704 +{
705 + struct mtk_snand *snf = nand_to_mtk_snand(nand);
706 + struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
707 + struct nand_ecc_props *reqs = &nand->ecc.requirements;
708 + struct nand_ecc_props *user = &nand->ecc.user_conf;
709 + struct mtd_info *mtd = nanddev_to_mtd(nand);
710 + int step_size = 0, strength = 0, desired_correction = 0, steps;
711 + bool ecc_user = false;
712 + int ret;
713 + u32 parity_bits, max_ecc_bytes;
714 + struct mtk_ecc_config *ecc_cfg;
715 +
716 + ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
717 + nand->memorg.oobsize);
718 + if (ret)
719 + return ret;
720 +
721 + ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
722 + if (!ecc_cfg)
723 + return -ENOMEM;
724 +
725 + nand->ecc.ctx.priv = ecc_cfg;
726 +
727 + if (user->step_size && user->strength) {
728 + step_size = user->step_size;
729 + strength = user->strength;
730 + ecc_user = true;
731 + } else if (reqs->step_size && reqs->strength) {
732 + step_size = reqs->step_size;
733 + strength = reqs->strength;
734 + }
735 +
736 + if (step_size && strength) {
737 + steps = mtd->writesize / step_size;
738 + desired_correction = steps * strength;
739 + strength = desired_correction / snf->nfi_cfg.nsectors;
740 + }
741 +
742 + ecc_cfg->mode = ECC_NFI_MODE;
743 + ecc_cfg->sectors = snf->nfi_cfg.nsectors;
744 + ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;
745 +
746 + // calculate the max possible strength under current page format
747 + parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
748 + max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
749 + ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
750 + mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);
751 +
752 + // if there's a user requested strength, find the minimum strength that
753 + // meets the requirement. Otherwise use the maximum strength which is
754 + // expected by BootROM.
755 + if (ecc_user && strength) {
756 + u32 s_next = ecc_cfg->strength - 1;
757 +
758 + while (1) {
759 + mtk_ecc_adjust_strength(snf->ecc, &s_next);
760 + if (s_next >= ecc_cfg->strength)
761 + break;
762 + if (s_next < strength)
763 + break;
764 + s_next = ecc_cfg->strength - 1;
765 + }
766 + }
767 +
768 + mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);
769 +
770 + conf->step_size = snf->caps->sector_size;
771 + conf->strength = ecc_cfg->strength;
772 +
773 + if (ecc_cfg->strength < strength)
774 + dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
775 + strength);
776 + dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
777 + ecc_cfg->strength, snf->caps->sector_size);
778 +
779 + return 0;
780 +}
781 +
782 +static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
783 +{
784 + struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
785 +
786 + kfree(ecc_cfg);
787 +}
788 +
789 +static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
790 + struct nand_page_io_req *req)
791 +{
792 + struct mtk_snand *snf = nand_to_mtk_snand(nand);
793 + struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
794 + int ret;
795 +
796 + ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
797 + nand->memorg.oobsize);
798 + if (ret)
799 + return ret;
800 + snf->autofmt = true;
801 + snf->ecc_cfg = ecc_cfg;
802 + return 0;
803 +}
804 +
805 +static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
806 + struct nand_page_io_req *req)
807 +{
808 + struct mtk_snand *snf = nand_to_mtk_snand(nand);
809 + struct mtd_info *mtd = nanddev_to_mtd(nand);
810 +
811 + snf->ecc_cfg = NULL;
812 + snf->autofmt = false;
813 + if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
814 + return 0;
815 +
816 + if (snf->ecc_stats.failed)
