ath25: switch default kernel to 5.15
[openwrt/openwrt.git] / target / linux / realtek / files-5.10 / drivers / net / dsa / rtl83xx / rtl838x.c
1 // SPDX-License-Identifier: GPL-2.0-only
2
3 #include <asm/mach-rtl838x/mach-rtl83xx.h>
4 #include <linux/iopoll.h>
5 #include <net/nexthop.h>
6
7 #include "rtl83xx.h"
8
9 #define RTL838X_VLAN_PORT_TAG_STS_UNTAG 0x0
10 #define RTL838X_VLAN_PORT_TAG_STS_TAGGED 0x1
11 #define RTL838X_VLAN_PORT_TAG_STS_PRIORITY_TAGGED 0x2
12
13 #define RTL838X_VLAN_PORT_TAG_STS_CTRL_BASE 0xA530
14 /* port 0-28 */
15 #define RTL838X_VLAN_PORT_TAG_STS_CTRL(port) \
16 RTL838X_VLAN_PORT_TAG_STS_CTRL_BASE + (port << 2)
17
18 #define RTL838X_VLAN_PORT_TAG_STS_CTRL_EGR_P_OTAG_KEEP_MASK GENMASK(11,10)
19 #define RTL838X_VLAN_PORT_TAG_STS_CTRL_EGR_P_ITAG_KEEP_MASK GENMASK(9,8)
20 #define RTL838X_VLAN_PORT_TAG_STS_CTRL_IGR_P_OTAG_KEEP_MASK GENMASK(7,6)
21 #define RTL838X_VLAN_PORT_TAG_STS_CTRL_IGR_P_ITAG_KEEP_MASK GENMASK(5,4)
22 #define RTL838X_VLAN_PORT_TAG_STS_CTRL_OTAG_STS_MASK GENMASK(3,2)
23 #define RTL838X_VLAN_PORT_TAG_STS_CTRL_ITAG_STS_MASK GENMASK(1,0)
24
25 extern struct mutex smi_lock;
26
27 // see_dal_maple_acl_log2PhyTmplteField and src/app/diag_v2/src/diag_acl.c
28 /* Definition of the RTL838X-specific template field IDs as used in the PIE */
29 enum template_field_id {
30 TEMPLATE_FIELD_SPMMASK = 0,
31 TEMPLATE_FIELD_SPM0 = 1, // Source portmask ports 0-15
32 TEMPLATE_FIELD_SPM1 = 2, // Source portmask ports 16-28
33 TEMPLATE_FIELD_RANGE_CHK = 3,
34 TEMPLATE_FIELD_DMAC0 = 4, // Destination MAC [15:0]
35 TEMPLATE_FIELD_DMAC1 = 5, // Destination MAC [31:16]
36 TEMPLATE_FIELD_DMAC2 = 6, // Destination MAC [47:32]
37 TEMPLATE_FIELD_SMAC0 = 7, // Source MAC [15:0]
38 TEMPLATE_FIELD_SMAC1 = 8, // Source MAC [31:16]
39 TEMPLATE_FIELD_SMAC2 = 9, // Source MAC [47:32]
40 TEMPLATE_FIELD_ETHERTYPE = 10, // Ethernet typ
41 TEMPLATE_FIELD_OTAG = 11, // Outer VLAN tag
42 TEMPLATE_FIELD_ITAG = 12, // Inner VLAN tag
43 TEMPLATE_FIELD_SIP0 = 13, // IPv4 or IPv6 source IP[15:0] or ARP/RARP
44 // source protocol address in header
45 TEMPLATE_FIELD_SIP1 = 14, // IPv4 or IPv6 source IP[31:16] or ARP/RARP
46 TEMPLATE_FIELD_DIP0 = 15, // IPv4 or IPv6 destination IP[15:0]
47 TEMPLATE_FIELD_DIP1 = 16, // IPv4 or IPv6 destination IP[31:16]
48 TEMPLATE_FIELD_IP_TOS_PROTO = 17, // IPv4 TOS/IPv6 traffic class and
49 // IPv4 proto/IPv6 next header fields
50 TEMPLATE_FIELD_L34_HEADER = 18, // packet with extra tag and IPv6 with auth, dest,
51 // frag, route, hop-by-hop option header,
52 // IGMP type, TCP flag
53 TEMPLATE_FIELD_L4_SPORT = 19, // TCP/UDP source port
54 TEMPLATE_FIELD_L4_DPORT = 20, // TCP/UDP destination port
55 TEMPLATE_FIELD_ICMP_IGMP = 21,
56 TEMPLATE_FIELD_IP_RANGE = 22,
57 TEMPLATE_FIELD_FIELD_SELECTOR_VALID = 23, // Field selector mask
58 TEMPLATE_FIELD_FIELD_SELECTOR_0 = 24,
59 TEMPLATE_FIELD_FIELD_SELECTOR_1 = 25,
60 TEMPLATE_FIELD_FIELD_SELECTOR_2 = 26,
61 TEMPLATE_FIELD_FIELD_SELECTOR_3 = 27,
62 TEMPLATE_FIELD_SIP2 = 28, // IPv6 source IP[47:32]
63 TEMPLATE_FIELD_SIP3 = 29, // IPv6 source IP[63:48]
64 TEMPLATE_FIELD_SIP4 = 30, // IPv6 source IP[79:64]
65 TEMPLATE_FIELD_SIP5 = 31, // IPv6 source IP[95:80]
66 TEMPLATE_FIELD_SIP6 = 32, // IPv6 source IP[111:96]
67 TEMPLATE_FIELD_SIP7 = 33, // IPv6 source IP[127:112]
68 TEMPLATE_FIELD_DIP2 = 34, // IPv6 destination IP[47:32]
69 TEMPLATE_FIELD_DIP3 = 35, // IPv6 destination IP[63:48]
70 TEMPLATE_FIELD_DIP4 = 36, // IPv6 destination IP[79:64]
71 TEMPLATE_FIELD_DIP5 = 37, // IPv6 destination IP[95:80]
72 TEMPLATE_FIELD_DIP6 = 38, // IPv6 destination IP[111:96]
73 TEMPLATE_FIELD_DIP7 = 39, // IPv6 destination IP[127:112]
74 TEMPLATE_FIELD_FWD_VID = 40, // Forwarding VLAN-ID
75 TEMPLATE_FIELD_FLOW_LABEL = 41,
76 };
77
78 /*
79 * The RTL838X SoCs use 5 fixed templates with definitions for which data fields are to
80 * be copied from the Ethernet Frame header into the 12 User-definable fields of the Packet
81 * Inspection Engine's buffer. The following defines the field contents for each of the fixed
82 * templates. Additionally, 3 user-definable templates can be set up via the definitions
83 * in RTL838X_ACL_TMPLTE_CTRL control registers.
