include/package.mk: Add support for src-checkout/ folder
[openwrt/staging/blogic.git] / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35 * 4MB minimal write chunk size
36 */
37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
42 struct wb_writeback_work {
43 long nr_pages;
44 struct super_block *sb;
45 unsigned long *older_than_this;
46 enum writeback_sync_modes sync_mode;
47 unsigned int tagged_writepages:1;
48 unsigned int for_kupdate:1;
49 unsigned int range_cyclic:1;
50 unsigned int for_background:1;
51 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
52 unsigned int auto_free:1; /* free on completion */
53 enum wb_reason reason; /* why was writeback initiated? */
54
55 struct list_head list; /* pending work list */
56 struct wb_completion *done; /* set if the caller waits */
57 };
58
59 /*
60 * If an inode is constantly having its pages dirtied, but then the
61 * updates stop dirtytime_expire_interval seconds in the past, it's
62 * possible for the worst case time between when an inode has its
63 * timestamps updated and when they finally get written out to be two
64 * dirtytime_expire_intervals. We set the default to 12 hours (in
65 * seconds), which means most of the time inodes will have their
66 * timestamps written to disk after 12 hours, but in the worst case a
67 * few inodes might not their timestamps updated for 24 hours.
68 */
69 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
70
71 static inline struct inode *wb_inode(struct list_head *head)
72 {
73 return list_entry(head, struct inode, i_io_list);
74 }
75
76 /*
77 * Include the creation of the trace points after defining the
78 * wb_writeback_work structure and inline functions so that the definition
79 * remains local to this file.
80 */
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/writeback.h>
83
84 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
85
86 static bool wb_io_lists_populated(struct bdi_writeback *wb)
87 {
88 if (wb_has_dirty_io(wb)) {
89 return false;
90 } else {
91 set_bit(WB_has_dirty_io, &wb->state);
92 WARN_ON_ONCE(!wb->avg_write_bandwidth);
93 atomic_long_add(wb->avg_write_bandwidth,
94 &wb->bdi->tot_write_bandwidth);
95 return true;
96 }
97 }
98
99 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
100 {
101 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
102 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
103 clear_bit(WB_has_dirty_io, &wb->state);
104 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
105 &wb->bdi->tot_write_bandwidth) < 0);
106 }
107 }
108
109 /**
110 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
111 * @inode: inode to be moved
112 * @wb: target bdi_writeback
113 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
114 *
115 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
116 * Returns %true if @inode is the first occupant of the !dirty_time IO
117 * lists; otherwise, %false.
118 */
119 static bool inode_io_list_move_locked(struct inode *inode,
120 struct bdi_writeback *wb,
121 struct list_head *head)
122 {
123 assert_spin_locked(&wb->list_lock);
124
125 list_move(&inode->i_io_list, head);
126
127 /* dirty_time doesn't count as dirty_io until expiration */
128 if (head != &wb->b_dirty_time)
129 return wb_io_lists_populated(wb);
130
131 wb_io_lists_depopulated(wb);
132 return false;
133 }
134
135 /**
136 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
137 * @inode: inode to be removed
138 * @wb: bdi_writeback @inode is being removed from
139 *
140 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
141 * clear %WB_has_dirty_io if all are empty afterwards.
142 */
143 static void inode_io_list_del_locked(struct inode *inode,
144 struct bdi_writeback *wb)
145 {
146 assert_spin_locked(&wb->list_lock);
147
148 list_del_init(&inode->i_io_list);
149 wb_io_lists_depopulated(wb);
150 }
151
152 static void wb_wakeup(struct bdi_writeback *wb)
153 {
154 spin_lock_bh(&wb->work_lock);
155 if (test_bit(WB_registered, &wb->state))
156 mod_delayed_work(bdi_wq, &wb->dwork, 0);
157 spin_unlock_bh(&wb->work_lock);
158 }
159
160 static void finish_writeback_work(struct bdi_writeback *wb,
161 struct wb_writeback_work *work)
162 {
163 struct wb_completion *done = work->done;
164
165 if (work->auto_free)
166 kfree(work);
167 if (done && atomic_dec_and_test(&done->cnt))
168 wake_up_all(done->waitq);
169 }
170
171 static void wb_queue_work(struct bdi_writeback *wb,
172 struct wb_writeback_work *work)
173 {
174 trace_writeback_queue(wb, work);
175
176 if (work->done)
177 atomic_inc(&work->done->cnt);
178
179 spin_lock_bh(&wb->work_lock);
180
181 if (test_bit(WB_registered, &wb->state)) {
182 list_add_tail(&work->list, &wb->work_list);
183 mod_delayed_work(bdi_wq, &wb->dwork, 0);
184 } else
185 finish_writeback_work(wb, work);
186
187 spin_unlock_bh(&wb->work_lock);
188 }
189
190 /**
191 * wb_wait_for_completion - wait for completion of bdi_writeback_works
192 * @done: target wb_completion
193 *
194 * Wait for one or more work items issued to @bdi with their ->done field
195 * set to @done, which should have been initialized with
196 * DEFINE_WB_COMPLETION(). This function returns after all such work items
197 * are completed. Work items which are waited upon aren't freed
198 * automatically on completion.
199 */
200 void wb_wait_for_completion(struct wb_completion *done)
201 {
202 atomic_dec(&done->cnt); /* put down the initial count */
203 wait_event(*done->waitq, !atomic_read(&done->cnt));
204 }
205
206 #ifdef CONFIG_CGROUP_WRITEBACK
207
208 /*
209 * Parameters for foreign inode detection, see wbc_detach_inode() to see
210 * how they're used.
211 *
212 * These paramters are inherently heuristical as the detection target
213 * itself is fuzzy. All we want to do is detaching an inode from the
214 * current owner if it's being written to by some other cgroups too much.
215 *
216 * The current cgroup writeback is built on the assumption that multiple
217 * cgroups writing to the same inode concurrently is very rare and a mode
218 * of operation which isn't well supported. As such, the goal is not
219 * taking too long when a different cgroup takes over an inode while
220 * avoiding too aggressive flip-flops from occasional foreign writes.
221 *
222 * We record, very roughly, 2s worth of IO time history and if more than
223 * half of that is foreign, trigger the switch. The recording is quantized
224 * to 16 slots. To avoid tiny writes from swinging the decision too much,
225 * writes smaller than 1/8 of avg size are ignored.
226 */
227 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
230 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
231
232 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
236 /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 /* one round can affect upto 5 slots */
239 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
240
241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242 static struct workqueue_struct *isw_wq;
243
244 void __inode_attach_wb(struct inode *inode, struct page *page)
245 {
246 struct backing_dev_info *bdi = inode_to_bdi(inode);
247 struct bdi_writeback *wb = NULL;
248
249 if (inode_cgwb_enabled(inode)) {
250 struct cgroup_subsys_state *memcg_css;
251
252 if (page) {
253 memcg_css = mem_cgroup_css_from_page(page);
254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 } else {
256 /* must pin memcg_css, see wb_get_create() */
257 memcg_css = task_get_css(current, memory_cgrp_id);
258 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259 css_put(memcg_css);
260 }
261 }
262
263 if (!wb)
264 wb = &bdi->wb;
265
266 /*
267 * There may be multiple instances of this function racing to
268 * update the same inode. Use cmpxchg() to tell the winner.
269 */
270 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271 wb_put(wb);
272 }
273 EXPORT_SYMBOL_GPL(__inode_attach_wb);
274
275 /**
276 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
277 * @inode: inode of interest with i_lock held
278 *
279 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
280 * held on entry and is released on return. The returned wb is guaranteed
281 * to stay @inode's associated wb until its list_lock is released.
282 */
283 static struct bdi_writeback *
284 locked_inode_to_wb_and_lock_list(struct inode *inode)
285 __releases(&inode->i_lock)
286 __acquires(&wb->list_lock)
287 {
288 while (true) {
289 struct bdi_writeback *wb = inode_to_wb(inode);
290
291 /*
292 * inode_to_wb() association is protected by both
293 * @inode->i_lock and @wb->list_lock but list_lock nests
294 * outside i_lock. Drop i_lock and verify that the
295 * association hasn't changed after acquiring list_lock.
296 */
297 wb_get(wb);
298 spin_unlock(&inode->i_lock);
299 spin_lock(&wb->list_lock);
300
301 /* i_wb may have changed inbetween, can't use inode_to_wb() */
302 if (likely(wb == inode->i_wb)) {
303 wb_put(wb); /* @inode already has ref */
304 return wb;
305 }
306
307 spin_unlock(&wb->list_lock);
308 wb_put(wb);
309 cpu_relax();
310 spin_lock(&inode->i_lock);
311 }
312 }
313
314 /**
315 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
316 * @inode: inode of interest
317 *
318 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
319 * on entry.
320 */
321 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
322 __acquires(&wb->list_lock)
323 {
324 spin_lock(&inode->i_lock);
325 return locked_inode_to_wb_and_lock_list(inode);
326 }
327
328 struct inode_switch_wbs_context {
329 struct inode *inode;
330 struct bdi_writeback *new_wb;
331
332 struct rcu_head rcu_head;
333 struct work_struct work;
334 };
335
336 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
337 {
338 down_write(&bdi->wb_switch_rwsem);
339 }
340
341 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
342 {
343 up_write(&bdi->wb_switch_rwsem);
344 }
345
346 static void inode_switch_wbs_work_fn(struct work_struct *work)
347 {
348 struct inode_switch_wbs_context *isw =
349 container_of(work, struct inode_switch_wbs_context, work);
350 struct inode *inode = isw->inode;
351 struct backing_dev_info *bdi = inode_to_bdi(inode);
352 struct address_space *mapping = inode->i_mapping;
353 struct bdi_writeback *old_wb = inode->i_wb;
354 struct bdi_writeback *new_wb = isw->new_wb;
355 XA_STATE(xas, &mapping->i_pages, 0);
356 struct page *page;
357 bool switched = false;
358
359 /*
360 * If @inode switches cgwb membership while sync_inodes_sb() is
361 * being issued, sync_inodes_sb() might miss it. Synchronize.
362 */
363 down_read(&bdi->wb_switch_rwsem);
364
365 /*
366 * By the time control reaches here, RCU grace period has passed
367 * since I_WB_SWITCH assertion and all wb stat update transactions
368 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
369 * synchronizing against the i_pages lock.