817 + mtd->ecc_stats.failed += snf->ecc_stats.failed;
818 + mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
819 + return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
820 +}
821 +
822 +static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
823 + .init_ctx = mtk_snand_ecc_init_ctx,
824 + .cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
825 + .prepare_io_req = mtk_snand_ecc_prepare_io_req,
826 + .finish_io_req = mtk_snand_ecc_finish_io_req,
827 +};
828 +
829 +static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
830 +{
831 + u32 vall, valm;
832 + u8 *oobptr = buf;
833 + int i, j;
834 +
835 + for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
836 + vall = nfi_read32(snf, NFI_FDML(i));
837 + valm = nfi_read32(snf, NFI_FDMM(i));
838 +
839 + for (j = 0; j < snf->caps->fdm_size; j++)
840 + oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
841 +
842 + oobptr += snf->caps->fdm_size;
843 + }
844 +}
845 +
846 +static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
847 +{
848 + u32 fdm_size = snf->caps->fdm_size;
849 + const u8 *oobptr = buf;
850 + u32 vall, valm;
851 + int i, j;
852 +
853 + for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
854 + vall = 0;
855 + valm = 0;
856 +
857 + for (j = 0; j < 8; j++) {
858 + if (j < 4)
859 + vall |= (j < fdm_size ? oobptr[j] : 0xff)
860 + << (j * 8);
861 + else
862 + valm |= (j < fdm_size ? oobptr[j] : 0xff)
863 + << ((j - 4) * 8);
864 + }
865 +
866 + nfi_write32(snf, NFI_FDML(i), vall);
867 + nfi_write32(snf, NFI_FDMM(i), valm);
868 +
869 + oobptr += fdm_size;
870 + }
871 +}
872 +
873 +static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
874 +{
875 + u32 buf_bbm_pos, fdm_bbm_pos;
876 +
877 + if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
878 + return;
879 +
880 + // swap [pagesize] byte on nand with the first fdm byte
881 + // in the last sector.
882 + buf_bbm_pos = snf->nfi_cfg.page_size -
883 + (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
884 + fdm_bbm_pos = snf->nfi_cfg.page_size +
885 + (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
886 +
887 + swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
888 +}
889 +
890 +static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
891 +{
892 + u32 fdm_bbm_pos1, fdm_bbm_pos2;
893 +
894 + if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
895 + return;
896 +
897 + // swap the first fdm byte in the first and the last sector.
898 + fdm_bbm_pos1 = snf->nfi_cfg.page_size;
899 + fdm_bbm_pos2 = snf->nfi_cfg.page_size +
900 + (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
901 + swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
902 +}
903 +
904 +static int mtk_snand_read_page_cache(struct mtk_snand *snf,
905 + const struct spi_mem_op *op)
906 +{
907 + u8 *buf = snf->buf;
908 + u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
909 + // the address part to be sent by the controller
910 + u32 op_addr = op->addr.val;
911 + // where to start copying data from bounce buffer
912 + u32 rd_offset = 0;
913 + u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
914 + u32 op_mode = 0;
915 + u32 dma_len = snf->buf_len;
916 + int ret = 0;
917 + u32 rd_mode, rd_bytes, val;
918 + dma_addr_t buf_dma;
919 +
920 + if (snf->autofmt) {
921 + u32 last_bit;
922 + u32 mask;
923 +
924 + dma_len = snf->nfi_cfg.page_size;
925 + op_mode = CNFG_AUTO_FMT_EN;
926 + if (op->data.ecc)
927 + op_mode |= CNFG_HW_ECC_EN;
928 + // extract the plane bit:
929 + // Find the highest bit set in (pagesize+oobsize).
930 + // Bits higher than that in op->addr are kept and sent over SPI
931 + // Lower bits are used as an offset for copying data from DMA
932 + // bounce buffer.