84 * TODO: See all src/app/diag_v2/src/diag_pie.c
85 */
86 #define N_FIXED_TEMPLATES 5
87 static enum template_field_id fixed_templates[N_FIXED_TEMPLATES][N_FIXED_FIELDS] =
88 {
89 {
90 TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_OTAG,
91 TEMPLATE_FIELD_SMAC0, TEMPLATE_FIELD_SMAC1, TEMPLATE_FIELD_SMAC2,
92 TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
93 TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_ITAG, TEMPLATE_FIELD_RANGE_CHK
94 }, {
95 TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0,
96 TEMPLATE_FIELD_DIP1,TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_L4_SPORT,
97 TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_ITAG,
98 TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1
99 }, {
100 TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
101 TEMPLATE_FIELD_ITAG, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_IP_TOS_PROTO,
102 TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_SIP0,
103 TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1
104 }, {
105 TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_DIP2,
106 TEMPLATE_FIELD_DIP3, TEMPLATE_FIELD_DIP4, TEMPLATE_FIELD_DIP5,
107 TEMPLATE_FIELD_DIP6, TEMPLATE_FIELD_DIP7, TEMPLATE_FIELD_L4_DPORT,
108 TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_IP_TOS_PROTO
109 }, {
110 TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_SIP2,
111 TEMPLATE_FIELD_SIP3, TEMPLATE_FIELD_SIP4, TEMPLATE_FIELD_SIP5,
112 TEMPLATE_FIELD_SIP6, TEMPLATE_FIELD_SIP7, TEMPLATE_FIELD_ITAG,
113 TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1
114 },
115 };
116
117 void rtl838x_print_matrix(void)
118 {
119 unsigned volatile int *ptr8;
120 int i;
121
122 ptr8 = RTL838X_SW_BASE + RTL838X_PORT_ISO_CTRL(0);
123 for (i = 0; i < 28; i += 8)
124 pr_debug("> %8x %8x %8x %8x %8x %8x %8x %8x\n",
125 ptr8[i + 0], ptr8[i + 1], ptr8[i + 2], ptr8[i + 3],
126 ptr8[i + 4], ptr8[i + 5], ptr8[i + 6], ptr8[i + 7]);
127 pr_debug("CPU_PORT> %8x\n", ptr8[28]);
128 }
129
130 static inline int rtl838x_port_iso_ctrl(int p)
131 {
132 return RTL838X_PORT_ISO_CTRL(p);
133 }
134
135 static inline void rtl838x_exec_tbl0_cmd(u32 cmd)
136 {
137 sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_0);
138 do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_0) & BIT(15));
139 }
140
141 static inline void rtl838x_exec_tbl1_cmd(u32 cmd)
142 {
143 sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_1);
144 do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_1) & BIT(15));
145 }
146
147 static inline int rtl838x_tbl_access_data_0(int i)
148 {
149 return RTL838X_TBL_ACCESS_DATA_0(i);
150 }
151
152 static void rtl838x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info)
153 {
154 u32 v;
155 // Read VLAN table (0) via register 0
156 struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 0);
157
158 rtl_table_read(r, vlan);
159 info->tagged_ports = sw_r32(rtl_table_data(r, 0));
160 v = sw_r32(rtl_table_data(r, 1));
161 pr_debug("VLAN_READ %d: %016llx %08x\n", vlan, info->tagged_ports, v);
162 rtl_table_release(r);
163
164 info->profile_id = v & 0x7;
165 info->hash_mc_fid = !!(v & 0x8);
166 info->hash_uc_fid = !!(v & 0x10);
167 info->fid = (v >> 5) & 0x3f;
168
169 // Read UNTAG table (0) via table register 1
170 r = rtl_table_get(RTL8380_TBL_1, 0);
171 rtl_table_read(r, vlan);
172 info->untagged_ports = sw_r32(rtl_table_data(r, 0));
173 rtl_table_release(r);
174 }
175
176 static void rtl838x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info)
177 {
178 u32 v;
179 // Access VLAN table (0) via register 0
180 struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 0);
181
182 sw_w32(info->tagged_ports, rtl_table_data(r, 0));
183
184 v = info->profile_id;
185 v |= info->hash_mc_fid ? 0x8 : 0;
186 v |= info->hash_uc_fid ? 0x10 : 0;
187 v |= ((u32)info->fid) << 5;
188 sw_w32(v, rtl_table_data(r, 1));
189
190 rtl_table_write(r, vlan);
191 rtl_table_release(r);
192 }
193
194 static void rtl838x_vlan_set_untagged(u32 vlan, u64 portmask)
195 {
196 // Access UNTAG table (0) via register 1
197 struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 0);
198
199 sw_w32(portmask & 0x1fffffff, rtl_table_data(r, 0));
200 rtl_table_write(r, vlan);
201 rtl_table_release(r);
202 }
203
204 /* Sets the L2 forwarding to be based on either the inner VLAN tag or the outer
205 */
206 static void rtl838x_vlan_fwd_on_inner(int port, bool is_set)
207 {
208 if (is_set)
209 sw_w32_mask(BIT(port), 0, RTL838X_VLAN_PORT_FWD);
210 else
211 sw_w32_mask(0, BIT(port), RTL838X_VLAN_PORT_FWD);
212 }
213
214 static u64 rtl838x_l2_hash_seed(u64 mac, u32 vid)
215 {
216 return mac << 12 | vid;
217 }
218
219 /*
220 * Applies the same hash algorithm as the one used currently by the ASIC to the seed
221 * and returns a key into the L2 hash table
222 */
223 static u32 rtl838x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed)
224 {
225 u32 h1, h2, h3, h;
226
227 if (sw_r32(priv->r->l2_ctrl_0) & 1) {
228 h1 = (seed >> 11) & 0x7ff;
229 h1 = ((h1 & 0x1f) << 6) | ((h1 >> 5) & 0x3f);
230
231 h2 = (seed >> 33) & 0x7ff;
232 h2 = ((h2 & 0x3f) << 5) | ((h2 >> 6) & 0x1f);
233
234 h3 = (seed >> 44) & 0x7ff;
235 h3 = ((h3 & 0x7f) << 4) | ((h3 >> 7) & 0xf);
236
237 h = h1 ^ h2 ^ h3 ^ ((seed >> 55) & 0x1ff);