370 *
371 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
372 * gives us exclusion against all wb related operations on @inode
373 * including IO list manipulations and stat updates.
374 */
375 if (old_wb < new_wb) {
376 spin_lock(&old_wb->list_lock);
377 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
378 } else {
379 spin_lock(&new_wb->list_lock);
380 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
381 }
382 spin_lock(&inode->i_lock);
383 xa_lock_irq(&mapping->i_pages);
384
385 /*
386 * Once I_FREEING is visible under i_lock, the eviction path owns
387 * the inode and we shouldn't modify ->i_io_list.
388 */
389 if (unlikely(inode->i_state & I_FREEING))
390 goto skip_switch;
391
392 trace_inode_switch_wbs(inode, old_wb, new_wb);
393
394 /*
395 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
396 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
397 * pages actually under writeback.
398 */
399 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
400 if (PageDirty(page)) {
401 dec_wb_stat(old_wb, WB_RECLAIMABLE);
402 inc_wb_stat(new_wb, WB_RECLAIMABLE);
403 }
404 }
405
406 xas_set(&xas, 0);
407 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
408 WARN_ON_ONCE(!PageWriteback(page));
409 dec_wb_stat(old_wb, WB_WRITEBACK);
410 inc_wb_stat(new_wb, WB_WRITEBACK);
411 }
412
413 wb_get(new_wb);
414
415 /*
416 * Transfer to @new_wb's IO list if necessary. The specific list
417 * @inode was on is ignored and the inode is put on ->b_dirty which
418 * is always correct including from ->b_dirty_time. The transfer
419 * preserves @inode->dirtied_when ordering.
420 */
421 if (!list_empty(&inode->i_io_list)) {
422 struct inode *pos;
423
424 inode_io_list_del_locked(inode, old_wb);
425 inode->i_wb = new_wb;
426 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
427 if (time_after_eq(inode->dirtied_when,
428 pos->dirtied_when))
429 break;
430 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
431 } else {
432 inode->i_wb = new_wb;
433 }
434
435 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
436 inode->i_wb_frn_winner = 0;
437 inode->i_wb_frn_avg_time = 0;
438 inode->i_wb_frn_history = 0;
439 switched = true;
440 skip_switch:
441 /*
442 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
443 * ensures that the new wb is visible if they see !I_WB_SWITCH.
444 */
445 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
446
447 xa_unlock_irq(&mapping->i_pages);
448 spin_unlock(&inode->i_lock);
449 spin_unlock(&new_wb->list_lock);
450 spin_unlock(&old_wb->list_lock);
451
452 up_read(&bdi->wb_switch_rwsem);
453
454 if (switched) {
455 wb_wakeup(new_wb);
456 wb_put(old_wb);
457 }
458 wb_put(new_wb);
459
460 iput(inode);
461 kfree(isw);
462
463 atomic_dec(&isw_nr_in_flight);
464 }
465
466 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
467 {
468 struct inode_switch_wbs_context *isw = container_of(rcu_head,
469 struct inode_switch_wbs_context, rcu_head);
470
471 /* needs to grab bh-unsafe locks, bounce to work item */
472 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
473 queue_work(isw_wq, &isw->work);
474 }
475
476 /**
477 * inode_switch_wbs - change the wb association of an inode
478 * @inode: target inode
479 * @new_wb_id: ID of the new wb
480 *
481 * Switch @inode's wb association to the wb identified by @new_wb_id. The
482 * switching is performed asynchronously and may fail silently.
483 */
484 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
485 {
486 struct backing_dev_info *bdi = inode_to_bdi(inode);
487 struct cgroup_subsys_state *memcg_css;
488 struct inode_switch_wbs_context *isw;
489
490 /* noop if seems to be already in progress */
491 if (inode->i_state & I_WB_SWITCH)
492 return;
493
494 /* avoid queueing a new switch if too many are already in flight */
495 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
496 return;
497
498 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
499 if (!isw)
500 return;
501
502 /* find and pin the new wb */
503 rcu_read_lock();
504 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
505 if (memcg_css)
506 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
507 rcu_read_unlock();
508 if (!isw->new_wb)
509 goto out_free;
510
511 /* while holding I_WB_SWITCH, no one else can update the association */
512 spin_lock(&inode->i_lock);
513 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
514 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
515 inode_to_wb(inode) == isw->new_wb) {
516 spin_unlock(&inode->i_lock);
517 goto out_free;
518 }
519 inode->i_state |= I_WB_SWITCH;
520 __iget(inode);
521 spin_unlock(&inode->i_lock);
522
523 isw->inode = inode;
524
525 /*
526 * In addition to synchronizing among switchers, I_WB_SWITCH tells
527 * the RCU protected stat update paths to grab the i_page
528 * lock so that stat transfer can synchronize against them.
529 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
530 */
531 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
532
533 atomic_inc(&isw_nr_in_flight);
534 return;
535
536 out_free:
537 if (isw->new_wb)
538 wb_put(isw->new_wb);
539 kfree(isw);
540 }
541
542 /**
543 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
544 * @wbc: writeback_control of interest
545 * @inode: target inode
546 *
547 * @inode is locked and about to be written back under the control of @wbc.
548 * Record @inode's writeback context into @wbc and unlock the i_lock. On
549 * writeback completion, wbc_detach_inode() should be called. This is used
550 * to track the cgroup writeback context.
551 */
552 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
553 struct inode *inode)
554 {
555 if (!inode_cgwb_enabled(inode)) {
556 spin_unlock(&inode->i_lock);
557 return;
558 }
559
560 wbc->wb = inode_to_wb(inode);
561 wbc->inode = inode;
562
563 wbc->wb_id = wbc->wb->memcg_css->id;
564 wbc->wb_lcand_id = inode->i_wb_frn_winner;
565 wbc->wb_tcand_id = 0;
566 wbc->wb_bytes = 0;
567 wbc->wb_lcand_bytes = 0;
568 wbc->wb_tcand_bytes = 0;
569
570 wb_get(wbc->wb);
571 spin_unlock(&inode->i_lock);
572
573 /*
574 * A dying wb indicates that the memcg-blkcg mapping has changed
575 * and a new wb is already serving the memcg. Switch immediately.
576 */
577 if (unlikely(wb_dying(wbc->wb)))
578 inode_switch_wbs(inode, wbc->wb_id);
579 }
580 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
581
582 /**
583 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
584 * @wbc: writeback_control of the just finished writeback
585 *
586 * To be called after a writeback attempt of an inode finishes and undoes
587 * wbc_attach_and_unlock_inode(). Can be called under any context.
588 *
589 * As concurrent write sharing of an inode is expected to be very rare and
590 * memcg only tracks page ownership on first-use basis severely confining
591 * the usefulness of such sharing, cgroup writeback tracks ownership
592 * per-inode. While the support for concurrent write sharing of an inode
593 * is deemed unnecessary, an inode being written to by different cgroups at
594 * different points in time is a lot more common, and, more importantly,
595 * charging only by first-use can too readily lead to grossly incorrect
596 * behaviors (single foreign page can lead to gigabytes of writeback to be
597 * incorrectly attributed).
598 *
599 * To resolve this issue, cgroup writeback detects the majority dirtier of
600 * an inode and transfers the ownership to it. To avoid unnnecessary
601 * oscillation, the detection mechanism keeps track of history and gives
602 * out the switch verdict only if the foreign usage pattern is stable over
603 * a certain amount of time and/or writeback attempts.
604 *
605 * On each writeback attempt, @wbc tries to detect the majority writer
606 * using Boyer-Moore majority vote algorithm. In addition to the byte
607 * count from the majority voting, it also counts the bytes written for the
608 * current wb and the last round's winner wb (max of last round's current
609 * wb, the winner from two rounds ago, and the last round's majority
610 * candidate). Keeping track of the historical winner helps the algorithm
611 * to semi-reliably detect the most active writer even when it's not the
612 * absolute majority.
613 *
614 * Once the winner of the round is determined, whether the winner is
615 * foreign or not and how much IO time the round consumed is recorded in
616 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
617 * over a certain threshold, the switch verdict is given.
618 */
619 void wbc_detach_inode(struct writeback_control *wbc)
620 {
621 struct bdi_writeback *wb = wbc->wb;
622 struct inode *inode = wbc->inode;
623 unsigned long avg_time, max_bytes, max_time;
624 u16 history;
625 int max_id;
626
627 if (!wb)
628 return;
629
630 history = inode->i_wb_frn_history;
631 avg_time = inode->i_wb_frn_avg_time;
632
633 /* pick the winner of this round */
634 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
635 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
636 max_id = wbc->wb_id;
637 max_bytes = wbc->wb_bytes;
638 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
639 max_id = wbc->wb_lcand_id;
640 max_bytes = wbc->wb_lcand_bytes;
641 } else {
642 max_id = wbc->wb_tcand_id;
643 max_bytes = wbc->wb_tcand_bytes;
644 }
645
646 /*
647 * Calculate the amount of IO time the winner consumed and fold it
648 * into the running average kept per inode. If the consumed IO
649 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
650 * deciding whether to switch or not. This is to prevent one-off
651 * small dirtiers from skewing the verdict.
652 */
653 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
654 wb->avg_write_bandwidth);
655 if (avg_time)
656 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
657 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
658 else
659 avg_time = max_time; /* immediate catch up on first run */
660
661 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
662 int slots;
663
664 /*
665 * The switch verdict is reached if foreign wb's consume
666 * more than a certain proportion of IO time in a
667 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
668 * history mask where each bit represents one sixteenth of
669 * the period. Determine the number of slots to shift into
670 * history from @max_time.
671 */
672 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
673 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
674 history <<= slots;
675 if (wbc->wb_id != max_id)
676 history |= (1U << slots) - 1;
677
678 if (history)
679 trace_inode_foreign_history(inode, wbc, history);
680
681 /*
682 * Switch if the current wb isn't the consistent winner.
683 * If there are multiple closely competing dirtiers, the
684 * inode may switch across them repeatedly over time, which
685 * is okay. The main goal is avoiding keeping an inode on
686 * the wrong wb for an extended period of time.