933 + last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
934 + mask = (1 << last_bit) - 1;
935 + rd_offset = op_addr & mask;
936 + op_addr &= ~mask;
937 +
938 + // check if we can dma to the caller memory
939 + if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
940 + buf = op->data.buf.in;
941 + }
942 + mtk_snand_mac_reset(snf);
943 + mtk_nfi_reset(snf);
944 +
945 + // command and dummy cycles
946 + nfi_write32(snf, SNF_RD_CTL2,
947 + (dummy_clk << DATA_READ_DUMMY_S) |
948 + (op->cmd.opcode << DATA_READ_CMD_S));
949 +
950 + // read address
951 + nfi_write32(snf, SNF_RD_CTL3, op_addr);
952 +
953 + // Set read op_mode
954 + if (op->data.buswidth == 4)
955 + rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
956 + DATA_READ_MODE_X4;
957 + else if (op->data.buswidth == 2)
958 + rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
959 + DATA_READ_MODE_X2;
960 + else
961 + rd_mode = DATA_READ_MODE_X1;
962 + rd_mode <<= DATA_READ_MODE_S;
963 + nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
964 + rd_mode | DATARD_CUSTOM_EN);
965 +
966 + // Set bytes to read
967 + rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
968 + snf->nfi_cfg.nsectors;
969 + nfi_write32(snf, SNF_MISC_CTL2,
970 + (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);
971 +
972 + // NFI read prepare
973 + nfi_write16(snf, NFI_CNFG,
974 + (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
975 + CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);
976 +
977 + nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
978 +
979 + buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
980 + if (dma_mapping_error(snf->dev, buf_dma)) {
981 + dev_err(snf->dev, "DMA mapping failed.\n");
982 + goto cleanup;
983 + }
984 + nfi_write32(snf, NFI_STRADDR, buf_dma);
985 + if (op->data.ecc) {
986 + snf->ecc_cfg->op = ECC_DECODE;
987 + ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
988 + if (ret)
989 + goto cleanup_dma;
990 + }
991 + // Prepare for custom read interrupt
992 + nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
993 + reinit_completion(&snf->op_done);
994 +
995 + // Trigger NFI into custom mode
996 + nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
997 +
998 + // Start DMA read
999 + nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
1000 + nfi_write16(snf, NFI_STRDATA, STR_DATA);
1001 +
1002 + if (!wait_for_completion_timeout(
1003 + &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
1004 + dev_err(snf->dev, "DMA timed out for reading from cache.\n");
1005 + ret = -ETIMEDOUT;
1006 + goto cleanup;
1007 + }
1008 +
1009 + // Wait for BUS_SEC_CNTR returning expected value
1010 + ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
1011 + BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
1012 + SNFI_POLL_INTERVAL);
1013 + if (ret) {
1014 + dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
1015 + goto cleanup2;
1016 + }
1017 +
1018 + // Wait for bus becoming idle
1019 + ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
1020 + !(val & snf->caps->mastersta_mask), 0,
1021 + SNFI_POLL_INTERVAL);
1022 + if (ret) {
1023 + dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
1024 + goto cleanup2;
1025 + }
1026 +
1027 + if (op->data.ecc) {
1028 + ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
1029 + if (ret) {
1030 + dev_err(snf->dev, "wait ecc done timeout\n");
1031 + goto cleanup2;
1032 + }
1033 + // save status before disabling ecc
1034 + mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
1035 + snf->nfi_cfg.nsectors);
1036 + }
1037 +
1038 + dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
1039 +
1040 + if (snf->autofmt) {
1041 + mtk_snand_read_fdm(snf, buf_fdm);
1042 + if (snf->caps->bbm_swap) {
1043 + mtk_snand_bm_swap(snf, buf);
1044 + mtk_snand_fdm_bm_swap(snf);
1045 + }
1046 + }
1047 +
1048 + // copy data back
1049 + if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
1050 + memset(op->data.buf.in, 0xff, op->data.nbytes);
1051 + snf->ecc_stats.bitflips = 0;
1052 + snf->ecc_stats.failed = 0;
1053 + snf->ecc_stats.corrected = 0;
1054 + } else {
1055 + if (buf == op->data.buf.in) {
1056 + u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
1057 + u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;
1058 +
1059 + if (req_left)
1060 + memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
1061 + buf_fdm,
1062 + cap_len < req_left ? cap_len : req_left);
1063 + } else if (rd_offset < snf->buf_len) {
1064 + u32 cap_len = snf->buf_len - rd_offset;
1065 +
1066 + if (op->data.nbytes < cap_len)
1067 + cap_len = op->data.nbytes;
1068 + memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
1069 + }
1070 + }
1071 +cleanup2:
1072 + if (op->data.ecc)
1073 + mtk_ecc_disable(snf->ecc);
1074 +cleanup_dma:
1075 + // unmap dma only if any error happens. (otherwise it's done before
1076 + // data copying)
1077 + if (ret)
