kernel: bump 4.14 to 4.14.44
[openwrt/staging/lynxis.git] / target / linux / mediatek / patches-4.14 / 0166-mtd-nand-mtk-Support-different-MTK-NAND-flash-contro.patch
1 From fd1a1eabf2473e769b5cafc704e0336d11f61961 Mon Sep 17 00:00:00 2001
2 From: RogerCC Lin <rogercc.lin@mediatek.com>
3 Date: Thu, 30 Nov 2017 22:10:44 +0800
4 Subject: [PATCH 166/224] mtd: nand: mtk: Support different MTK NAND flash
5 controller IP
6
7 MT7622 uses an MTK's earlier NAND flash controller IP which support
8 different sector size, max spare size per sector and paraity bits...,
9 some register's offset and definition also been changed in the NAND
10 flash controller, this patch is the preparation to support MT7622
11 NAND flash controller.
12
13 MT7622 NFC and ECC engine are similar to MT2701's, except below
14 differences:
15 (1)MT7622 NFC's max sector size(ECC data size) is 512 bytes, and
16 MT2701's is 1024, and MT7622's max sector number is 8.
17 (2)The parity bit of MT7622 is 13, MT2701 is 14.
18 (3)MT7622 ECC supports less ECC strength, max to 16 bit ecc strength.
19 (4)MT7622 supports less spare size per sector, max spare size per
20 sector is 28 bytes.
21 (5)Some register's offset are different, include ECC_ENCIRQ_EN,
22 ECC_ENCIRQ_STA, ECC_DECDONE, ECC_DECIRQ_EN and ECC_DECIRQ_STA.
23 (6)ENC_MODE of ECC_ENCCNFG register is moved from bit 5-6 to bit 4-5.
24
25 Signed-off-by: RogerCC Lin <rogercc.lin@mediatek.com>
26 Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
27 ---
28 drivers/mtd/nand/mtk_ecc.c | 100 ++++++++++++++++++++++++++++++--------------
29 drivers/mtd/nand/mtk_ecc.h | 3 +-
30 drivers/mtd/nand/mtk_nand.c | 27 ++++++++----
31 3 files changed, 89 insertions(+), 41 deletions(-)
32
33 --- a/drivers/mtd/nand/mtk_ecc.c
34 +++ b/drivers/mtd/nand/mtk_ecc.c
35 @@ -34,34 +34,28 @@
36
37 #define ECC_ENCCON (0x00)
38 #define ECC_ENCCNFG (0x04)
39 -#define ECC_MODE_SHIFT (5)
40 #define ECC_MS_SHIFT (16)
41 #define ECC_ENCDIADDR (0x08)
42 #define ECC_ENCIDLE (0x0C)
43 -#define ECC_ENCIRQ_EN (0x80)
44 -#define ECC_ENCIRQ_STA (0x84)
45 #define ECC_DECCON (0x100)
46 #define ECC_DECCNFG (0x104)
47 #define DEC_EMPTY_EN BIT(31)
48 #define DEC_CNFG_CORRECT (0x3 << 12)
49 #define ECC_DECIDLE (0x10C)
50 #define ECC_DECENUM0 (0x114)
51 -#define ECC_DECDONE (0x124)
52 -#define ECC_DECIRQ_EN (0x200)
53 -#define ECC_DECIRQ_STA (0x204)
54
55 #define ECC_TIMEOUT (500000)
56
57 #define ECC_IDLE_REG(op) ((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE)
58 #define ECC_CTL_REG(op) ((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON)
59 -#define ECC_IRQ_REG(op) ((op) == ECC_ENCODE ? \
60 - ECC_ENCIRQ_EN : ECC_DECIRQ_EN)
61
62 struct mtk_ecc_caps {
63 u32 err_mask;
64 const u8 *ecc_strength;
65 + const u32 *ecc_regs;
66 u8 num_ecc_strength;
67 - u32 encode_parity_reg0;
68 + u8 ecc_mode_shift;
69 + u32 parity_bits;
70 int pg_irq_sel;
71 };
72
73 @@ -89,6 +83,33 @@ static const u8 ecc_strength_mt2712[] =
74 40, 44, 48, 52, 56, 60, 68, 72, 80
75 };
76
77 +enum mtk_ecc_regs {
78 + ECC_ENCPAR00,
79 + ECC_ENCIRQ_EN,
80 + ECC_ENCIRQ_STA,
81 + ECC_DECDONE,
82 + ECC_DECIRQ_EN,
83 + ECC_DECIRQ_STA,
84 +};
85 +
86 +static int mt2701_ecc_regs[] = {
87 + [ECC_ENCPAR00] = 0x10,
88 + [ECC_ENCIRQ_EN] = 0x80,
89 + [ECC_ENCIRQ_STA] = 0x84,