687 */
688 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
689 inode_switch_wbs(inode, max_id);
690 }
691
692 /*
693 * Multiple instances of this function may race to update the
694 * following fields but we don't mind occassional inaccuracies.
695 */
696 inode->i_wb_frn_winner = max_id;
697 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
698 inode->i_wb_frn_history = history;
699
700 wb_put(wbc->wb);
701 wbc->wb = NULL;
702 }
703 EXPORT_SYMBOL_GPL(wbc_detach_inode);
704
705 /**
706 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
707 * @wbc: writeback_control of the writeback in progress
708 * @page: page being written out
709 * @bytes: number of bytes being written out
710 *
711 * @bytes from @page are about to written out during the writeback
712 * controlled by @wbc. Keep the book for foreign inode detection. See
713 * wbc_detach_inode().
714 */
715 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
716 size_t bytes)
717 {
718 struct cgroup_subsys_state *css;
719 int id;
720
721 /*
722 * pageout() path doesn't attach @wbc to the inode being written
723 * out. This is intentional as we don't want the function to block
724 * behind a slow cgroup. Ultimately, we want pageout() to kick off
725 * regular writeback instead of writing things out itself.
726 */
727 if (!wbc->wb || wbc->no_cgroup_owner)
728 return;
729
730 css = mem_cgroup_css_from_page(page);
731 /* dead cgroups shouldn't contribute to inode ownership arbitration */
732 if (!(css->flags & CSS_ONLINE))
733 return;
734
735 id = css->id;
736
737 if (id == wbc->wb_id) {
738 wbc->wb_bytes += bytes;
739 return;
740 }
741
742 if (id == wbc->wb_lcand_id)
743 wbc->wb_lcand_bytes += bytes;
744
745 /* Boyer-Moore majority vote algorithm */
746 if (!wbc->wb_tcand_bytes)
747 wbc->wb_tcand_id = id;
748 if (id == wbc->wb_tcand_id)
749 wbc->wb_tcand_bytes += bytes;
750 else
751 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
752 }
753 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
754
755 /**
756 * inode_congested - test whether an inode is congested
757 * @inode: inode to test for congestion (may be NULL)
758 * @cong_bits: mask of WB_[a]sync_congested bits to test
759 *
760 * Tests whether @inode is congested. @cong_bits is the mask of congestion
761 * bits to test and the return value is the mask of set bits.
762 *
763 * If cgroup writeback is enabled for @inode, the congestion state is
764 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
765 * associated with @inode is congested; otherwise, the root wb's congestion
766 * state is used.
767 *
768 * @inode is allowed to be NULL as this function is often called on
769 * mapping->host which is NULL for the swapper space.
770 */
771 int inode_congested(struct inode *inode, int cong_bits)
772 {
773 /*
774 * Once set, ->i_wb never becomes NULL while the inode is alive.
775 * Start transaction iff ->i_wb is visible.
776 */
777 if (inode && inode_to_wb_is_valid(inode)) {
778 struct bdi_writeback *wb;
779 struct wb_lock_cookie lock_cookie = {};
780 bool congested;
781
782 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
783 congested = wb_congested(wb, cong_bits);
784 unlocked_inode_to_wb_end(inode, &lock_cookie);
785 return congested;
786 }
787
788 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
789 }
790 EXPORT_SYMBOL_GPL(inode_congested);
791
792 /**
793 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
794 * @wb: target bdi_writeback to split @nr_pages to
795 * @nr_pages: number of pages to write for the whole bdi
796 *
797 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
798 * relation to the total write bandwidth of all wb's w/ dirty inodes on
799 * @wb->bdi.
800 */
801 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
802 {
803 unsigned long this_bw = wb->avg_write_bandwidth;
804 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
805
806 if (nr_pages == LONG_MAX)
807 return LONG_MAX;
808
809 /*
810 * This may be called on clean wb's and proportional distribution
811 * may not make sense, just use the original @nr_pages in those
812 * cases. In general, we wanna err on the side of writing more.
813 */
814 if (!tot_bw || this_bw >= tot_bw)
815 return nr_pages;
816 else
817 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
818 }
819
820 /**
821 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
822 * @bdi: target backing_dev_info
823 * @base_work: wb_writeback_work to issue
824 * @skip_if_busy: skip wb's which already have writeback in progress
825 *
826 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
827 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
828 * distributed to the busy wbs according to each wb's proportion in the
829 * total active write bandwidth of @bdi.
830 */
831 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
832 struct wb_writeback_work *base_work,
833 bool skip_if_busy)
834 {
835 struct bdi_writeback *last_wb = NULL;
836 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
837 struct bdi_writeback, bdi_node);
838
839 might_sleep();
840 restart:
841 rcu_read_lock();
842 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
843 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
844 struct wb_writeback_work fallback_work;
845 struct wb_writeback_work *work;
846 long nr_pages;
847
848 if (last_wb) {
849 wb_put(last_wb);
850 last_wb = NULL;
851 }
852
853 /* SYNC_ALL writes out I_DIRTY_TIME too */
854 if (!wb_has_dirty_io(wb) &&
855 (base_work->sync_mode == WB_SYNC_NONE ||
856 list_empty(&wb->b_dirty_time)))
857 continue;
858 if (skip_if_busy && writeback_in_progress(wb))
859 continue;
860
861 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
862
863 work = kmalloc(sizeof(*work), GFP_ATOMIC);
864 if (work) {
865 *work = *base_work;
866 work->nr_pages = nr_pages;
867 work->auto_free = 1;
868 wb_queue_work(wb, work);
869 continue;
870 }
871
872 /* alloc failed, execute synchronously using on-stack fallback */
873 work = &fallback_work;
874 *work = *base_work;
875 work->nr_pages = nr_pages;
876 work->auto_free = 0;
877 work->done = &fallback_work_done;
878
879 wb_queue_work(wb, work);
880
881 /*
882 * Pin @wb so that it stays on @bdi->wb_list. This allows
883 * continuing iteration from @wb after dropping and
884 * regrabbing rcu read lock.
885 */
886 wb_get(wb);
887 last_wb = wb;
888
889 rcu_read_unlock();
890 wb_wait_for_completion(&fallback_work_done);
891 goto restart;
892 }
893 rcu_read_unlock();
894
895 if (last_wb)
896 wb_put(last_wb);
897 }
898
899 /**
900 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
901 * @bdi_id: target bdi id
902 * @memcg_id: target memcg css id
903 * @nr_pages: number of pages to write, 0 for best-effort dirty flushing
904 * @reason: reason why some writeback work initiated
905 * @done: target wb_completion
906 *
907 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
908 * with the specified parameters.
909 */
910 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
911 enum wb_reason reason, struct wb_completion *done)
912 {
913 struct backing_dev_info *bdi;
914 struct cgroup_subsys_state *memcg_css;
915 struct bdi_writeback *wb;
916 struct wb_writeback_work *work;
917 int ret;
918
919 /* lookup bdi and memcg */
920 bdi = bdi_get_by_id(bdi_id);
921 if (!bdi)
922 return -ENOENT;
923
924 rcu_read_lock();
925 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
926 if (memcg_css && !css_tryget(memcg_css))
927 memcg_css = NULL;
928 rcu_read_unlock();
929 if (!memcg_css) {
930 ret = -ENOENT;
931 goto out_bdi_put;
932 }
933
934 /*
935 * And find the associated wb. If the wb isn't there already
936 * there's nothing to flush, don't create one.
937 */
938 wb = wb_get_lookup(bdi, memcg_css);
939 if (!wb) {
940 ret = -ENOENT;
941 goto out_css_put;
942 }
943
944 /*
945 * If @nr is zero, the caller is attempting to write out most of
946 * the currently dirty pages. Let's take the current dirty page
947 * count and inflate it by 25% which should be large enough to
948 * flush out most dirty pages while avoiding getting livelocked by
949 * concurrent dirtiers.
950 */
951 if (!nr) {
952 unsigned long filepages, headroom, dirty, writeback;
953
954 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
955 &writeback);
956 nr = dirty * 10 / 8;
957 }
958
959 /* issue the writeback work */
960 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
961 if (work) {
962 work->nr_pages = nr;
963 work->sync_mode = WB_SYNC_NONE;
964 work->range_cyclic = 1;
965 work->reason = reason;
966 work->done = done;
967 work->auto_free = 1;
968 wb_queue_work(wb, work);
969 ret = 0;
970 } else {
971 ret = -ENOMEM;
972 }
973
974 wb_put(wb);
975 out_css_put:
976 css_put(memcg_css);
977 out_bdi_put:
978 bdi_put(bdi);
979 return ret;
980 }
981
982 /**
983 * cgroup_writeback_umount - flush inode wb switches for umount
984 *
985 * This function is called when a super_block is about to be destroyed and
986 * flushes in-flight inode wb switches. An inode wb switch goes through
987 * RCU and then workqueue, so the two need to be flushed in order to ensure
988 * that all previously scheduled switches are finished. As wb switches are
989 * rare occurrences and synchronize_rcu() can take a while, perform
990 * flushing iff wb switches are in flight.
991 */
992 void cgroup_writeback_umount(void)
993 {
994 if (atomic_read(&isw_nr_in_flight)) {
995 /*
996 * Use rcu_barrier() to wait for all pending callbacks to
997 * ensure that all in-flight wb switches are in the workqueue.
998 */
999 rcu_barrier();
1000 flush_workqueue(isw_wq);
1001 }
1002 }
1003
1004 static int __init cgroup_writeback_init(void)
1005 {
1006 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1007 if (!isw_wq)
1008 return -ENOMEM;
1009 return 0;
1010 }
1011 fs_initcall(cgroup_writeback_init);
1012
1013 #else /* CONFIG_CGROUP_WRITEBACK */
1014
1015 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1016 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1017
1018 static struct bdi_writeback *
1019 locked_inode_to_wb_and_lock_list(struct inode *inode)
1020 __releases(&inode->i_lock)
1021 __acquires(&wb->list_lock)
1022 {
1023 struct bdi_writeback *wb = inode_to_wb(inode);
1024
1025 spin_unlock(&inode->i_lock);
1026 spin_lock(&wb->list_lock);
1027 return wb;
1028 }
1029
1030 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1031 __acquires(&wb->list_lock)
1032 {
1033 struct bdi_writeback *wb = inode_to_wb(inode);
1034
1035 spin_lock(&wb->list_lock);
1036 return wb;
1037 }
1038
1039 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1040 {
1041 return nr_pages;
1042 }
1043
1044 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1045 struct wb_writeback_work *base_work,
1046 bool skip_if_busy)
1047 {
1048 might_sleep();
1049
1050 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1051 base_work->auto_free = 0;
1052 wb_queue_work(&bdi->wb, base_work);
1053 }
1054 }
1055
1056 #endif /* CONFIG_CGROUP_WRITEBACK */
1057
1058 /*
1059 * Add in the number of potentially dirty inodes, because each inode
1060 * write can dirty pagecache in the underlying blockdev.