1078 + dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
1079 +cleanup:
1080 + // Stop read
1081 + nfi_write32(snf, NFI_CON, 0);
1082 + nfi_write16(snf, NFI_CNFG, 0);
1083 +
1084 + // Clear SNF done flag
1085 + nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
1086 + nfi_write32(snf, SNF_STA_CTL1, 0);
1087 +
1088 + // Disable interrupt
1089 + nfi_read32(snf, NFI_INTR_STA);
1090 + nfi_write32(snf, NFI_INTR_EN, 0);
1091 +
1092 + nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
1093 + return ret;
1094 +}
1095 +
1096 +static int mtk_snand_write_page_cache(struct mtk_snand *snf,
1097 + const struct spi_mem_op *op)
1098 +{
1099 + // the address part to be sent by the controller
1100 + u32 op_addr = op->addr.val;
1101 + // where to start copying data from bounce buffer
1102 + u32 wr_offset = 0;
1103 + u32 op_mode = 0;
1104 + int ret = 0;
1105 + u32 wr_mode = 0;
1106 + u32 dma_len = snf->buf_len;
1107 + u32 wr_bytes, val;
1108 + size_t cap_len;
1109 + dma_addr_t buf_dma;
1110 +
1111 + if (snf->autofmt) {
1112 + u32 last_bit;
1113 + u32 mask;
1114 +
1115 + dma_len = snf->nfi_cfg.page_size;
1116 + op_mode = CNFG_AUTO_FMT_EN;
1117 + if (op->data.ecc)
1118 + op_mode |= CNFG_HW_ECC_EN;
1119 +
1120 + last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
1121 + mask = (1 << last_bit) - 1;
1122 + wr_offset = op_addr & mask;
1123 + op_addr &= ~mask;
1124 + }
1125 + mtk_snand_mac_reset(snf);
1126 + mtk_nfi_reset(snf);
1127 +
1128 + if (wr_offset)
1129 + memset(snf->buf, 0xff, wr_offset);
1130 +
1131 + cap_len = snf->buf_len - wr_offset;
1132 + if (op->data.nbytes < cap_len)
1133 + cap_len = op->data.nbytes;
1134 + memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
1135 + if (snf->autofmt) {
1136 + if (snf->caps->bbm_swap) {
1137 + mtk_snand_fdm_bm_swap(snf);
1138 + mtk_snand_bm_swap(snf, snf->buf);
1139 + }
1140 + mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
1141 + }
1142 +
1143 + // Command
1144 + nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));
1145 +
1146 + // write address
1147 + nfi_write32(snf, SNF_PG_CTL2, op_addr);
1148 +
1149 + // Set read op_mode
1150 + if (op->data.buswidth == 4)
1151 + wr_mode = PG_LOAD_X4_EN;
1152 +
1153 + nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
1154 + wr_mode | PG_LOAD_CUSTOM_EN);
1155 +
1156 + // Set bytes to write
1157 + wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
1158 + snf->nfi_cfg.nsectors;
1159 + nfi_write32(snf, SNF_MISC_CTL2,
1160 + (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);
1161 +
1162 + // NFI write prepare
1163 + nfi_write16(snf, NFI_CNFG,
1164 + (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
1165 + CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);
1166 +
1167 + nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
1168 + buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
1169 + if (dma_mapping_error(snf->dev, buf_dma)) {
1170 + dev_err(snf->dev, "DMA mapping failed.\n");
1171 + goto cleanup;
1172 + }
1173 + nfi_write32(snf, NFI_STRADDR, buf_dma);
1174 + if (op->data.ecc) {
1175 + snf->ecc_cfg->op = ECC_ENCODE;
1176 + ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
1177 + if (ret)
1178 + goto cleanup_dma;
1179 + }
1180 + // Prepare for custom write interrupt
1181 + nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
1182 + reinit_completion(&snf->op_done);
1183 + ;
1184 +
1185 + // Trigger NFI into custom mode
1186 + nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
1187 +
1188 + // Start DMA write
1189 + nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
1190 + nfi_write16(snf, NFI_STRDATA, STR_DATA);
1191 +
1192 + if (!wait_for_completion_timeout(
1193 + &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
1194 + dev_err(snf->dev, "DMA timed out for program load.\n");
1195 + ret = -ETIMEDOUT;
1196 + goto cleanup_ecc;
1197 + }
1198 +
1199 + // Wait for NFI_SEC_CNTR returning expected value
1200 + ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
1201 + NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
1202 + SNFI_POLL_INTERVAL);
1203 + if (ret)
1204 + dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");
1205 +
1206 +cleanup_ecc:
1207 + if (op->data.ecc)
1208 + mtk_ecc_disable(snf->ecc);
1209 +cleanup_dma:
1210 + dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
1211 +cleanup:
1212 + // Stop write
1213 + nfi_write32(snf, NFI_CON, 0);
1214 + nfi_write16(snf, NFI_CNFG, 0);
1215 +
1216 + // Clear SNF done flag
1217 + nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
1218 + nfi_write32(snf, SNF_STA_CTL1, 0);
1219 +
1220 + // Disable interrupt
1221 + nfi_read32(snf, NFI_INTR_STA);
1222 + nfi_write32(snf, NFI_INTR_EN, 0);
1223 +
1224 + nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
1225 +
1226 + return ret;
1227 +}
1228 +
1229 +/**
1230 + * mtk_snand_is_page_ops() - check if the op is a controller supported page op.