238 h ^= ((seed >> 22) & 0x7ff) ^ (seed & 0x7ff);
239 } else {
240 h = ((seed >> 55) & 0x1ff) ^ ((seed >> 44) & 0x7ff)
241 ^ ((seed >> 33) & 0x7ff) ^ ((seed >> 22) & 0x7ff)
242 ^ ((seed >> 11) & 0x7ff) ^ (seed & 0x7ff);
243 }
244
245 return h;
246 }
247
248 static inline int rtl838x_mac_force_mode_ctrl(int p)
249 {
250 return RTL838X_MAC_FORCE_MODE_CTRL + (p << 2);
251 }
252
253 static inline int rtl838x_mac_port_ctrl(int p)
254 {
255 return RTL838X_MAC_PORT_CTRL(p);
256 }
257
258 static inline int rtl838x_l2_port_new_salrn(int p)
259 {
260 return RTL838X_L2_PORT_NEW_SALRN(p);
261 }
262
263 static inline int rtl838x_l2_port_new_sa_fwd(int p)
264 {
265 return RTL838X_L2_PORT_NEW_SA_FWD(p);
266 }
267
268 static inline int rtl838x_mac_link_spd_sts(int p)
269 {
270 return RTL838X_MAC_LINK_SPD_STS(p);
271 }
272
273 inline static int rtl838x_trk_mbr_ctr(int group)
274 {
275 return RTL838X_TRK_MBR_CTR + (group << 2);
276 }
277
278 /*
279 * Fills an L2 entry structure from the SoC registers
280 */
281 static void rtl838x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
282 {
283 /* Table contains different entry types, we need to identify the right one:
284 * Check for MC entries, first
285 * In contrast to the RTL93xx SoCs, there is no valid bit, use heuristics to
286 * identify valid entries
287 */
288 e->is_ip_mc = !!(r[0] & BIT(22));
289 e->is_ipv6_mc = !!(r[0] & BIT(21));
290 e->type = L2_INVALID;
291
292 if (!e->is_ip_mc && !e->is_ipv6_mc) {
293 e->mac[0] = (r[1] >> 20);
294 e->mac[1] = (r[1] >> 12);
295 e->mac[2] = (r[1] >> 4);
296 e->mac[3] = (r[1] & 0xf) << 4 | (r[2] >> 28);
297 e->mac[4] = (r[2] >> 20);
298 e->mac[5] = (r[2] >> 12);
299
300 e->rvid = r[2] & 0xfff;
301 e->vid = r[0] & 0xfff;
302
303 /* Is it a unicast entry? check multicast bit */
304 if (!(e->mac[0] & 1)) {
305 e->is_static = !!((r[0] >> 19) & 1);
306 e->port = (r[0] >> 12) & 0x1f;
307 e->block_da = !!(r[1] & BIT(30));
308 e->block_sa = !!(r[1] & BIT(31));
309 e->suspended = !!(r[1] & BIT(29));
310 e->next_hop = !!(r[1] & BIT(28));
311 if (e->next_hop) {
312 pr_debug("Found next hop entry, need to read extra data\n");
313 e->nh_vlan_target = !!(r[0] & BIT(9));
314 e->nh_route_id = r[0] & 0x1ff;
315 e->vid = e->rvid;
316 }
317 e->age = (r[0] >> 17) & 0x3;
318 e->valid = true;
319
320 /* A valid entry has one of mutli-cast, aging, sa/da-blocking,
321 * next-hop or static entry bit set */
322 if (!(r[0] & 0x007c0000) && !(r[1] & 0xd0000000))
323 e->valid = false;
324 else
325 e->type = L2_UNICAST;
326 } else { // L2 multicast
327 pr_debug("Got L2 MC entry: %08x %08x %08x\n", r[0], r[1], r[2]);
328 e->valid = true;
329 e->type = L2_MULTICAST;
330 e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
331 }
332 } else { // IPv4 and IPv6 multicast
333 e->valid = true;
334 e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
335 e->mc_gip = (r[1] << 20) | (r[2] >> 12);
336 e->rvid = r[2] & 0xfff;
337 }
338 if (e->is_ip_mc)
339 e->type = IP4_MULTICAST;
340 if (e->is_ipv6_mc)
341 e->type = IP6_MULTICAST;
342 }
343
344 /*
345 * Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry
346 */
347 static void rtl838x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
348 {
349 u64 mac = ether_addr_to_u64(e->mac);
350
351 if (!e->valid) {
352 r[0] = r[1] = r[2] = 0;
353 return;
354 }
355
356 r[0] = e->is_ip_mc ? BIT(22) : 0;
357 r[0] |= e->is_ipv6_mc ? BIT(21) : 0;
358
359 if (!e->is_ip_mc && !e->is_ipv6_mc) {
360 r[1] = mac >> 20;
361 r[2] = (mac & 0xfffff) << 12;
362
363 /* Is it a unicast entry? check multicast bit */
364 if (!(e->mac[0] & 1)) {
365 r[0] |= e->is_static ? BIT(19) : 0;
366 r[0] |= (e->port & 0x3f) << 12;
367 r[0] |= e->vid;
368 r[1] |= e->block_da ? BIT(30) : 0;
369 r[1] |= e->block_sa ? BIT(31) : 0;
370 r[1] |= e->suspended ? BIT(29) : 0;
371 r[2] |= e->rvid & 0xfff;
372 if (e->next_hop) {
373 r[1] |= BIT(28);
374 r[0] |= e->nh_vlan_target ? BIT(9) : 0;
375 r[0] |= e->nh_route_id & 0x1ff;
376 }
377 r[0] |= (e->age & 0x3) << 17;
378 } else { // L2 Multicast
379 r[0] |= (e->mc_portmask_index & 0x1ff) << 12;
380 r[2] |= e->rvid & 0xfff;
381 r[0] |= e->vid & 0xfff;
382 pr_debug("FILL MC: %08x %08x %08x\n", r[0], r[1], r[2]);
383 }
384 } else { // IPv4 and IPv6 multicast
385 r[0] |= (e->mc_portmask_index & 0x1ff) << 12;
386 r[1] = e->mc_gip >> 20;
387 r[2] = e->mc_gip << 12;
388 r[2] |= e->rvid;
389 }
390 }
391
392 /*
393 * Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table
394 * hash is the id of the bucket and pos is the position of the entry in that bucket
395 * The data read from the SoC is filled into rtl838x_l2_entry
396 */
397 static u64 rtl838x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
398 {
399 u64 entry;
400 u32 r[3];
401 struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 0); // Access L2 Table 0
402 u32 idx = (0 << 14) | (hash << 2) | pos; // Search SRAM, with hash and at pos in bucket
403 int i;
404
405 rtl_table_read(q, idx);
406 for (i= 0; i < 3; i++)
407 r[i] = sw_r32(rtl_table_data(q, i));
408
409 rtl_table_release(q);
410
411 rtl838x_fill_l2_entry(r, e);
412 if (!e->valid)
413 return 0;
414
415 entry = (((u64) r[1]) << 32) | (r[2]); // mac and vid concatenated as hash seed
416 return entry;
417 }
418