1061 */
1062 static unsigned long get_nr_dirty_pages(void)
1063 {
1064 return global_node_page_state(NR_FILE_DIRTY) +
1065 global_node_page_state(NR_UNSTABLE_NFS) +
1066 get_nr_dirty_inodes();
1067 }
1068
1069 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1070 {
1071 if (!wb_has_dirty_io(wb))
1072 return;
1073
1074 /*
1075 * All callers of this function want to start writeback of all
1076 * dirty pages. Places like vmscan can call this at a very
1077 * high frequency, causing pointless allocations of tons of
1078 * work items and keeping the flusher threads busy retrieving
1079 * that work. Ensure that we only allow one of them pending and
1080 * inflight at the time.
1081 */
1082 if (test_bit(WB_start_all, &wb->state) ||
1083 test_and_set_bit(WB_start_all, &wb->state))
1084 return;
1085
1086 wb->start_all_reason = reason;
1087 wb_wakeup(wb);
1088 }
1089
1090 /**
1091 * wb_start_background_writeback - start background writeback
1092 * @wb: bdi_writback to write from
1093 *
1094 * Description:
1095 * This makes sure WB_SYNC_NONE background writeback happens. When
1096 * this function returns, it is only guaranteed that for given wb
1097 * some IO is happening if we are over background dirty threshold.
1098 * Caller need not hold sb s_umount semaphore.
1099 */
1100 void wb_start_background_writeback(struct bdi_writeback *wb)
1101 {
1102 /*
1103 * We just wake up the flusher thread. It will perform background
1104 * writeback as soon as there is no other work to do.
1105 */
1106 trace_writeback_wake_background(wb);
1107 wb_wakeup(wb);
1108 }
1109
1110 /*
1111 * Remove the inode from the writeback list it is on.
1112 */
1113 void inode_io_list_del(struct inode *inode)
1114 {
1115 struct bdi_writeback *wb;
1116
1117 wb = inode_to_wb_and_lock_list(inode);
1118 inode_io_list_del_locked(inode, wb);
1119 spin_unlock(&wb->list_lock);
1120 }
1121
1122 /*
1123 * mark an inode as under writeback on the sb
1124 */
1125 void sb_mark_inode_writeback(struct inode *inode)
1126 {
1127 struct super_block *sb = inode->i_sb;
1128 unsigned long flags;
1129
1130 if (list_empty(&inode->i_wb_list)) {
1131 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1132 if (list_empty(&inode->i_wb_list)) {
1133 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1134 trace_sb_mark_inode_writeback(inode);
1135 }
1136 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1137 }
1138 }
1139
1140 /*
1141 * clear an inode as under writeback on the sb
1142 */
1143 void sb_clear_inode_writeback(struct inode *inode)
1144 {
1145 struct super_block *sb = inode->i_sb;
1146 unsigned long flags;
1147
1148 if (!list_empty(&inode->i_wb_list)) {
1149 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1150 if (!list_empty(&inode->i_wb_list)) {
1151 list_del_init(&inode->i_wb_list);
1152 trace_sb_clear_inode_writeback(inode);
1153 }
1154 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1155 }
1156 }
1157
1158 /*
1159 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1160 * furthest end of its superblock's dirty-inode list.
1161 *
1162 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1163 * already the most-recently-dirtied inode on the b_dirty list. If that is
1164 * the case then the inode must have been redirtied while it was being written
1165 * out and we don't reset its dirtied_when.
1166 */
1167 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1168 {
1169 if (!list_empty(&wb->b_dirty)) {
1170 struct inode *tail;
1171
1172 tail = wb_inode(wb->b_dirty.next);
1173 if (time_before(inode->dirtied_when, tail->dirtied_when))
1174 inode->dirtied_when = jiffies;
1175 }
1176 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1177 }
1178
1179 /*
1180 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1181 */
1182 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1183 {
1184 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1185 }
1186
1187 static void inode_sync_complete(struct inode *inode)
1188 {
1189 inode->i_state &= ~I_SYNC;
1190 /* If inode is clean an unused, put it into LRU now... */
1191 inode_add_lru(inode);
1192 /* Waiters must see I_SYNC cleared before being woken up */
1193 smp_mb();
1194 wake_up_bit(&inode->i_state, __I_SYNC);
1195 }
1196
1197 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1198 {
1199 bool ret = time_after(inode->dirtied_when, t);
1200 #ifndef CONFIG_64BIT
1201 /*
1202 * For inodes being constantly redirtied, dirtied_when can get stuck.
1203 * It _appears_ to be in the future, but is actually in distant past.
1204 * This test is necessary to prevent such wrapped-around relative times
1205 * from permanently stopping the whole bdi writeback.
1206 */
1207 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1208 #endif
1209 return ret;
1210 }
1211
1212 #define EXPIRE_DIRTY_ATIME 0x0001
1213
1214 /*
1215 * Move expired (dirtied before work->older_than_this) dirty inodes from
1216 * @delaying_queue to @dispatch_queue.
1217 */
1218 static int move_expired_inodes(struct list_head *delaying_queue,
1219 struct list_head *dispatch_queue,
1220 int flags,
1221 struct wb_writeback_work *work)
1222 {
1223 unsigned long *older_than_this = NULL;
1224 unsigned long expire_time;
1225 LIST_HEAD(tmp);
1226 struct list_head *pos, *node;
1227 struct super_block *sb = NULL;
1228 struct inode *inode;
1229 int do_sb_sort = 0;
1230 int moved = 0;
1231
1232 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1233 older_than_this = work->older_than_this;
1234 else if (!work->for_sync) {
1235 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1236 older_than_this = &expire_time;
1237 }
1238 while (!list_empty(delaying_queue)) {
1239 inode = wb_inode(delaying_queue->prev);
1240 if (older_than_this &&
1241 inode_dirtied_after(inode, *older_than_this))
1242 break;
1243 list_move(&inode->i_io_list, &tmp);
1244 moved++;
1245 if (flags & EXPIRE_DIRTY_ATIME)
1246 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1247 if (sb_is_blkdev_sb(inode->i_sb))
1248 continue;
1249 if (sb && sb != inode->i_sb)
1250 do_sb_sort = 1;
1251 sb = inode->i_sb;
1252 }
1253
1254 /* just one sb in list, splice to dispatch_queue and we're done */
1255 if (!do_sb_sort) {
1256 list_splice(&tmp, dispatch_queue);
1257 goto out;
1258 }
1259
1260 /* Move inodes from one superblock together */
1261 while (!list_empty(&tmp)) {
1262 sb = wb_inode(tmp.prev)->i_sb;
1263 list_for_each_prev_safe(pos, node, &tmp) {
1264 inode = wb_inode(pos);
1265 if (inode->i_sb == sb)
1266 list_move(&inode->i_io_list, dispatch_queue);
1267 }
1268 }
1269 out:
1270 return moved;
1271 }
1272
1273 /*
1274 * Queue all expired dirty inodes for io, eldest first.
1275 * Before
1276 * newly dirtied b_dirty b_io b_more_io
1277 * =============> gf edc BA
1278 * After
1279 * newly dirtied b_dirty b_io b_more_io
1280 * =============> g fBAedc
1281 * |
1282 * +--> dequeue for IO
1283 */
1284 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1285 {
1286 int moved;
1287
1288 assert_spin_locked(&wb->list_lock);
1289 list_splice_init(&wb->b_more_io, &wb->b_io);
1290 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1291 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1292 EXPIRE_DIRTY_ATIME, work);
1293 if (moved)
1294 wb_io_lists_populated(wb);
1295 trace_writeback_queue_io(wb, work, moved);
1296 }
1297
1298 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1299 {
1300 int ret;
1301
1302 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1303 trace_writeback_write_inode_start(inode, wbc);
1304 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1305 trace_writeback_write_inode(inode, wbc);
1306 return ret;
1307 }
1308 return 0;
1309 }
1310
1311 /*
1312 * Wait for writeback on an inode to complete. Called with i_lock held.
1313 * Caller must make sure inode cannot go away when we drop i_lock.
1314 */
1315 static void __inode_wait_for_writeback(struct inode *inode)
1316 __releases(inode->i_lock)
1317 __acquires(inode->i_lock)
1318 {
1319 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1320 wait_queue_head_t *wqh;
1321
1322 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1323 while (inode->i_state & I_SYNC) {
1324 spin_unlock(&inode->i_lock);
1325 __wait_on_bit(wqh, &wq, bit_wait,
1326 TASK_UNINTERRUPTIBLE);
1327 spin_lock(&inode->i_lock);
1328 }
1329 }
1330
1331 /*
1332 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1333 */
1334 void inode_wait_for_writeback(struct inode *inode)
1335 {
1336 spin_lock(&inode->i_lock);
1337 __inode_wait_for_writeback(inode);
1338 spin_unlock(&inode->i_lock);
1339 }
1340
1341 /*
1342 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1343 * held and drops it. It is aimed for callers not holding any inode reference
1344 * so once i_lock is dropped, inode can go away.
1345 */
1346 static void inode_sleep_on_writeback(struct inode *inode)
1347 __releases(inode->i_lock)
1348 {
1349 DEFINE_WAIT(wait);
1350 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1351 int sleep;
1352
1353 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1354 sleep = inode->i_state & I_SYNC;
1355 spin_unlock(&inode->i_lock);
1356 if (sleep)
1357 schedule();
1358 finish_wait(wqh, &wait);
1359 }
1360
1361 /*
1362 * Find proper writeback list for the inode depending on its current state and
1363 * possibly also change of its state while we were doing writeback. Here we
1364 * handle things such as livelock prevention or fairness of writeback among
1365 * inodes. This function can be called only by flusher thread - noone else
1366 * processes all inodes in writeback lists and requeueing inodes behind flusher
1367 * thread's back can have unexpected consequences.