90 + [ECC_DECDONE] = 0x124,
91 + [ECC_DECIRQ_EN] = 0x200,
92 + [ECC_DECIRQ_STA] = 0x204,
93 +};
94 +
95 +static int mt2712_ecc_regs[] = {
96 + [ECC_ENCPAR00] = 0x300,
97 + [ECC_ENCIRQ_EN] = 0x80,
98 + [ECC_ENCIRQ_STA] = 0x84,
99 + [ECC_DECDONE] = 0x124,
100 + [ECC_DECIRQ_EN] = 0x200,
101 + [ECC_DECIRQ_STA] = 0x204,
102 +};
103 +
104 static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc,
105 enum mtk_ecc_operation op)
106 {
107 @@ -107,32 +128,30 @@ static inline void mtk_ecc_wait_idle(str
108 static irqreturn_t mtk_ecc_irq(int irq, void *id)
109 {
110 struct mtk_ecc *ecc = id;
111 - enum mtk_ecc_operation op;
112 u32 dec, enc;
113
114 - dec = readw(ecc->regs + ECC_DECIRQ_STA) & ECC_IRQ_EN;
115 + dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA])
116 + & ECC_IRQ_EN;
117 if (dec) {
118 - op = ECC_DECODE;
119 - dec = readw(ecc->regs + ECC_DECDONE);
120 + dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
121 if (dec & ecc->sectors) {
122 /*
123 * Clear decode IRQ status once again to ensure that
124 * there will be no extra IRQ.
125 */
126 - readw(ecc->regs + ECC_DECIRQ_STA);
127 + readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]);
128 ecc->sectors = 0;
129 complete(&ecc->done);
130 } else {
131 return IRQ_HANDLED;
132 }
133 } else {
134 - enc = readl(ecc->regs + ECC_ENCIRQ_STA) & ECC_IRQ_EN;
135 - if (enc) {
136 - op = ECC_ENCODE;
137 + enc = readl(ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_STA])
138 + & ECC_IRQ_EN;
139 + if (enc)
140 complete(&ecc->done);
141 - } else {
142 + else
143 return IRQ_NONE;
144 - }
145 }
146
147 return IRQ_HANDLED;
148 @@ -160,7 +179,7 @@ static int mtk_ecc_config(struct mtk_ecc
149 /* configure ECC encoder (in bits) */
150 enc_sz = config->len << 3;
151
152 - reg = ecc_bit | (config->mode << ECC_MODE_SHIFT);
153 + reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
154 reg |= (enc_sz << ECC_MS_SHIFT);
155 writel(reg, ecc->regs + ECC_ENCCNFG);
156
157 @@ -171,9 +190,9 @@ static int mtk_ecc_config(struct mtk_ecc
158 } else {
159 /* configure ECC decoder (in bits) */
160 dec_sz = (config->len << 3) +
161 - config->strength * ECC_PARITY_BITS;
162 + config->strength * ecc->caps->parity_bits;
163
164 - reg = ecc_bit | (config->mode << ECC_MODE_SHIFT);
165 + reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
166 reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT;
167 reg |= DEC_EMPTY_EN;
168 writel(reg, ecc->regs + ECC_DECCNFG);
169 @@ -291,7 +310,12 @@ int mtk_ecc_enable(struct mtk_ecc *ecc,
170 */
171 if (ecc->caps->pg_irq_sel && config->mode == ECC_NFI_MODE)
172 reg_val |= ECC_PG_IRQ_SEL;
173 - writew(reg_val, ecc->regs + ECC_IRQ_REG(op));
174 + if (op == ECC_ENCODE)
175 + writew(reg_val, ecc->regs +
176 + ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
177 + else
178 + writew(reg_val, ecc->regs +
179 + ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
180 }
181
182 writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op));
183 @@ -310,13 +334,17 @@ void mtk_ecc_disable(struct mtk_ecc *ecc
184
185 /* disable it */
186 mtk_ecc_wait_idle(ecc, op);
187 - if (op == ECC_DECODE)
188 + if (op == ECC_DECODE) {
189 /*
190 * Clear decode IRQ status in case there is a timeout to wait
191 * decode IRQ.