419 static void rtl838x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
420 {
421 u32 r[3];
422 struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 0);
423 int i;
424
425 u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket
426
427 rtl838x_fill_l2_row(r, e);
428
429 for (i= 0; i < 3; i++)
430 sw_w32(r[i], rtl_table_data(q, i));
431
432 rtl_table_write(q, idx);
433 rtl_table_release(q);
434 }
435
436 static u64 rtl838x_read_cam(int idx, struct rtl838x_l2_entry *e)
437 {
438 u64 entry;
439 u32 r[3];
440 struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 1); // Access L2 Table 1
441 int i;
442
443 rtl_table_read(q, idx);
444 for (i= 0; i < 3; i++)
445 r[i] = sw_r32(rtl_table_data(q, i));
446
447 rtl_table_release(q);
448
449 rtl838x_fill_l2_entry(r, e);
450 if (!e->valid)
451 return 0;
452
453 pr_debug("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);
454
455 // Return MAC with concatenated VID ac concatenated ID
456 entry = (((u64) r[1]) << 32) | r[2];
457 return entry;
458 }
459
460 static void rtl838x_write_cam(int idx, struct rtl838x_l2_entry *e)
461 {
462 u32 r[3];
463 struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 1); // Access L2 Table 1
464 int i;
465
466 rtl838x_fill_l2_row(r, e);
467
468 for (i= 0; i < 3; i++)
469 sw_w32(r[i], rtl_table_data(q, i));
470
471 rtl_table_write(q, idx);
472 rtl_table_release(q);
473 }
474
475 static u64 rtl838x_read_mcast_pmask(int idx)
476 {
477 u32 portmask;
478 // Read MC_PMSK (2) via register RTL8380_TBL_L2
479 struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 2);
480
481 rtl_table_read(q, idx);
482 portmask = sw_r32(rtl_table_data(q, 0));
483 rtl_table_release(q);
484
485 return portmask;
486 }
487
488 static void rtl838x_write_mcast_pmask(int idx, u64 portmask)
489 {
490 // Access MC_PMSK (2) via register RTL8380_TBL_L2
491 struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 2);
492
493 sw_w32(((u32)portmask) & 0x1fffffff, rtl_table_data(q, 0));
494 rtl_table_write(q, idx);
495 rtl_table_release(q);
496 }
497
498 static void rtl838x_vlan_profile_setup(int profile)
499 {
500 u32 pmask_id = UNKNOWN_MC_PMASK;
501 // Enable L2 Learning BIT 0, portmask UNKNOWN_MC_PMASK for unknown MC traffic flooding
502 u32 p = 1 | pmask_id << 1 | pmask_id << 10 | pmask_id << 19;
503
504 sw_w32(p, RTL838X_VLAN_PROFILE(profile));
505
506 /* RTL8380 and RTL8390 use an index into the portmask table to set the
507 * unknown multicast portmask, setup a default at a safe location
508 * On RTL93XX, the portmask is directly set in the profile,
509 * see e.g. rtl9300_vlan_profile_setup
510 */
511 rtl838x_write_mcast_pmask(UNKNOWN_MC_PMASK, 0x1fffffff);
512 }
513
514 static void rtl838x_l2_learning_setup(void)
515 {
516 /* Set portmask for broadcast traffic and unknown unicast address flooding
517 * to the reserved entry in the portmask table used also for
518 * multicast flooding */
519 sw_w32(UNKNOWN_MC_PMASK << 12 | UNKNOWN_MC_PMASK, RTL838X_L2_FLD_PMSK);
520
521 /* Enable learning constraint system-wide (bit 0), per-port (bit 1)
522 * and per vlan (bit 2) */
523 sw_w32(0x7, RTL838X_L2_LRN_CONSTRT_EN);
524
525 // Limit learning to maximum: 16k entries, after that just flood (bits 0-1)
526 sw_w32((0x3fff << 2) | 0, RTL838X_L2_LRN_CONSTRT);
527
528 // Do not trap ARP packets to CPU_PORT
529 sw_w32(0, RTL838X_SPCL_TRAP_ARP_CTRL);
530 }
531
532 static void rtl838x_enable_learning(int port, bool enable)
533 {
534 // Limit learning to maximum: 16k entries
535
536 sw_w32_mask(0x3fff << 2, enable ? (0x3fff << 2) : 0,
537 RTL838X_L2_PORT_LRN_CONSTRT + (port << 2));
538 }
539
540 static void rtl838x_enable_flood(int port, bool enable)
541 {
542 /*
543 * 0: Forward
544 * 1: Disable
545 * 2: to CPU
546 * 3: Copy to CPU
547 */
548 sw_w32_mask(0x3, enable ? 0 : 1,
549 RTL838X_L2_PORT_LRN_CONSTRT + (port << 2));
550 }
551
552 static void rtl838x_enable_mcast_flood(int port, bool enable)
553 {
554
555 }
556
557 static void rtl838x_enable_bcast_flood(int port, bool enable)
558 {
559
560 }
561
562 static void rtl838x_set_static_move_action(int port, bool forward)
563 {
564 int shift = MV_ACT_PORT_SHIFT(port);
565 u32 val = forward ? MV_ACT_FORWARD : MV_ACT_DROP;
566
567 sw_w32_mask(MV_ACT_MASK << shift, val << shift,
568 RTL838X_L2_PORT_STATIC_MV_ACT(port));
569 }
570
571 static void rtl838x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
572 {
573 int i;
574 u32 cmd = 1 << 15 /* Execute cmd */
575 | 1 << 14 /* Read */
576 | 2 << 12 /* Table type 0b10 */
577 | (msti & 0xfff);
578 priv->r->exec_tbl0_cmd(cmd);
579
580 for (i = 0; i < 2; i++)
581 port_state[i] = sw_r32(priv->r->tbl_access_data_0(i));
582 }
583
584 static void rtl838x_stp_set(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
585 {
586 int i;
587 u32 cmd = 1 << 15 /* Execute cmd */
588 | 0 << 14 /* Write */
589 | 2 << 12 /* Table type 0b10 */
590 | (msti & 0xfff);
591
592 for (i = 0; i < 2; i++)
593 sw_w32(port_state[i], priv->r->tbl_access_data_0(i));
594 priv->r->exec_tbl0_cmd(cmd);
595 }
596
597 u64 rtl838x_traffic_get(int source)
598 {
599 return rtl838x_get_port_reg(rtl838x_port_iso_ctrl(source));
600 }
601
602 void rtl838x_traffic_set(int source, u64 dest_matrix)
603 {
604 rtl838x_set_port_reg(dest_matrix, rtl838x_port_iso_ctrl(source));
605 }
606