1368 */
1369 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1370 struct writeback_control *wbc)
1371 {
1372 if (inode->i_state & I_FREEING)
1373 return;
1374
1375 /*
1376 * Sync livelock prevention. Each inode is tagged and synced in one
1377 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1378 * the dirty time to prevent enqueue and sync it again.
1379 */
1380 if ((inode->i_state & I_DIRTY) &&
1381 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1382 inode->dirtied_when = jiffies;
1383
1384 if (wbc->pages_skipped) {
1385 /*
1386 * writeback is not making progress due to locked
1387 * buffers. Skip this inode for now.
1388 */
1389 redirty_tail(inode, wb);
1390 return;
1391 }
1392
1393 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1394 /*
1395 * We didn't write back all the pages. nfs_writepages()
1396 * sometimes bales out without doing anything.
1397 */
1398 if (wbc->nr_to_write <= 0) {
1399 /* Slice used up. Queue for next turn. */
1400 requeue_io(inode, wb);
1401 } else {
1402 /*
1403 * Writeback blocked by something other than
1404 * congestion. Delay the inode for some time to
1405 * avoid spinning on the CPU (100% iowait)
1406 * retrying writeback of the dirty page/inode
1407 * that cannot be performed immediately.
1408 */
1409 redirty_tail(inode, wb);
1410 }
1411 } else if (inode->i_state & I_DIRTY) {
1412 /*
1413 * Filesystems can dirty the inode during writeback operations,
1414 * such as delayed allocation during submission or metadata
1415 * updates after data IO completion.
1416 */
1417 redirty_tail(inode, wb);
1418 } else if (inode->i_state & I_DIRTY_TIME) {
1419 inode->dirtied_when = jiffies;
1420 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1421 } else {
1422 /* The inode is clean. Remove from writeback lists. */
1423 inode_io_list_del_locked(inode, wb);
1424 }
1425 }
1426
1427 /*
1428 * Write out an inode and its dirty pages. Do not update the writeback list
1429 * linkage. That is left to the caller. The caller is also responsible for
1430 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1431 */
1432 static int
1433 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1434 {
1435 struct address_space *mapping = inode->i_mapping;
1436 long nr_to_write = wbc->nr_to_write;
1437 unsigned dirty;
1438 int ret;
1439
1440 WARN_ON(!(inode->i_state & I_SYNC));
1441
1442 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1443
1444 ret = do_writepages(mapping, wbc);
1445
1446 /*
1447 * Make sure to wait on the data before writing out the metadata.
1448 * This is important for filesystems that modify metadata on data
1449 * I/O completion. We don't do it for sync(2) writeback because it has a
1450 * separate, external IO completion path and ->sync_fs for guaranteeing
1451 * inode metadata is written back correctly.
1452 */
1453 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1454 int err = filemap_fdatawait(mapping);
1455 if (ret == 0)
1456 ret = err;
1457 }
1458
1459 /*
1460 * Some filesystems may redirty the inode during the writeback
1461 * due to delalloc, clear dirty metadata flags right before
1462 * write_inode()
1463 */
1464 spin_lock(&inode->i_lock);
1465
1466 dirty = inode->i_state & I_DIRTY;
1467 if (inode->i_state & I_DIRTY_TIME) {
1468 if ((dirty & I_DIRTY_INODE) ||
1469 wbc->sync_mode == WB_SYNC_ALL ||
1470 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1471 unlikely(time_after(jiffies,
1472 (inode->dirtied_time_when +
1473 dirtytime_expire_interval * HZ)))) {
1474 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1475 trace_writeback_lazytime(inode);
1476 }
1477 } else
1478 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1479 inode->i_state &= ~dirty;
1480
1481 /*
1482 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1483 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1484 * either they see the I_DIRTY bits cleared or we see the dirtied
1485 * inode.
1486 *
1487 * I_DIRTY_PAGES is always cleared together above even if @mapping
1488 * still has dirty pages. The flag is reinstated after smp_mb() if
1489 * necessary. This guarantees that either __mark_inode_dirty()
1490 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1491 */
1492 smp_mb();
1493
1494 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1495 inode->i_state |= I_DIRTY_PAGES;
1496
1497 spin_unlock(&inode->i_lock);
1498
1499 if (dirty & I_DIRTY_TIME)
1500 mark_inode_dirty_sync(inode);
1501 /* Don't write the inode if only I_DIRTY_PAGES was set */
1502 if (dirty & ~I_DIRTY_PAGES) {
1503 int err = write_inode(inode, wbc);
1504 if (ret == 0)
1505 ret = err;
1506 }
1507 trace_writeback_single_inode(inode, wbc, nr_to_write);
1508 return ret;
1509 }
1510
1511 /*
1512 * Write out an inode's dirty pages. Either the caller has an active reference
1513 * on the inode or the inode has I_WILL_FREE set.
1514 *
1515 * This function is designed to be called for writing back one inode which
1516 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1517 * and does more profound writeback list handling in writeback_sb_inodes().
1518 */
1519 static int writeback_single_inode(struct inode *inode,
1520 struct writeback_control *wbc)
1521 {
1522 struct bdi_writeback *wb;
1523 int ret = 0;
1524
1525 spin_lock(&inode->i_lock);
1526 if (!atomic_read(&inode->i_count))
1527 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1528 else
1529 WARN_ON(inode->i_state & I_WILL_FREE);
1530
1531 if (inode->i_state & I_SYNC) {
1532 if (wbc->sync_mode != WB_SYNC_ALL)
1533 goto out;
1534 /*
1535 * It's a data-integrity sync. We must wait. Since callers hold
1536 * inode reference or inode has I_WILL_FREE set, it cannot go
1537 * away under us.
1538 */
1539 __inode_wait_for_writeback(inode);
1540 }
1541 WARN_ON(inode->i_state & I_SYNC);
1542 /*
1543 * Skip inode if it is clean and we have no outstanding writeback in
1544 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1545 * function since flusher thread may be doing for example sync in
1546 * parallel and if we move the inode, it could get skipped. So here we
1547 * make sure inode is on some writeback list and leave it there unless
1548 * we have completely cleaned the inode.
1549 */
1550 if (!(inode->i_state & I_DIRTY_ALL) &&
1551 (wbc->sync_mode != WB_SYNC_ALL ||
1552 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1553 goto out;
1554 inode->i_state |= I_SYNC;
1555 wbc_attach_and_unlock_inode(wbc, inode);
1556
1557 ret = __writeback_single_inode(inode, wbc);
1558
1559 wbc_detach_inode(wbc);
1560
1561 wb = inode_to_wb_and_lock_list(inode);
1562 spin_lock(&inode->i_lock);
1563 /*
1564 * If inode is clean, remove it from writeback lists. Otherwise don't
1565 * touch it. See comment above for explanation.
1566 */
1567 if (!(inode->i_state & I_DIRTY_ALL))
1568 inode_io_list_del_locked(inode, wb);
1569 spin_unlock(&wb->list_lock);
1570 inode_sync_complete(inode);
1571 out:
1572 spin_unlock(&inode->i_lock);
1573 return ret;
1574 }
1575
1576 static long writeback_chunk_size(struct bdi_writeback *wb,
1577 struct wb_writeback_work *work)
1578 {
1579 long pages;
1580
1581 /*
1582 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1583 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1584 * here avoids calling into writeback_inodes_wb() more than once.
1585 *
1586 * The intended call sequence for WB_SYNC_ALL writeback is:
1587 *
1588 * wb_writeback()
1589 * writeback_sb_inodes() <== called only once
1590 * write_cache_pages() <== called once for each inode
1591 * (quickly) tag currently dirty pages
1592 * (maybe slowly) sync all tagged pages
1593 */
1594 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1595 pages = LONG_MAX;
1596 else {
1597 pages = min(wb->avg_write_bandwidth / 2,
1598 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1599 pages = min(pages, work->nr_pages);
1600 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1601 MIN_WRITEBACK_PAGES);
1602 }
1603
1604 return pages;
1605 }
1606
1607 /*
1608 * Write a portion of b_io inodes which belong to @sb.
1609 *
1610 * Return the number of pages and/or inodes written.
1611 *
1612 * NOTE! This is called with wb->list_lock held, and will
1613 * unlock and relock that for each inode it ends up doing
1614 * IO for.
1615 */
1616 static long writeback_sb_inodes(struct super_block *sb,
1617 struct bdi_writeback *wb,
1618 struct wb_writeback_work *work)
1619 {
1620 struct writeback_control wbc = {
1621 .sync_mode = work->sync_mode,
1622 .tagged_writepages = work->tagged_writepages,
1623 .for_kupdate = work->for_kupdate,
1624 .for_background = work->for_background,
1625 .for_sync = work->for_sync,
1626 .range_cyclic = work->range_cyclic,
1627 .range_start = 0,
1628 .range_end = LLONG_MAX,
1629 };
1630 unsigned long start_time = jiffies;
1631 long write_chunk;
1632 long wrote = 0; /* count both pages and inodes */
1633
1634 while (!list_empty(&wb->b_io)) {
1635 struct inode *inode = wb_inode(wb->b_io.prev);
1636 struct bdi_writeback *tmp_wb;
1637
1638 if (inode->i_sb != sb) {
1639 if (work->sb) {
1640 /*
1641 * We only want to write back data for this
1642 * superblock, move all inodes not belonging
1643 * to it back onto the dirty list.
1644 */
1645 redirty_tail(inode, wb);
1646 continue;
1647 }
1648
1649 /*
1650 * The inode belongs to a different superblock.
1651 * Bounce back to the caller to unpin this and
1652 * pin the next superblock.
1653 */
1654 break;
1655 }
1656
1657 /*
1658 * Don't bother with new inodes or inodes being freed, first
1659 * kind does not need periodic writeout yet, and for the latter
1660 * kind writeout is handled by the freer.