192 */
193 - readw(ecc->regs + ECC_DECIRQ_STA);
194 - writew(0, ecc->regs + ECC_IRQ_REG(op));
195 + readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
196 + writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
197 + } else {
198 + writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
199 + }
200 +
201 writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op));
202
203 mutex_unlock(&ecc->lock);
204 @@ -367,11 +395,11 @@ int mtk_ecc_encode(struct mtk_ecc *ecc,
205 mtk_ecc_wait_idle(ecc, ECC_ENCODE);
206
207 /* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */
208 - len = (config->strength * ECC_PARITY_BITS + 7) >> 3;
209 + len = (config->strength * ecc->caps->parity_bits + 7) >> 3;
210
211 /* write the parity bytes generated by the ECC back to temp buffer */
212 __ioread32_copy(ecc->eccdata,
213 - ecc->regs + ecc->caps->encode_parity_reg0,
214 + ecc->regs + ecc->caps->ecc_regs[ECC_ENCPAR00],
215 round_up(len, 4));
216
217 /* copy into possibly unaligned OOB region with actual length */
218 @@ -404,19 +432,29 @@ void mtk_ecc_adjust_strength(struct mtk_
219 }
220 EXPORT_SYMBOL(mtk_ecc_adjust_strength);
221
222 +unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc)
223 +{
224 + return ecc->caps->parity_bits;
225 +}
226 +EXPORT_SYMBOL(mtk_ecc_get_parity_bits);
227 +
228 static const struct mtk_ecc_caps mtk_ecc_caps_mt2701 = {
229 .err_mask = 0x3f,
230 .ecc_strength = ecc_strength_mt2701,
231 + .ecc_regs = mt2701_ecc_regs,
232 .num_ecc_strength = 20,
233 - .encode_parity_reg0 = 0x10,
234 + .ecc_mode_shift = 5,
235 + .parity_bits = 14,
236 .pg_irq_sel = 0,
237 };
238
239 static const struct mtk_ecc_caps mtk_ecc_caps_mt2712 = {
240 .err_mask = 0x7f,
241 .ecc_strength = ecc_strength_mt2712,
242 + .ecc_regs = mt2712_ecc_regs,
243 .num_ecc_strength = 23,
244 - .encode_parity_reg0 = 0x300,
245 + .ecc_mode_shift = 5,
246 + .parity_bits = 14,
247 .pg_irq_sel = 1,
248 };
249
250 @@ -452,7 +490,7 @@ static int mtk_ecc_probe(struct platform
251
252 max_eccdata_size = ecc->caps->num_ecc_strength - 1;
253 max_eccdata_size = ecc->caps->ecc_strength[max_eccdata_size];
254 - max_eccdata_size = (max_eccdata_size * ECC_PARITY_BITS + 7) >> 3;
255 + max_eccdata_size = (max_eccdata_size * ecc->caps->parity_bits + 7) >> 3;
256 max_eccdata_size = round_up(max_eccdata_size, 4);
257 ecc->eccdata = devm_kzalloc(dev, max_eccdata_size, GFP_KERNEL);
258 if (!ecc->eccdata)
259 --- a/drivers/mtd/nand/mtk_ecc.h
260 +++ b/drivers/mtd/nand/mtk_ecc.h
261 @@ -14,8 +14,6 @@
262
263 #include <linux/types.h>
264
265 -#define ECC_PARITY_BITS (14)
266 -
267 enum mtk_ecc_mode {ECC_DMA_MODE = 0, ECC_NFI_MODE = 1};
268 enum mtk_ecc_operation {ECC_ENCODE, ECC_DECODE};
269
270 @@ -43,6 +41,7 @@ int mtk_ecc_wait_done(struct mtk_ecc *,
271 int mtk_ecc_enable(struct mtk_ecc *, struct mtk_ecc_config *);
272 void mtk_ecc_disable(struct mtk_ecc *);
273 void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p);
274 +unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc);
275
276 struct mtk_ecc *of_mtk_ecc_get(struct device_node *);
277 void mtk_ecc_release(struct mtk_ecc *);
278 --- a/drivers/mtd/nand/mtk_nand.c
279 +++ b/drivers/mtd/nand/mtk_nand.c
280 @@ -97,7 +97,6 @@
281
282 #define MTK_TIMEOUT (500000)
283 #define MTK_RESET_TIMEOUT (1000000)
284 -#define MTK_MAX_SECTOR (16)