607 void rtl838x_traffic_enable(int source, int dest)
608 {
609 rtl838x_mask_port_reg(0, BIT(dest), rtl838x_port_iso_ctrl(source));
610 }
611
612 void rtl838x_traffic_disable(int source, int dest)
613 {
614 rtl838x_mask_port_reg(BIT(dest), 0, rtl838x_port_iso_ctrl(source));
615 }
616
617 /*
618 * Enables or disables the EEE/EEEP capability of a port
619 */
620 static void rtl838x_port_eee_set(struct rtl838x_switch_priv *priv, int port, bool enable)
621 {
622 u32 v;
623
624 // This works only for Ethernet ports, and on the RTL838X, ports from 24 are SFP
625 if (port >= 24)
626 return;
627
628 pr_debug("In %s: setting port %d to %d\n", __func__, port, enable);
629 v = enable ? 0x3 : 0x0;
630
631 // Set EEE state for 100 (bit 9) & 1000MBit (bit 10)
632 sw_w32_mask(0x3 << 9, v << 9, priv->r->mac_force_mode_ctrl(port));
633
634 // Set TX/RX EEE state
635 if (enable) {
636 sw_w32_mask(0, BIT(port), RTL838X_EEE_PORT_TX_EN);
637 sw_w32_mask(0, BIT(port), RTL838X_EEE_PORT_RX_EN);
638 } else {
639 sw_w32_mask(BIT(port), 0, RTL838X_EEE_PORT_TX_EN);
640 sw_w32_mask(BIT(port), 0, RTL838X_EEE_PORT_RX_EN);
641 }
642 priv->ports[port].eee_enabled = enable;
643 }
644
645
646 /*
647 * Get EEE own capabilities and negotiation result
648 */
649 static int rtl838x_eee_port_ability(struct rtl838x_switch_priv *priv,
650 struct ethtool_eee *e, int port)
651 {
652 u64 link;
653
654 if (port >= 24)
655 return 0;
656
657 link = rtl839x_get_port_reg_le(RTL838X_MAC_LINK_STS);
658 if (!(link & BIT(port)))
659 return 0;
660
661 if (sw_r32(rtl838x_mac_force_mode_ctrl(port)) & BIT(9))
662 e->advertised |= ADVERTISED_100baseT_Full;
663
664 if (sw_r32(rtl838x_mac_force_mode_ctrl(port)) & BIT(10))
665 e->advertised |= ADVERTISED_1000baseT_Full;
666
667 if (sw_r32(RTL838X_MAC_EEE_ABLTY) & BIT(port)) {
668 e->lp_advertised = ADVERTISED_100baseT_Full;
669 e->lp_advertised |= ADVERTISED_1000baseT_Full;
670 return 1;
671 }
672
673 return 0;
674 }
675
676 static void rtl838x_init_eee(struct rtl838x_switch_priv *priv, bool enable)
677 {
678 int i;
679
680 pr_info("Setting up EEE, state: %d\n", enable);
681 sw_w32_mask(0x4, 0, RTL838X_SMI_GLB_CTRL);
682
683 /* Set timers for EEE */
684 sw_w32(0x5001411, RTL838X_EEE_TX_TIMER_GIGA_CTRL);
685 sw_w32(0x5001417, RTL838X_EEE_TX_TIMER_GELITE_CTRL);
686
687 // Enable EEE MAC support on ports
688 for (i = 0; i < priv->cpu_port; i++) {
689 if (priv->ports[i].phy)
690 rtl838x_port_eee_set(priv, i, enable);
691 }
692 priv->eee_enabled = enable;
693 }
694
695 static void rtl838x_pie_lookup_enable(struct rtl838x_switch_priv *priv, int index)
696 {
697 int block = index / PIE_BLOCK_SIZE;
698 u32 block_state = sw_r32(RTL838X_ACL_BLK_LOOKUP_CTRL);
699
700 // Make sure rule-lookup is enabled in the block
701 if (!(block_state & BIT(block)))
702 sw_w32(block_state | BIT(block), RTL838X_ACL_BLK_LOOKUP_CTRL);
703 }
704
705 static void rtl838x_pie_rule_del(struct rtl838x_switch_priv *priv, int index_from, int index_to)
706 {
707 int block_from = index_from / PIE_BLOCK_SIZE;
708 int block_to = index_to / PIE_BLOCK_SIZE;
709 u32 v = (index_from << 1)| (index_to << 12 ) | BIT(0);
710 int block;
711 u32 block_state;
712
713 pr_debug("%s: from %d to %d\n", __func__, index_from, index_to);
714 mutex_lock(&priv->reg_mutex);
715
716 // Remember currently active blocks
717 block_state = sw_r32(RTL838X_ACL_BLK_LOOKUP_CTRL);
718
719 // Make sure rule-lookup is disabled in the relevant blocks
720 for (block = block_from; block <= block_to; block++) {
721 if (block_state & BIT(block))
722 sw_w32(block_state & (~BIT(block)), RTL838X_ACL_BLK_LOOKUP_CTRL);
723 }
724
725 // Write from-to and execute bit into control register
726 sw_w32(v, RTL838X_ACL_CLR_CTRL);
727
728 // Wait until command has completed
729 do {
730 } while (sw_r32(RTL838X_ACL_CLR_CTRL) & BIT(0));
731
732 // Re-enable rule lookup
733 for (block = block_from; block <= block_to; block++) {
734 if (!(block_state & BIT(block)))
735 sw_w32(block_state | BIT(block), RTL838X_ACL_BLK_LOOKUP_CTRL);
736 }
737
738 mutex_unlock(&priv->reg_mutex);
739 }
740
741 /*
742 * Reads the intermediate representation of the templated match-fields of the
743 * PIE rule in the pie_rule structure and fills in the raw data fields in the
744 * raw register space r[].
745 * The register space configuration size is identical for the RTL8380/90 and RTL9300,
746 * however the RTL9310 has 2 more registers / fields and the physical field-ids
747 * are specific to every platform.
748 */
749 static void rtl838x_write_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
750 {
751 int i;
752 enum template_field_id field_type;
753 u16 data, data_m;
754
755 for (i = 0; i < N_FIXED_FIELDS; i++) {
756 field_type = t[i];
757 data = data_m = 0;
758
759 switch (field_type) {
760 case TEMPLATE_FIELD_SPM0:
761 data = pr->spm;
762 data_m = pr->spm_m;
763 break;
764 case TEMPLATE_FIELD_SPM1:
765 data = pr->spm >> 16;
766 data_m = pr->spm_m >> 16;
767 break;
768 case TEMPLATE_FIELD_OTAG:
769 data = pr->otag;
770 data_m = pr->otag_m;
771 break;
772 case TEMPLATE_FIELD_SMAC0:
773 data = pr->smac[4];
774 data = (data << 8) | pr->smac[5];
775 data_m = pr->smac_m[4];
776 data_m = (data_m << 8) | pr->smac_m[5];
777 break;
778 case TEMPLATE_FIELD_SMAC1:
779 data = pr->smac[2];