1661 */
1662 spin_lock(&inode->i_lock);
1663 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1664 spin_unlock(&inode->i_lock);
1665 redirty_tail(inode, wb);
1666 continue;
1667 }
1668 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1669 /*
1670 * If this inode is locked for writeback and we are not
1671 * doing writeback-for-data-integrity, move it to
1672 * b_more_io so that writeback can proceed with the
1673 * other inodes on s_io.
1674 *
1675 * We'll have another go at writing back this inode
1676 * when we completed a full scan of b_io.
1677 */
1678 spin_unlock(&inode->i_lock);
1679 requeue_io(inode, wb);
1680 trace_writeback_sb_inodes_requeue(inode);
1681 continue;
1682 }
1683 spin_unlock(&wb->list_lock);
1684
1685 /*
1686 * We already requeued the inode if it had I_SYNC set and we
1687 * are doing WB_SYNC_NONE writeback. So this catches only the
1688 * WB_SYNC_ALL case.
1689 */
1690 if (inode->i_state & I_SYNC) {
1691 /* Wait for I_SYNC. This function drops i_lock... */
1692 inode_sleep_on_writeback(inode);
1693 /* Inode may be gone, start again */
1694 spin_lock(&wb->list_lock);
1695 continue;
1696 }
1697 inode->i_state |= I_SYNC;
1698 wbc_attach_and_unlock_inode(&wbc, inode);
1699
1700 write_chunk = writeback_chunk_size(wb, work);
1701 wbc.nr_to_write = write_chunk;
1702 wbc.pages_skipped = 0;
1703
1704 /*
1705 * We use I_SYNC to pin the inode in memory. While it is set
1706 * evict_inode() will wait so the inode cannot be freed.
1707 */
1708 __writeback_single_inode(inode, &wbc);
1709
1710 wbc_detach_inode(&wbc);
1711 work->nr_pages -= write_chunk - wbc.nr_to_write;
1712 wrote += write_chunk - wbc.nr_to_write;
1713
1714 if (need_resched()) {
1715 /*
1716 * We're trying to balance between building up a nice
1717 * long list of IOs to improve our merge rate, and
1718 * getting those IOs out quickly for anyone throttling
1719 * in balance_dirty_pages(). cond_resched() doesn't
1720 * unplug, so get our IOs out the door before we
1721 * give up the CPU.
1722 */
1723 blk_flush_plug(current);
1724 cond_resched();
1725 }
1726
1727 /*
1728 * Requeue @inode if still dirty. Be careful as @inode may
1729 * have been switched to another wb in the meantime.
1730 */
1731 tmp_wb = inode_to_wb_and_lock_list(inode);
1732 spin_lock(&inode->i_lock);
1733 if (!(inode->i_state & I_DIRTY_ALL))
1734 wrote++;
1735 requeue_inode(inode, tmp_wb, &wbc);
1736 inode_sync_complete(inode);
1737 spin_unlock(&inode->i_lock);
1738
1739 if (unlikely(tmp_wb != wb)) {
1740 spin_unlock(&tmp_wb->list_lock);
1741 spin_lock(&wb->list_lock);
1742 }
1743
1744 /*
1745 * bail out to wb_writeback() often enough to check
1746 * background threshold and other termination conditions.
1747 */
1748 if (wrote) {
1749 if (time_is_before_jiffies(start_time + HZ / 10UL))
1750 break;
1751 if (work->nr_pages <= 0)
1752 break;
1753 }
1754 }
1755 return wrote;
1756 }
1757
1758 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1759 struct wb_writeback_work *work)
1760 {
1761 unsigned long start_time = jiffies;
1762 long wrote = 0;
1763
1764 while (!list_empty(&wb->b_io)) {
1765 struct inode *inode = wb_inode(wb->b_io.prev);
1766 struct super_block *sb = inode->i_sb;
1767
1768 if (!trylock_super(sb)) {
1769 /*
1770 * trylock_super() may fail consistently due to
1771 * s_umount being grabbed by someone else. Don't use
1772 * requeue_io() to avoid busy retrying the inode/sb.
1773 */
1774 redirty_tail(inode, wb);
1775 continue;
1776 }
1777 wrote += writeback_sb_inodes(sb, wb, work);
1778 up_read(&sb->s_umount);
1779
1780 /* refer to the same tests at the end of writeback_sb_inodes */
1781 if (wrote) {
1782 if (time_is_before_jiffies(start_time + HZ / 10UL))
1783 break;
1784 if (work->nr_pages <= 0)
1785 break;
1786 }
1787 }
1788 /* Leave any unwritten inodes on b_io */
1789 return wrote;
1790 }
1791
1792 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1793 enum wb_reason reason)
1794 {
1795 struct wb_writeback_work work = {
1796 .nr_pages = nr_pages,
1797 .sync_mode = WB_SYNC_NONE,
1798 .range_cyclic = 1,
1799 .reason = reason,
1800 };
1801 struct blk_plug plug;
1802
1803 blk_start_plug(&plug);
1804 spin_lock(&wb->list_lock);
1805 if (list_empty(&wb->b_io))
1806 queue_io(wb, &work);
1807 __writeback_inodes_wb(wb, &work);
1808 spin_unlock(&wb->list_lock);
1809 blk_finish_plug(&plug);
1810
1811 return nr_pages - work.nr_pages;
1812 }
1813
1814 /*
1815 * Explicit flushing or periodic writeback of "old" data.
1816 *
1817 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1818 * dirtying-time in the inode's address_space. So this periodic writeback code
1819 * just walks the superblock inode list, writing back any inodes which are
1820 * older than a specific point in time.
1821 *
1822 * Try to run once per dirty_writeback_interval. But if a writeback event
1823 * takes longer than a dirty_writeback_interval interval, then leave a
1824 * one-second gap.
1825 *
1826 * older_than_this takes precedence over nr_to_write. So we'll only write back
1827 * all dirty pages if they are all attached to "old" mappings.
1828 */
1829 static long wb_writeback(struct bdi_writeback *wb,
1830 struct wb_writeback_work *work)
1831 {
1832 unsigned long wb_start = jiffies;
1833 long nr_pages = work->nr_pages;
1834 unsigned long oldest_jif;
1835 struct inode *inode;
1836 long progress;
1837 struct blk_plug plug;
1838
1839 oldest_jif = jiffies;
1840 work->older_than_this = &oldest_jif;
1841
1842 blk_start_plug(&plug);
1843 spin_lock(&wb->list_lock);
1844 for (;;) {
1845 /*
1846 * Stop writeback when nr_pages has been consumed
1847 */
1848 if (work->nr_pages <= 0)
1849 break;
1850
1851 /*
1852 * Background writeout and kupdate-style writeback may
1853 * run forever. Stop them if there is other work to do
1854 * so that e.g. sync can proceed. They'll be restarted
1855 * after the other works are all done.
1856 */
1857 if ((work->for_background || work->for_kupdate) &&
1858 !list_empty(&wb->work_list))
1859 break;
1860
1861 /*
1862 * For background writeout, stop when we are below the
1863 * background dirty threshold
1864 */
1865 if (work->for_background && !wb_over_bg_thresh(wb))
1866 break;
1867
1868 /*
1869 * Kupdate and background works are special and we want to
1870 * include all inodes that need writing. Livelock avoidance is
1871 * handled by these works yielding to any other work so we are
1872 * safe.
1873 */
1874 if (work->for_kupdate) {
1875 oldest_jif = jiffies -
1876 msecs_to_jiffies(dirty_expire_interval * 10);
1877 } else if (work->for_background)
1878 oldest_jif = jiffies;
1879
1880 trace_writeback_start(wb, work);
1881 if (list_empty(&wb->b_io))
1882 queue_io(wb, work);
1883 if (work->sb)
1884 progress = writeback_sb_inodes(work->sb, wb, work);
1885 else
1886 progress = __writeback_inodes_wb(wb, work);
1887 trace_writeback_written(wb, work);
1888
1889 wb_update_bandwidth(wb, wb_start);
1890
1891 /*
1892 * Did we write something? Try for more
1893 *
1894 * Dirty inodes are moved to b_io for writeback in batches.
1895 * The completion of the current batch does not necessarily
1896 * mean the overall work is done. So we keep looping as long
1897 * as made some progress on cleaning pages or inodes.
1898 */
1899 if (progress)
1900 continue;
1901 /*
1902 * No more inodes for IO, bail
1903 */
1904 if (list_empty(&wb->b_more_io))
1905 break;
1906 /*
1907 * Nothing written. Wait for some inode to
1908 * become available for writeback. Otherwise
1909 * we'll just busyloop.
1910 */
1911 trace_writeback_wait(wb, work);
1912 inode = wb_inode(wb->b_more_io.prev);
1913 spin_lock(&inode->i_lock);
1914 spin_unlock(&wb->list_lock);
1915 /* This function drops i_lock... */
1916 inode_sleep_on_writeback(inode);
1917 spin_lock(&wb->list_lock);
1918 }
1919 spin_unlock(&wb->list_lock);
1920 blk_finish_plug(&plug);
1921
1922 return nr_pages - work->nr_pages;
1923 }
1924
1925 /*
1926 * Return the next wb_writeback_work struct that hasn't been processed yet.