285 #define MTK_NAND_MAX_NSELS (2)
286 #define MTK_NFC_MIN_SPARE (16)
287 #define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
288 @@ -109,6 +108,8 @@ struct mtk_nfc_caps {
289 u8 num_spare_size;
290 u8 pageformat_spare_shift;
291 u8 nfi_clk_div;
292 + u8 max_sector;
293 + u32 max_sector_size;
294 };
295
296 struct mtk_nfc_bad_mark_ctl {
297 @@ -450,7 +451,7 @@ static inline u8 mtk_nfc_read_byte(struc
298 * set to max sector to allow the HW to continue reading over
299 * unaligned accesses
300 */
301 - reg = (MTK_MAX_SECTOR << CON_SEC_SHIFT) | CON_BRD;
302 + reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD;
303 nfi_writel(nfc, reg, NFI_CON);
304
305 /* trigger to fetch data */
306 @@ -481,7 +482,7 @@ static void mtk_nfc_write_byte(struct mt
307 reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
308 nfi_writew(nfc, reg, NFI_CNFG);
309
310 - reg = MTK_MAX_SECTOR << CON_SEC_SHIFT | CON_BWR;
311 + reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR;
312 nfi_writel(nfc, reg, NFI_CON);
313
314 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
315 @@ -1126,9 +1127,11 @@ static void mtk_nfc_set_fdm(struct mtk_n
316 {
317 struct nand_chip *nand = mtd_to_nand(mtd);
318 struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
319 + struct mtk_nfc *nfc = nand_get_controller_data(nand);
320 u32 ecc_bytes;
321
322 - ecc_bytes = DIV_ROUND_UP(nand->ecc.strength * ECC_PARITY_BITS, 8);
323 + ecc_bytes = DIV_ROUND_UP(nand->ecc.strength *
324 + mtk_ecc_get_parity_bits(nfc->ecc), 8);
325
326 fdm->reg_size = chip->spare_per_sector - ecc_bytes;
327 if (fdm->reg_size > NFI_FDM_MAX_SIZE)
328 @@ -1208,7 +1211,8 @@ static int mtk_nfc_ecc_init(struct devic
329 * this controller only supports 512 and 1024 sizes
330 */
331 if (nand->ecc.size < 1024) {
332 - if (mtd->writesize > 512) {
333 + if (mtd->writesize > 512 &&
334 + nfc->caps->max_sector_size > 512) {
335 nand->ecc.size = 1024;
336 nand->ecc.strength <<= 1;
337 } else {
338 @@ -1223,7 +1227,8 @@ static int mtk_nfc_ecc_init(struct devic
339 return ret;
340
341 /* calculate oob bytes except ecc parity data */
342 - free = ((nand->ecc.strength * ECC_PARITY_BITS) + 7) >> 3;
343 + free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc)
344 + + 7) >> 3;
345 free = spare - free;
346
347 /*
348 @@ -1233,10 +1238,12 @@ static int mtk_nfc_ecc_init(struct devic
349 */
350 if (free > NFI_FDM_MAX_SIZE) {
351 spare -= NFI_FDM_MAX_SIZE;
352 - nand->ecc.strength = (spare << 3) / ECC_PARITY_BITS;
353 + nand->ecc.strength = (spare << 3) /
354 + mtk_ecc_get_parity_bits(nfc->ecc);
355 } else if (free < 0) {
356 spare -= NFI_FDM_MIN_SIZE;
357 - nand->ecc.strength = (spare << 3) / ECC_PARITY_BITS;
358 + nand->ecc.strength = (spare << 3) /
359 + mtk_ecc_get_parity_bits(nfc->ecc);
360 }
361 }
362
363 @@ -1389,6 +1396,8 @@ static const struct mtk_nfc_caps mtk_nfc
364 .num_spare_size = 16,
365 .pageformat_spare_shift = 4,
366 .nfi_clk_div = 1,
367 + .max_sector = 16,
368 + .max_sector_size = 1024,
369 };
370
371 static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = {
372 @@ -1396,6 +1405,8 @@ static const struct mtk_nfc_caps mtk_nfc
373 .num_spare_size = 19,
374 .pageformat_spare_shift = 16,
375 .nfi_clk_div = 2,
376 + .max_sector = 16,
377 + .max_sector_size = 1024,
378 };
379
380 static const struct of_device_id mtk_nfc_id_table[] = {