780 data = (data << 8) | pr->smac[3];
781 data_m = pr->smac_m[2];
782 data_m = (data_m << 8) | pr->smac_m[3];
783 break;
784 case TEMPLATE_FIELD_SMAC2:
785 data = pr->smac[0];
786 data = (data << 8) | pr->smac[1];
787 data_m = pr->smac_m[0];
788 data_m = (data_m << 8) | pr->smac_m[1];
789 break;
790 case TEMPLATE_FIELD_DMAC0:
791 data = pr->dmac[4];
792 data = (data << 8) | pr->dmac[5];
793 data_m = pr->dmac_m[4];
794 data_m = (data_m << 8) | pr->dmac_m[5];
795 break;
796 case TEMPLATE_FIELD_DMAC1:
797 data = pr->dmac[2];
798 data = (data << 8) | pr->dmac[3];
799 data_m = pr->dmac_m[2];
800 data_m = (data_m << 8) | pr->dmac_m[3];
801 break;
802 case TEMPLATE_FIELD_DMAC2:
803 data = pr->dmac[0];
804 data = (data << 8) | pr->dmac[1];
805 data_m = pr->dmac_m[0];
806 data_m = (data_m << 8) | pr->dmac_m[1];
807 break;
808 case TEMPLATE_FIELD_ETHERTYPE:
809 data = pr->ethertype;
810 data_m = pr->ethertype_m;
811 break;
812 case TEMPLATE_FIELD_ITAG:
813 data = pr->itag;
814 data_m = pr->itag_m;
815 break;
816 case TEMPLATE_FIELD_RANGE_CHK:
817 data = pr->field_range_check;
818 data_m = pr->field_range_check_m;
819 break;
820 case TEMPLATE_FIELD_SIP0:
821 if (pr->is_ipv6) {
822 data = pr->sip6.s6_addr16[7];
823 data_m = pr->sip6_m.s6_addr16[7];
824 } else {
825 data = pr->sip;
826 data_m = pr->sip_m;
827 }
828 break;
829 case TEMPLATE_FIELD_SIP1:
830 if (pr->is_ipv6) {
831 data = pr->sip6.s6_addr16[6];
832 data_m = pr->sip6_m.s6_addr16[6];
833 } else {
834 data = pr->sip >> 16;
835 data_m = pr->sip_m >> 16;
836 }
837 break;
838
839 case TEMPLATE_FIELD_SIP2:
840 case TEMPLATE_FIELD_SIP3:
841 case TEMPLATE_FIELD_SIP4:
842 case TEMPLATE_FIELD_SIP5:
843 case TEMPLATE_FIELD_SIP6:
844 case TEMPLATE_FIELD_SIP7:
845 data = pr->sip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
846 data_m = pr->sip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
847 break;
848
849 case TEMPLATE_FIELD_DIP0:
850 if (pr->is_ipv6) {
851 data = pr->dip6.s6_addr16[7];
852 data_m = pr->dip6_m.s6_addr16[7];
853 } else {
854 data = pr->dip;
855 data_m = pr->dip_m;
856 }
857 break;
858
859 case TEMPLATE_FIELD_DIP1:
860 if (pr->is_ipv6) {
861 data = pr->dip6.s6_addr16[6];
862 data_m = pr->dip6_m.s6_addr16[6];
863 } else {
864 data = pr->dip >> 16;
865 data_m = pr->dip_m >> 16;
866 }
867 break;
868
869 case TEMPLATE_FIELD_DIP2:
870 case TEMPLATE_FIELD_DIP3:
871 case TEMPLATE_FIELD_DIP4:
872 case TEMPLATE_FIELD_DIP5:
873 case TEMPLATE_FIELD_DIP6:
874 case TEMPLATE_FIELD_DIP7:
875 data = pr->dip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
876 data_m = pr->dip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
877 break;
878
879 case TEMPLATE_FIELD_IP_TOS_PROTO:
880 data = pr->tos_proto;
881 data_m = pr->tos_proto_m;
882 break;
883 case TEMPLATE_FIELD_L4_SPORT:
884 data = pr->sport;
885 data_m = pr->sport_m;
886 break;
887 case TEMPLATE_FIELD_L4_DPORT:
888 data = pr->dport;
889 data_m = pr->dport_m;
890 break;
891 case TEMPLATE_FIELD_ICMP_IGMP:
892 data = pr->icmp_igmp;
893 data_m = pr->icmp_igmp_m;
894 break;
895 default:
896 pr_info("%s: unknown field %d\n", __func__, field_type);
897 continue;
898 }
899 if (!(i % 2)) {
900 r[5 - i / 2] = data;
901 r[12 - i / 2] = data_m;
902 } else {
903 r[5 - i / 2] |= ((u32)data) << 16;
904 r[12 - i / 2] |= ((u32)data_m) << 16;
905 }
906 }
907 }
908
909 /*
910 * Creates the intermediate representation of the templated match-fields of the
911 * PIE rule in the pie_rule structure by reading the raw data fields in the
912 * raw register space r[].
913 * The register space configuration size is identical for the RTL8380/90 and RTL9300,
914 * however the RTL9310 has 2 more registers / fields and the physical field-ids
915 */
916 static void rtl838x_read_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
917 {
918 int i;
919 enum template_field_id field_type;
920 u16 data, data_m;
921
922 for (i = 0; i < N_FIXED_FIELDS; i++) {
923 field_type = t[i];
924 if (!(i % 2)) {
925 data = r[5 - i / 2];
926 data_m = r[12 - i / 2];
927 } else {
928 data = r[5 - i / 2] >> 16;
929 data_m = r[12 - i / 2] >> 16;
930 }
931
932 switch (field_type) {
933 case TEMPLATE_FIELD_SPM0:
934 pr->spm = (pr->spn << 16) | data;
935 pr->spm_m = (pr->spn << 16) | data_m;
936 break;
937 case TEMPLATE_FIELD_SPM1:
938 pr->spm = data;
939 pr->spm_m = data_m;
940 break;
941 case TEMPLATE_FIELD_OTAG:
942 pr->otag = data;
943 pr->otag_m = data_m;
944 break;
945 case TEMPLATE_FIELD_SMAC0:
946 pr->smac[4] = data >> 8;
947 pr->smac[5] = data;
948 pr->smac_m[4] = data >> 8;
949 pr->smac_m[5] = data;
950 break;
951 case TEMPLATE_FIELD_SMAC1:
952 pr->smac[2] = data >> 8;
953 pr->smac[3] = data;
954 pr->smac_m[2] = data >> 8;
955 pr->smac_m[3] = data;
956 break;
957 case TEMPLATE_FIELD_SMAC2:
958 pr->smac[0] = data >> 8;
959 pr->smac[1] = data;
960 pr->smac_m[0] = data >> 8;
961 pr->smac_m[1] = data;
962 break;
963 case TEMPLATE_FIELD_DMAC0:
964 pr->dmac[4] = data >> 8;
965 pr->dmac[5] = data;
966 pr->dmac_m[4] = data >> 8;
967 pr->dmac_m[5] = data;
968 break;
969 case TEMPLATE_FIELD_DMAC1:
970 pr->dmac[2] = data >> 8;
971 pr->dmac[3] = data;
972 pr->dmac_m[2] = data >> 8;
973 pr->dmac_m[3] = data;
974 break;
975 case TEMPLATE_FIELD_DMAC2:
976 pr->dmac[0] = data >> 8;