1927 */
1928 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1929 {
1930 struct wb_writeback_work *work = NULL;
1931
1932 spin_lock_bh(&wb->work_lock);
1933 if (!list_empty(&wb->work_list)) {
1934 work = list_entry(wb->work_list.next,
1935 struct wb_writeback_work, list);
1936 list_del_init(&work->list);
1937 }
1938 spin_unlock_bh(&wb->work_lock);
1939 return work;
1940 }
1941
1942 static long wb_check_background_flush(struct bdi_writeback *wb)
1943 {
1944 if (wb_over_bg_thresh(wb)) {
1945
1946 struct wb_writeback_work work = {
1947 .nr_pages = LONG_MAX,
1948 .sync_mode = WB_SYNC_NONE,
1949 .for_background = 1,
1950 .range_cyclic = 1,
1951 .reason = WB_REASON_BACKGROUND,
1952 };
1953
1954 return wb_writeback(wb, &work);
1955 }
1956
1957 return 0;
1958 }
1959
1960 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1961 {
1962 unsigned long expired;
1963 long nr_pages;
1964
1965 /*
1966 * When set to zero, disable periodic writeback
1967 */
1968 if (!dirty_writeback_interval)
1969 return 0;
1970
1971 expired = wb->last_old_flush +
1972 msecs_to_jiffies(dirty_writeback_interval * 10);
1973 if (time_before(jiffies, expired))
1974 return 0;
1975
1976 wb->last_old_flush = jiffies;
1977 nr_pages = get_nr_dirty_pages();
1978
1979 if (nr_pages) {
1980 struct wb_writeback_work work = {
1981 .nr_pages = nr_pages,
1982 .sync_mode = WB_SYNC_NONE,
1983 .for_kupdate = 1,
1984 .range_cyclic = 1,
1985 .reason = WB_REASON_PERIODIC,
1986 };
1987
1988 return wb_writeback(wb, &work);
1989 }
1990
1991 return 0;
1992 }
1993
1994 static long wb_check_start_all(struct bdi_writeback *wb)
1995 {
1996 long nr_pages;
1997
1998 if (!test_bit(WB_start_all, &wb->state))
1999 return 0;
2000
2001 nr_pages = get_nr_dirty_pages();
2002 if (nr_pages) {
2003 struct wb_writeback_work work = {
2004 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2005 .sync_mode = WB_SYNC_NONE,
2006 .range_cyclic = 1,
2007 .reason = wb->start_all_reason,
2008 };
2009
2010 nr_pages = wb_writeback(wb, &work);
2011 }
2012
2013 clear_bit(WB_start_all, &wb->state);
2014 return nr_pages;
2015 }
2016
2017
2018 /*
2019 * Retrieve work items and do the writeback they describe
2020 */
2021 static long wb_do_writeback(struct bdi_writeback *wb)
2022 {
2023 struct wb_writeback_work *work;
2024 long wrote = 0;
2025
2026 set_bit(WB_writeback_running, &wb->state);
2027 while ((work = get_next_work_item(wb)) != NULL) {
2028 trace_writeback_exec(wb, work);
2029 wrote += wb_writeback(wb, work);
2030 finish_writeback_work(wb, work);
2031 }
2032
2033 /*
2034 * Check for a flush-everything request
2035 */
2036 wrote += wb_check_start_all(wb);
2037
2038 /*
2039 * Check for periodic writeback, kupdated() style
2040 */
2041 wrote += wb_check_old_data_flush(wb);
2042 wrote += wb_check_background_flush(wb);
2043 clear_bit(WB_writeback_running, &wb->state);
2044
2045 return wrote;
2046 }
2047
2048 /*
2049 * Handle writeback of dirty data for the device backed by this bdi. Also
2050 * reschedules periodically and does kupdated style flushing.
2051 */
2052 void wb_workfn(struct work_struct *work)
2053 {
2054 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2055 struct bdi_writeback, dwork);
2056 long pages_written;
2057
2058 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
2059 current->flags |= PF_SWAPWRITE;
2060
2061 if (likely(!current_is_workqueue_rescuer() ||
2062 !test_bit(WB_registered, &wb->state))) {
2063 /*
2064 * The normal path. Keep writing back @wb until its
2065 * work_list is empty. Note that this path is also taken
2066 * if @wb is shutting down even when we're running off the
2067 * rescuer as work_list needs to be drained.
2068 */
2069 do {
2070 pages_written = wb_do_writeback(wb);
2071 trace_writeback_pages_written(pages_written);
2072 } while (!list_empty(&wb->work_list));
2073 } else {
2074 /*
2075 * bdi_wq can't get enough workers and we're running off
2076 * the emergency worker. Don't hog it. Hopefully, 1024 is
2077 * enough for efficient IO.
2078 */
2079 pages_written = writeback_inodes_wb(wb, 1024,
2080 WB_REASON_FORKER_THREAD);
2081 trace_writeback_pages_written(pages_written);
2082 }
2083
2084 if (!list_empty(&wb->work_list))
2085 wb_wakeup(wb);
2086 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2087 wb_wakeup_delayed(wb);
2088
2089 current->flags &= ~PF_SWAPWRITE;
2090 }
2091
2092 /*
2093 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2094 * write back the whole world.
2095 */
2096 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2097 enum wb_reason reason)
2098 {
2099 struct bdi_writeback *wb;
2100
2101 if (!bdi_has_dirty_io(bdi))
2102 return;
2103
2104 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2105 wb_start_writeback(wb, reason);
2106 }
2107
2108 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2109 enum wb_reason reason)
2110 {
2111 rcu_read_lock();
2112 __wakeup_flusher_threads_bdi(bdi, reason);
2113 rcu_read_unlock();
2114 }
2115
2116 /*
2117 * Wakeup the flusher threads to start writeback of all currently dirty pages
2118 */
2119 void wakeup_flusher_threads(enum wb_reason reason)
2120 {
2121 struct backing_dev_info *bdi;
2122
2123 /*
2124 * If we are expecting writeback progress we must submit plugged IO.
2125 */
2126 if (blk_needs_flush_plug(current))
2127 blk_schedule_flush_plug(current);
2128
2129 rcu_read_lock();
2130 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2131 __wakeup_flusher_threads_bdi(bdi, reason);
2132 rcu_read_unlock();
2133 }
2134
2135 /*
2136 * Wake up bdi's periodically to make sure dirtytime inodes gets
2137 * written back periodically. We deliberately do *not* check the
2138 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2139 * kernel to be constantly waking up once there are any dirtytime
2140 * inodes on the system. So instead we define a separate delayed work
2141 * function which gets called much more rarely. (By default, only
2142 * once every 12 hours.)
2143 *
2144 * If there is any other write activity going on in the file system,
2145 * this function won't be necessary. But if the only thing that has
2146 * happened on the file system is a dirtytime inode caused by an atime
2147 * update, we need this infrastructure below to make sure that inode
2148 * eventually gets pushed out to disk.
2149 */
2150 static void wakeup_dirtytime_writeback(struct work_struct *w);
2151 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2152
2153 static void wakeup_dirtytime_writeback(struct work_struct *w)
2154 {
2155 struct backing_dev_info *bdi;
2156
2157 rcu_read_lock();
2158 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2159 struct bdi_writeback *wb;
2160
2161 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2162 if (!list_empty(&wb->b_dirty_time))
2163 wb_wakeup(wb);
2164 }
2165 rcu_read_unlock();
2166 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2167 }
2168
2169 static int __init start_dirtytime_writeback(void)
2170 {
2171 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2172 return 0;
2173 }
2174 __initcall(start_dirtytime_writeback);
2175
2176 int dirtytime_interval_handler(struct ctl_table *table, int write,
2177 void __user *buffer, size_t *lenp, loff_t *ppos)
2178 {
2179 int ret;
2180
2181 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2182 if (ret == 0 && write)
2183 mod_delayed_work(system_wq, &dirtytime_work, 0);
2184 return ret;
2185 }
2186
2187 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2188 {
2189 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2190 struct dentry *dentry;
2191 const char *name = "?";
2192
2193 dentry = d_find_alias(inode);
2194 if (dentry) {
2195 spin_lock(&dentry->d_lock);
2196 name = (const char *) dentry->d_name.name;
2197 }
2198 printk(KERN_DEBUG
2199 "%s(%d): dirtied inode %lu (%s) on %s\n",
2200 current->comm, task_pid_nr(current), inode->i_ino,
2201 name, inode->i_sb->s_id);
2202 if (dentry) {
2203 spin_unlock(&dentry->d_lock);
2204 dput(dentry);
2205 }
2206 }
2207 }
2208
2209 /**
2210 * __mark_inode_dirty - internal function
2211 *
2212 * @inode: inode to mark
2213 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2214 *
2215 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2216 * mark_inode_dirty_sync.
2217 *
2218 * Put the inode on the super block's dirty list.
2219 *
2220 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2221 * dirty list only if it is hashed or if it refers to a blockdev.
2222 * If it was not hashed, it will never be added to the dirty list
2223 * even if it is later hashed, as it will have been marked dirty already.
2224 *
2225 * In short, make sure you hash any inodes _before_ you start marking
2226 * them dirty.
2227 *
2228 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2229 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2230 * the kernel-internal blockdev inode represents the dirtying time of the
2231 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2232 * page->mapping->host, so the page-dirtying time is recorded in the internal
2233 * blockdev inode.
2234 */
2235 void __mark_inode_dirty(struct inode *inode, int flags)
2236 {
2237 struct super_block *sb = inode->i_sb;
2238 int dirtytime;
2239
2240 trace_writeback_mark_inode_dirty(inode, flags);
2241
2242 /*
2243 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2244 * dirty the inode itself
2245 */
2246 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2247 trace_writeback_dirty_inode_start(inode, flags);
2248
2249 if (sb->s_op->dirty_inode)
2250 sb->s_op->dirty_inode(inode, flags);
2251
2252 trace_writeback_dirty_inode(inode, flags);
2253 }
2254 if (flags & I_DIRTY_INODE)
2255 flags &= ~I_DIRTY_TIME;
2256 dirtytime = flags & I_DIRTY_TIME;
2257
2258 /*
2259 * Paired with smp_mb() in __writeback_single_inode() for the
2260 * following lockless i_state test. See there for details.
2261 */
2262 smp_mb();
2263
2264 if (((inode->i_state & flags) == flags) ||
2265 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2266 return;
2267
2268 if (unlikely(block_dump))
2269 block_dump___mark_inode_dirty(inode);
2270
2271 spin_lock(&inode->i_lock);
2272 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2273 goto out_unlock_inode;
2274 if ((inode->i_state & flags) != flags) {
2275 const int was_dirty = inode->i_state & I_DIRTY;
2276
2277 inode_attach_wb(inode, NULL);
2278
2279 if (flags & I_DIRTY_INODE)
2280 inode->i_state &= ~I_DIRTY_TIME;
2281 inode->i_state |= flags;
2282
2283 /*
2284 * If the inode is being synced, just update its dirty state.
2285 * The unlocker will place the inode on the appropriate
2286 * superblock list, based upon its state.
2287 */
2288 if (inode->i_state & I_SYNC)
2289 goto out_unlock_inode;
2290
2291 /*
2292 * Only add valid (hashed) inodes to the superblock's
2293 * dirty list. Add blockdev inodes as well.