1231 + * @op spi-mem op to check
1232 + *
1233 + * Check whether op can be executed with read_from_cache or program_load
1234 + * mode in the controller.
1235 + * This controller can execute typical Read From Cache and Program Load
1236 + * instructions found on SPI-NAND with 2-byte address.
1237 + * DTR and cmd buswidth & nbytes should be checked before calling this.
1238 + *
1239 + * Return: true if the op matches the instruction template
1240 + */
1241 +static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
1242 +{
1243 + if (op->addr.nbytes != 2)
1244 + return false;
1245 +
1246 + if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
1247 + op->addr.buswidth != 4)
1248 + return false;
1249 +
1250 + // match read from page instructions
1251 + if (op->data.dir == SPI_MEM_DATA_IN) {
1252 + // check dummy cycle first
1253 + if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
1254 + DATA_READ_MAX_DUMMY)
1255 + return false;
1256 + // quad io / quad out
1257 + if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
1258 + op->data.buswidth == 4)
1259 + return true;
1260 +
1261 + // dual io / dual out
1262 + if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
1263 + op->data.buswidth == 2)
1264 + return true;
1265 +
1266 + // standard spi
1267 + if (op->addr.buswidth == 1 && op->data.buswidth == 1)
1268 + return true;
1269 + } else if (op->data.dir == SPI_MEM_DATA_OUT) {
1270 + // check dummy cycle first
1271 + if (op->dummy.nbytes)
1272 + return false;
1273 + // program load quad out
1274 + if (op->addr.buswidth == 1 && op->data.buswidth == 4)
1275 + return true;
1276 + // standard spi
1277 + if (op->addr.buswidth == 1 && op->data.buswidth == 1)
1278 + return true;
1279 + }
1280 + return false;
1281 +}
1282 +
1283 +static bool mtk_snand_supports_op(struct spi_mem *mem,
1284 + const struct spi_mem_op *op)
1285 +{
1286 + if (!spi_mem_default_supports_op(mem, op))
1287 + return false;
1288 + if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
1289 + return false;
1290 + if (mtk_snand_is_page_ops(op))
1291 + return true;
1292 + return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
1293 + (op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
1294 + (op->data.nbytes == 0 || op->data.buswidth == 1));
1295 +}
1296 +
1297 +static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
1298 +{
1299 + struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
1300 + // page ops transfer size must be exactly ((sector_size + spare_size) *
1301 + // nsectors). Limit the op size if the caller requests more than that.
1302 + // exec_op will read more than needed and discard the leftover if the
1303 + // caller requests less data.