977 pr->dmac[1] = data;
978 pr->dmac_m[0] = data >> 8;
979 pr->dmac_m[1] = data;
980 break;
981 case TEMPLATE_FIELD_ETHERTYPE:
982 pr->ethertype = data;
983 pr->ethertype_m = data_m;
984 break;
985 case TEMPLATE_FIELD_ITAG:
986 pr->itag = data;
987 pr->itag_m = data_m;
988 break;
989 case TEMPLATE_FIELD_RANGE_CHK:
990 pr->field_range_check = data;
991 pr->field_range_check_m = data_m;
992 break;
993 case TEMPLATE_FIELD_SIP0:
994 pr->sip = data;
995 pr->sip_m = data_m;
996 break;
997 case TEMPLATE_FIELD_SIP1:
998 pr->sip = (pr->sip << 16) | data;
999 pr->sip_m = (pr->sip << 16) | data_m;
1000 break;
1001 case TEMPLATE_FIELD_SIP2:
1002 pr->is_ipv6 = true;
1003 // Make use of limitiations on the position of the match values
1004 ipv6_addr_set(&pr->sip6, pr->sip, r[5 - i / 2],
1005 r[4 - i / 2], r[3 - i / 2]);
1006 ipv6_addr_set(&pr->sip6_m, pr->sip_m, r[5 - i / 2],
1007 r[4 - i / 2], r[3 - i / 2]);
1008 case TEMPLATE_FIELD_SIP3:
1009 case TEMPLATE_FIELD_SIP4:
1010 case TEMPLATE_FIELD_SIP5:
1011 case TEMPLATE_FIELD_SIP6:
1012 case TEMPLATE_FIELD_SIP7:
1013 break;
1014
1015 case TEMPLATE_FIELD_DIP0:
1016 pr->dip = data;
1017 pr->dip_m = data_m;
1018 break;
1019 case TEMPLATE_FIELD_DIP1:
1020 pr->dip = (pr->dip << 16) | data;
1021 pr->dip_m = (pr->dip << 16) | data_m;
1022 break;
1023 case TEMPLATE_FIELD_DIP2:
1024 pr->is_ipv6 = true;
1025 ipv6_addr_set(&pr->dip6, pr->dip, r[5 - i / 2],
1026 r[4 - i / 2], r[3 - i / 2]);
1027 ipv6_addr_set(&pr->dip6_m, pr->dip_m, r[5 - i / 2],
1028 r[4 - i / 2], r[3 - i / 2]);
1029 case TEMPLATE_FIELD_DIP3:
1030 case TEMPLATE_FIELD_DIP4:
1031 case TEMPLATE_FIELD_DIP5:
1032 case TEMPLATE_FIELD_DIP6:
1033 case TEMPLATE_FIELD_DIP7:
1034 break;
1035 case TEMPLATE_FIELD_IP_TOS_PROTO:
1036 pr->tos_proto = data;
1037 pr->tos_proto_m = data_m;
1038 break;
1039 case TEMPLATE_FIELD_L4_SPORT:
1040 pr->sport = data;
1041 pr->sport_m = data_m;
1042 break;
1043 case TEMPLATE_FIELD_L4_DPORT:
1044 pr->dport = data;
1045 pr->dport_m = data_m;
1046 break;
1047 case TEMPLATE_FIELD_ICMP_IGMP:
1048 pr->icmp_igmp = data;
1049 pr->icmp_igmp_m = data_m;
1050 break;
1051 default:
1052 pr_info("%s: unknown field %d\n", __func__, field_type);
1053 }
1054 }
1055 }
1056
1057 static void rtl838x_read_pie_fixed_fields(u32 r[], struct pie_rule *pr)
1058 {
1059 pr->spmmask_fix = (r[6] >> 22) & 0x3;
1060 pr->spn = (r[6] >> 16) & 0x3f;
1061 pr->mgnt_vlan = (r[6] >> 15) & 1;
1062 pr->dmac_hit_sw = (r[6] >> 14) & 1;
1063 pr->not_first_frag = (r[6] >> 13) & 1;
1064 pr->frame_type_l4 = (r[6] >> 10) & 7;
1065 pr->frame_type = (r[6] >> 8) & 3;
1066 pr->otag_fmt = (r[6] >> 7) & 1;
1067 pr->itag_fmt = (r[6] >> 6) & 1;
1068 pr->otag_exist = (r[6] >> 5) & 1;
1069 pr->itag_exist = (r[6] >> 4) & 1;
1070 pr->frame_type_l2 = (r[6] >> 2) & 3;
1071 pr->tid = r[6] & 3;
1072
1073 pr->spmmask_fix_m = (r[13] >> 22) & 0x3;
1074 pr->spn_m = (r[13] >> 16) & 0x3f;
1075 pr->mgnt_vlan_m = (r[13] >> 15) & 1;
1076 pr->dmac_hit_sw_m = (r[13] >> 14) & 1;
1077 pr->not_first_frag_m = (r[13] >> 13) & 1;
1078 pr->frame_type_l4_m = (r[13] >> 10) & 7;
1079 pr->frame_type_m = (r[13] >> 8) & 3;
1080 pr->otag_fmt_m = (r[13] >> 7) & 1;
1081 pr->itag_fmt_m = (r[13] >> 6) & 1;
1082 pr->otag_exist_m = (r[13] >> 5) & 1;
1083 pr->itag_exist_m = (r[13] >> 4) & 1;
1084 pr->frame_type_l2_m = (r[13] >> 2) & 3;
1085 pr->tid_m = r[13] & 3;
1086
1087 pr->valid = r[14] & BIT(31);
1088 pr->cond_not = r[14] & BIT(30);
1089 pr->cond_and1 = r[14] & BIT(29);
1090 pr->cond_and2 = r[14] & BIT(28);
1091 pr->ivalid = r[14] & BIT(27);
1092
1093 pr->drop = (r[17] >> 14) & 3;
1094 pr->fwd_sel = r[17] & BIT(13);
1095 pr->ovid_sel = r[17] & BIT(12);
1096 pr->ivid_sel = r[17] & BIT(11);
1097 pr->flt_sel = r[17] & BIT(10);
1098 pr->log_sel = r[17] & BIT(9);
1099 pr->rmk_sel = r[17] & BIT(8);
1100 pr->meter_sel = r[17] & BIT(7);
1101 pr->tagst_sel = r[17] & BIT(6);
1102 pr->mir_sel = r[17] & BIT(5);
1103 pr->nopri_sel = r[17] & BIT(4);
1104 pr->cpupri_sel = r[17] & BIT(3);
1105 pr->otpid_sel = r[17] & BIT(2);
1106 pr->itpid_sel = r[17] & BIT(1);
1107 pr->shaper_sel = r[17] & BIT(0);
1108 }
1109
1110 static void rtl838x_write_pie_fixed_fields(u32 r[], struct pie_rule *pr)
1111 {
1112 r[6] = ((u32) (pr->spmmask_fix & 0x3)) << 22;
1113 r[6] |= ((u32) (pr->spn & 0x3f)) << 16;
1114 r[6] |= pr->mgnt_vlan ? BIT(15) : 0;
1115 r[6] |= pr->dmac_hit_sw ? BIT(14) : 0;
1116 r[6] |= pr->not_first_frag ? BIT(13) : 0;
1117 r[6] |= ((u32) (pr->frame_type_l4 & 0x7)) << 10;
1118 r[6] |= ((u32) (pr->frame_type & 0x3)) << 8;
1119 r[6] |= pr->otag_fmt ? BIT(7) : 0;
1120 r[6] |= pr->itag_fmt ? BIT(6) : 0;
1121 r[6] |= pr->otag_exist ? BIT(5) : 0;
1122 r[6] |= pr->itag_exist ? BIT(4) : 0;
1123 r[6] |= ((u32) (pr->frame_type_l2 & 0x3)) << 2;
1124 r[6] |= ((u32) (pr->tid & 0x3));
1125
1126 r[13] = ((u32) (pr->spmmask_fix_m & 0x3)) << 22;
1127 r[13] |= ((u32) (pr->spn_m & 0x3f)) << 16;
1128 r[13] |= pr->mgnt_vlan_m ? BIT(15) : 0;
1129 r[13] |= pr->dmac_hit_sw_m ? BIT(14) : 0;
1130 r[13] |= pr->not_first_frag_m ? BIT(13) : 0;
1131 r[13] |= ((u32) (pr->frame_type_l4_m & 0x7)) << 10;
1132 r[13] |= ((u32) (pr->frame_type_m & 0x3)) << 8;
1133 r[13] |= pr->otag_fmt_m ? BIT(7) : 0;
1134 r[13] |= pr->itag_fmt_m ? BIT(6) : 0;
1135 r[13] |= pr->otag_exist_m ? BIT(5) : 0;