2294 */
2295 if (!S_ISBLK(inode->i_mode)) {
2296 if (inode_unhashed(inode))
2297 goto out_unlock_inode;
2298 }
2299 if (inode->i_state & I_FREEING)
2300 goto out_unlock_inode;
2301
2302 /*
2303 * If the inode was already on b_dirty/b_io/b_more_io, don't
2304 * reposition it (that would break b_dirty time-ordering).
2305 */
2306 if (!was_dirty) {
2307 struct bdi_writeback *wb;
2308 struct list_head *dirty_list;
2309 bool wakeup_bdi = false;
2310
2311 wb = locked_inode_to_wb_and_lock_list(inode);
2312
2313 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2314 !test_bit(WB_registered, &wb->state),
2315 "bdi-%s not registered\n", wb->bdi->name);
2316
2317 inode->dirtied_when = jiffies;
2318 if (dirtytime)
2319 inode->dirtied_time_when = jiffies;
2320
2321 if (inode->i_state & I_DIRTY)
2322 dirty_list = &wb->b_dirty;
2323 else
2324 dirty_list = &wb->b_dirty_time;
2325
2326 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2327 dirty_list);
2328
2329 spin_unlock(&wb->list_lock);
2330 trace_writeback_dirty_inode_enqueue(inode);
2331
2332 /*
2333 * If this is the first dirty inode for this bdi,
2334 * we have to wake-up the corresponding bdi thread
2335 * to make sure background write-back happens
2336 * later.
2337 */
2338 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2339 wb_wakeup_delayed(wb);
2340 return;
2341 }
2342 }
2343 out_unlock_inode:
2344 spin_unlock(&inode->i_lock);
2345 }
2346 EXPORT_SYMBOL(__mark_inode_dirty);
2347
2348 /*
2349 * The @s_sync_lock is used to serialise concurrent sync operations
2350 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2351 * Concurrent callers will block on the s_sync_lock rather than doing contending
2352 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2353 * has been issued up to the time this function is enter is guaranteed to be
2354 * completed by the time we have gained the lock and waited for all IO that is
2355 * in progress regardless of the order callers are granted the lock.
2356 */
2357 static void wait_sb_inodes(struct super_block *sb)
2358 {
2359 LIST_HEAD(sync_list);
2360
2361 /*
2362 * We need to be protected against the filesystem going from
2363 * r/o to r/w or vice versa.
2364 */
2365 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2366
2367 mutex_lock(&sb->s_sync_lock);
2368
2369 /*
2370 * Splice the writeback list onto a temporary list to avoid waiting on
2371 * inodes that have started writeback after this point.
2372 *
2373 * Use rcu_read_lock() to keep the inodes around until we have a
2374 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2375 * the local list because inodes can be dropped from either by writeback
2376 * completion.
2377 */
2378 rcu_read_lock();
2379 spin_lock_irq(&sb->s_inode_wblist_lock);
2380 list_splice_init(&sb->s_inodes_wb, &sync_list);
2381
2382 /*
2383 * Data integrity sync. Must wait for all pages under writeback, because
2384 * there may have been pages dirtied before our sync call, but which had
2385 * writeout started before we write it out. In which case, the inode
2386 * may not be on the dirty list, but we still have to wait for that
2387 * writeout.
2388 */
2389 while (!list_empty(&sync_list)) {
2390 struct inode *inode = list_first_entry(&sync_list, struct inode,
2391 i_wb_list);
2392 struct address_space *mapping = inode->i_mapping;
2393
2394 /*
2395 * Move each inode back to the wb list before we drop the lock
2396 * to preserve consistency between i_wb_list and the mapping
2397 * writeback tag. Writeback completion is responsible to remove
2398 * the inode from either list once the writeback tag is cleared.
2399 */
2400 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2401
2402 /*
2403 * The mapping can appear untagged while still on-list since we
2404 * do not have the mapping lock. Skip it here, wb completion
2405 * will remove it.
2406 */
2407 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2408 continue;
2409
2410 spin_unlock_irq(&sb->s_inode_wblist_lock);
2411
2412 spin_lock(&inode->i_lock);
2413 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2414 spin_unlock(&inode->i_lock);
2415
2416 spin_lock_irq(&sb->s_inode_wblist_lock);
2417 continue;
2418 }
2419 __iget(inode);
2420 spin_unlock(&inode->i_lock);
2421 rcu_read_unlock();
2422
2423 /*
2424 * We keep the error status of individual mapping so that
2425 * applications can catch the writeback error using fsync(2).
2426 * See filemap_fdatawait_keep_errors() for details.
2427 */
2428 filemap_fdatawait_keep_errors(mapping);
2429
2430 cond_resched();
2431
2432 iput(inode);
2433
2434 rcu_read_lock();
2435 spin_lock_irq(&sb->s_inode_wblist_lock);
2436 }
2437 spin_unlock_irq(&sb->s_inode_wblist_lock);
2438 rcu_read_unlock();
2439 mutex_unlock(&sb->s_sync_lock);
2440 }
2441
2442 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2443 enum wb_reason reason, bool skip_if_busy)
2444 {
2445 struct backing_dev_info *bdi = sb->s_bdi;
2446 DEFINE_WB_COMPLETION(done, bdi);
2447 struct wb_writeback_work work = {
2448 .sb = sb,
2449 .sync_mode = WB_SYNC_NONE,
2450 .tagged_writepages = 1,
2451 .done = &done,
2452 .nr_pages = nr,
2453 .reason = reason,
2454 };
2455
2456 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2457 return;
2458 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2459
2460 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2461 wb_wait_for_completion(&done);
2462 }
2463
2464 /**
2465 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2466 * @sb: the superblock
2467 * @nr: the number of pages to write
2468 * @reason: reason why some writeback work initiated
2469 *
2470 * Start writeback on some inodes on this super_block. No guarantees are made
2471 * on how many (if any) will be written, and this function does not wait
2472 * for IO completion of submitted IO.
2473 */
2474 void writeback_inodes_sb_nr(struct super_block *sb,
2475 unsigned long nr,
2476 enum wb_reason reason)
2477 {
2478 __writeback_inodes_sb_nr(sb, nr, reason, false);
2479 }
2480 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2481
2482 /**
2483 * writeback_inodes_sb - writeback dirty inodes from given super_block
2484 * @sb: the superblock
2485 * @reason: reason why some writeback work was initiated
2486 *
2487 * Start writeback on some inodes on this super_block. No guarantees are made
2488 * on how many (if any) will be written, and this function does not wait
2489 * for IO completion of submitted IO.
2490 */
2491 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2492 {
2493 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2494 }
2495 EXPORT_SYMBOL(writeback_inodes_sb);
2496
2497 /**
2498 * try_to_writeback_inodes_sb - try to start writeback if none underway
2499 * @sb: the superblock
2500 * @reason: reason why some writeback work was initiated
2501 *
2502 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2503 */
2504 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2505 {
2506 if (!down_read_trylock(&sb->s_umount))
2507 return;
2508
2509 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2510 up_read(&sb->s_umount);
2511 }
2512 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2513
2514 /**
2515 * sync_inodes_sb - sync sb inode pages
2516 * @sb: the superblock
2517 *
2518 * This function writes and waits on any dirty inode belonging to this
2519 * super_block.
2520 */
2521 void sync_inodes_sb(struct super_block *sb)
2522 {
2523 struct backing_dev_info *bdi = sb->s_bdi;
2524 DEFINE_WB_COMPLETION(done, bdi);
2525 struct wb_writeback_work work = {
2526 .sb = sb,
2527 .sync_mode = WB_SYNC_ALL,
2528 .nr_pages = LONG_MAX,
2529 .range_cyclic = 0,
2530 .done = &done,
2531 .reason = WB_REASON_SYNC,
2532 .for_sync = 1,
2533 };
2534
2535 /*
2536 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2537 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2538 * bdi_has_dirty() need to be written out too.
2539 */
2540 if (bdi == &noop_backing_dev_info)
2541 return;
2542 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2543
2544 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2545 bdi_down_write_wb_switch_rwsem(bdi);
2546 bdi_split_work_to_wbs(bdi, &work, false);
2547 wb_wait_for_completion(&done);
2548 bdi_up_write_wb_switch_rwsem(bdi);
2549
2550 wait_sb_inodes(sb);
2551 }
2552 EXPORT_SYMBOL(sync_inodes_sb);
2553
2554 /**
2555 * write_inode_now - write an inode to disk
2556 * @inode: inode to write to disk
2557 * @sync: whether the write should be synchronous or not
2558 *
2559 * This function commits an inode to disk immediately if it is dirty. This is
2560 * primarily needed by knfsd.
2561 *
2562 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2563 */
2564 int write_inode_now(struct inode *inode, int sync)
2565 {
2566 struct writeback_control wbc = {
2567 .nr_to_write = LONG_MAX,
2568 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2569 .range_start = 0,
2570 .range_end = LLONG_MAX,
2571 };
2572
2573 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2574 wbc.nr_to_write = 0;
2575
2576 might_sleep();
2577 return writeback_single_inode(inode, &wbc);
2578 }
2579 EXPORT_SYMBOL(write_inode_now);
2580
2581 /**
2582 * sync_inode - write an inode and its pages to disk.
2583 * @inode: the inode to sync
2584 * @wbc: controls the writeback mode
2585 *
2586 * sync_inode() will write an inode and its pages to disk. It will also
2587 * correctly update the inode on its superblock's dirty inode lists and will
2588 * update inode->i_state.
2589 *
2590 * The caller must have a ref on the inode.
2591 */
2592 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2593 {
2594 return writeback_single_inode(inode, wbc);
2595 }
2596 EXPORT_SYMBOL(sync_inode);
2597
2598 /**
2599 * sync_inode_metadata - write an inode to disk
2600 * @inode: the inode to sync
2601 * @wait: wait for I/O to complete.
2602 *
2603 * Write an inode to disk and adjust its dirty state after completion.
2604 *
2605 * Note: only writes the actual inode, no associated data or other metadata.
2606 */
2607 int sync_inode_metadata(struct inode *inode, int wait)
2608 {
2609 struct writeback_control wbc = {
2610 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2611 .nr_to_write = 0, /* metadata-only */
2612 };
2613
2614 return sync_inode(inode, &wbc);
2615 }
2616 EXPORT_SYMBOL(sync_inode_metadata);