1304 + if (mtk_snand_is_page_ops(op)) {
1305 + size_t l;
1306 + // skip adjust_op_size for page ops
1307 + if (ms->autofmt)
1308 + return 0;
1309 + l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
1310 + l *= ms->nfi_cfg.nsectors;
1311 + if (op->data.nbytes > l)
1312 + op->data.nbytes = l;
1313 + } else {
1314 + size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
1315 +
1316 + if (hl >= SNF_GPRAM_SIZE)
1317 + return -EOPNOTSUPP;
1318 + if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
1319 + op->data.nbytes = SNF_GPRAM_SIZE - hl;
1320 + }
1321 + return 0;
1322 +}
1323 +
1324 +static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
1325 +{
1326 + struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
1327 +
1328 + dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
1329 + op->addr.val, op->addr.buswidth, op->addr.nbytes,
1330 + op->data.buswidth, op->data.nbytes);
1331 + if (mtk_snand_is_page_ops(op)) {
1332 + if (op->data.dir == SPI_MEM_DATA_IN)
1333 + return mtk_snand_read_page_cache(ms, op);
1334 + else
1335 + return mtk_snand_write_page_cache(ms, op);
1336 + } else {
1337 + return mtk_snand_mac_io(ms, op);
1338 + }
1339 +}
1340 +
1341 +static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
1342 + .adjust_op_size = mtk_snand_adjust_op_size,
1343 + .supports_op = mtk_snand_supports_op,
1344 + .exec_op = mtk_snand_exec_op,
1345 +};
1346 +
1347 +static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
1348 + .ecc = true,
1349 +};
1350 +
1351 +static irqreturn_t mtk_snand_irq(int irq, void *id)
1352 +{
1353 + struct mtk_snand *snf = id;
1354 + u32 sta, ien;
1355 +
1356 + sta = nfi_read32(snf, NFI_INTR_STA);
1357 + ien = nfi_read32(snf, NFI_INTR_EN);
1358 +
1359 + if (!(sta & ien))
1360 + return IRQ_NONE;
1361 +
1362 + nfi_write32(snf, NFI_INTR_EN, 0);
1363 + complete(&snf->op_done);
1364 + return IRQ_HANDLED;
1365 +}
1366 +
1367 +static const struct of_device_id mtk_snand_ids[] = {
1368 + { .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
1369 + { .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
1370 + {},
1371 +};
1372 +
1373 +MODULE_DEVICE_TABLE(of, mtk_snand_ids);
1374 +
1375 +static int mtk_snand_enable_clk(struct mtk_snand *ms)
1376 +{
1377 + int ret;
1378 +
1379 + ret = clk_prepare_enable(ms->nfi_clk);
1380 + if (ret) {
1381 + dev_err(ms->dev, "unable to enable nfi clk\n");
1382 + return ret;
1383 + }
1384 + ret = clk_prepare_enable(ms->pad_clk);
1385 + if (ret) {
1386 + dev_err(ms->dev, "unable to enable pad clk\n");
1387 + goto err1;
1388 + }
1389 + return 0;
1390 +err1:
1391 + clk_disable_unprepare(ms->nfi_clk);
1392 + return ret;
1393 +}
1394 +
1395 +static void mtk_snand_disable_clk(struct mtk_snand *ms)
1396 +{
1397 + clk_disable_unprepare(ms->pad_clk);
1398 + clk_disable_unprepare(ms->nfi_clk);
1399 +}
1400 +
1401 +static int mtk_snand_probe(struct platform_device *pdev)
1402 +{
1403 + struct device_node *np = pdev->dev.of_node;
1404 + const struct of_device_id *dev_id;
1405 + struct spi_controller *ctlr;
1406 + struct mtk_snand *ms;
1407 + int ret;
1408 +
1409 + dev_id = of_match_node(mtk_snand_ids, np);
1410 + if (!dev_id)
1411 + return -EINVAL;
1412 +
1413 + ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*ms));
1414 + if (!ctlr)
1415 + return -ENOMEM;
1416 + platform_set_drvdata(pdev, ctlr);
1417 +
1418 + ms = spi_controller_get_devdata(ctlr);
1419 +
1420 + ms->ctlr = ctlr;
1421 + ms->caps = dev_id->data;
1422 +
1423 + ms->ecc = of_mtk_ecc_get(np);
1424 + if (IS_ERR(ms->ecc))
1425 + return PTR_ERR(ms->ecc);
1426 + else if (!ms->ecc)
1427 + return -ENODEV;
1428 +
1429 + ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
1430 + if (IS_ERR(ms->nfi_base)) {
1431 + ret = PTR_ERR(ms->nfi_base);
1432 + goto release_ecc;
1433 + }
1434 +
1435 + ms->dev = &pdev->dev;
1436 +
1437 + ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk");
1438 + if (IS_ERR(ms->nfi_clk)) {
1439 + ret = PTR_ERR(ms->nfi_clk);
1440 + dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
1441 + goto release_ecc;
1442 + }
1443 +
1444 + ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk");
1445 + if (IS_ERR(ms->pad_clk)) {
1446 + ret = PTR_ERR(ms->pad_clk);
1447 + dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
1448 + goto release_ecc;
1449 + }
1450 +
1451 + ret = mtk_snand_enable_clk(ms);
1452 + if (ret)
1453 + goto release_ecc;
1454 +
1455 + init_completion(&ms->op_done);
1456 +
1457 + ms->irq = platform_get_irq(pdev, 0);
1458 + if (ms->irq < 0) {
1459 + ret = ms->irq;
1460 + goto disable_clk;
1461 + }
1462 + ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
1463 + "mtk-snand", ms);
1464 + if (ret) {
1465 + dev_err(ms->dev, "failed to request snfi irq\n");
1466 + goto disable_clk;
1467 + }
1468 +
1469 + ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
1470 + if (ret) {
1471 + dev_err(ms->dev, "failed to set dma mask\n");
1472 + goto disable_clk;
1473 + }
1474 +
1475 + // switch to SNFI mode
1476 + nfi_write32(ms, SNF_CFG, SPI_MODE);
1477 +
1478 + // setup an initial page format for ops matching page_cache_op template
1479 + // before ECC is called.
1480 + ret = mtk_snand_setup_pagefmt(ms, ms->caps->sector_size,
1481 + ms->caps->spare_sizes[0]);
1482 + if (ret) {
1483 + dev_err(ms->dev, "failed to set initial page format\n");
1484 + goto disable_clk;
1485 + }
1486 +
1487 + // setup ECC engine
1488 + ms->ecc_eng.dev = &pdev->dev;
1489 + ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
1490 + ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
1491 + ms->ecc_eng.priv = ms;
1492 +
1493 + ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
1494 + if (ret) {
1495 + dev_err(&pdev->dev, "failed to register ecc engine.\n");
1496 + goto disable_clk;
1497 + }
1498 +
1499 + ctlr->num_chipselect = 1;
1500 + ctlr->mem_ops = &mtk_snand_mem_ops;
1501 + ctlr->mem_caps = &mtk_snand_mem_caps;
1502 + ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1503 + ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
1504 + ctlr->dev.of_node = pdev->dev.of_node;
1505 + ret = spi_register_controller(ctlr);
1506 + if (ret) {
1507 + dev_err(&pdev->dev, "spi_register_controller failed.\n");
1508 + goto disable_clk;
1509 + }
1510 +
1511 + return 0;
1512 +disable_clk:
1513 + mtk_snand_disable_clk(ms);
1514 +release_ecc:
1515 + mtk_ecc_release(ms->ecc);
1516 + return ret;
1517 +}
1518 +
1519 +static int mtk_snand_remove(struct platform_device *pdev)
1520 +{
1521 + struct spi_controller *ctlr = platform_get_drvdata(pdev);
1522 + struct mtk_snand *ms = spi_controller_get_devdata(ctlr);
1523 +
1524 + spi_unregister_controller(ctlr);
1525 + mtk_snand_disable_clk(ms);
1526 + mtk_ecc_release(ms->ecc);
1527 + kfree(ms->buf);
1528 + return 0;
1529 +}
1530 +
1531 +static struct platform_driver mtk_snand_driver = {
1532 + .probe = mtk_snand_probe,
1533 + .remove = mtk_snand_remove,
1534 + .driver = {
1535 + .name = "mtk-snand",
1536 + .of_match_table = mtk_snand_ids,
1537 + },
1538 +};
1539 +
1540 +module_platform_driver(mtk_snand_driver);
1541 +
1542 +MODULE_LICENSE("GPL");
1543 +MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
1544 +MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");
1545 --
1546 2.35.1
1547