1136 r[13] |= pr->itag_exist_m ? BIT(4) : 0;
1137 r[13] |= ((u32) (pr->frame_type_l2_m & 0x3)) << 2;
1138 r[13] |= ((u32) (pr->tid_m & 0x3));
1139
1140 r[14] = pr->valid ? BIT(31) : 0;
1141 r[14] |= pr->cond_not ? BIT(30) : 0;
1142 r[14] |= pr->cond_and1 ? BIT(29) : 0;
1143 r[14] |= pr->cond_and2 ? BIT(28) : 0;
1144 r[14] |= pr->ivalid ? BIT(27) : 0;
1145
1146 if (pr->drop)
1147 r[17] = 0x1 << 14; // Standard drop action
1148 else
1149 r[17] = 0;
1150 r[17] |= pr->fwd_sel ? BIT(13) : 0;
1151 r[17] |= pr->ovid_sel ? BIT(12) : 0;
1152 r[17] |= pr->ivid_sel ? BIT(11) : 0;
1153 r[17] |= pr->flt_sel ? BIT(10) : 0;
1154 r[17] |= pr->log_sel ? BIT(9) : 0;
1155 r[17] |= pr->rmk_sel ? BIT(8) : 0;
1156 r[17] |= pr->meter_sel ? BIT(7) : 0;
1157 r[17] |= pr->tagst_sel ? BIT(6) : 0;
1158 r[17] |= pr->mir_sel ? BIT(5) : 0;
1159 r[17] |= pr->nopri_sel ? BIT(4) : 0;
1160 r[17] |= pr->cpupri_sel ? BIT(3) : 0;
1161 r[17] |= pr->otpid_sel ? BIT(2) : 0;
1162 r[17] |= pr->itpid_sel ? BIT(1) : 0;
1163 r[17] |= pr->shaper_sel ? BIT(0) : 0;
1164 }
1165
1166 static int rtl838x_write_pie_action(u32 r[], struct pie_rule *pr)
1167 {
1168 u16 *aif = (u16 *)&r[17];
1169 u16 data;
1170 int fields_used = 0;
1171
1172 aif--;
1173
1174 pr_debug("%s, at %08x\n", __func__, (u32)aif);
1175 /* Multiple actions can be linked to a match of a PIE rule,
1176 * they have different precedence depending on their type and this precedence
1177 * defines which Action Information Field (0-4) in the IACL table stores
1178 * the additional data of the action (like e.g. the port number a packet is
1179 * forwarded to) */
1180 // TODO: count bits in selectors to limit to a maximum number of actions
1181 if (pr->fwd_sel) { // Forwarding action
1182 data = pr->fwd_act << 13;
1183 data |= pr->fwd_data;
1184 data |= pr->bypass_all ? BIT(12) : 0;
1185 data |= pr->bypass_ibc_sc ? BIT(11) : 0;
1186 data |= pr->bypass_igr_stp ? BIT(10) : 0;
1187 *aif-- = data;
1188 fields_used++;
1189 }
1190
1191 if (pr->ovid_sel) { // Outer VID action
1192 data = (pr->ovid_act & 0x3) << 12;
1193 data |= pr->ovid_data;
1194 *aif-- = data;
1195 fields_used++;
1196 }
1197
1198 if (pr->ivid_sel) { // Inner VID action
1199 data = (pr->ivid_act & 0x3) << 12;
1200 data |= pr->ivid_data;
1201 *aif-- = data;
1202 fields_used++;
1203 }
1204
1205 if (pr->flt_sel) { // Filter action
1206 *aif-- = pr->flt_data;
1207 fields_used++;
1208 }
1209
1210 if (pr->log_sel) { // Log action
1211 if (fields_used >= 4)
1212 return -1;
1213 *aif-- = pr->log_data;
1214 fields_used++;
1215 }
1216
1217 if (pr->rmk_sel) { // Remark action
1218 if (fields_used >= 4)
1219 return -1;
1220 *aif-- = pr->rmk_data;
1221 fields_used++;
1222 }
1223
1224 if (pr->meter_sel) { // Meter action
1225 if (fields_used >= 4)
1226 return -1;
1227 *aif-- = pr->meter_data;
1228 fields_used++;
1229 }
1230
1231 if (pr->tagst_sel) { // Egress Tag Status action
1232 if (fields_used >= 4)
1233 return -1;
1234 *aif-- = pr->tagst_data;
1235 fields_used++;
1236 }
1237
1238 if (pr->mir_sel) { // Mirror action
1239 if (fields_used >= 4)
1240 return -1;
1241 *aif-- = pr->mir_data;
1242 fields_used++;
1243 }
1244
1245 if (pr->nopri_sel) { // Normal Priority action
1246 if (fields_used >= 4)
1247 return -1;
1248 *aif-- = pr->nopri_data;
1249 fields_used++;
1250 }
1251
1252 if (pr->cpupri_sel) { // CPU Priority action
1253 if (fields_used >= 4)
1254 return -1;
1255 *aif-- = pr->nopri_data;
1256 fields_used++;
1257 }
1258
1259 if (pr->otpid_sel) { // OTPID action
1260 if (fields_used >= 4)
1261 return -1;
1262 *aif-- = pr->otpid_data;
1263 fields_used++;
1264 }
1265
1266 if (pr->itpid_sel) { // ITPID action
1267 if (fields_used >= 4)
1268 return -1;
1269 *aif-- = pr->itpid_data;
1270 fields_used++;
1271 }
1272
1273 if (pr->shaper_sel) { // Traffic shaper action
1274 if (fields_used >= 4)
1275 return -1;
1276 *aif-- = pr->shaper_data;
1277 fields_used++;
1278 }
1279
1280 return 0;
1281 }
1282
1283 static void rtl838x_read_pie_action(u32 r[], struct pie_rule *pr)
1284 {
1285 u16 *aif = (u16 *)&r[17];
1286
1287 aif--;
1288
1289 pr_debug("%s, at %08x\n", __func__, (u32)aif);
1290 if (pr->drop)
1291 pr_debug("%s: Action Drop: %d", __func__, pr->drop);
1292
1293 if (pr->fwd_sel){ // Forwarding action
1294 pr->fwd_act = *aif >> 13;
1295 pr->fwd_data = *aif--;
1296 pr->bypass_all = pr->fwd_data & BIT(12);
1297 pr->bypass_ibc_sc = pr->fwd_data & BIT(11);
1298 pr->bypass_igr_stp = pr->fwd_data & BIT(10);
1299 if (pr->bypass_all || pr->bypass_ibc_sc || pr->bypass_igr_stp)
1300 pr->bypass_sel = true;
1301 }
1302 if (pr->ovid_sel) // Outer VID action
1303 pr->ovid_data = *aif--;
1304 if (pr->ivid_sel) // Inner VID action
1305 pr->ivid_data = *aif--;
1306 if (pr->flt_sel) // Filter action
1307 pr->flt_data = *aif--;
1308 if (pr->log_sel) // Log action
1309 pr->log_data = *aif--;
1310 if (pr->rmk_sel) // Remark action
1311 pr->rmk_data = *aif--;
1312 if (pr->meter_sel) // Meter action
1313 pr->meter_data = *aif--;
1314 if (pr->tagst_sel) // Egress Tag Status action
1315 pr->tagst_data = *aif--;
1316 if (pr->mir_sel) // Mirror action
1317 pr->mir_data = *aif--;
1318 if (pr->nopri_sel) // Normal Priority action
1319 pr->nopri_data = *aif--;
1320 if (pr->cpupri_sel) // CPU Priority action
1321 pr->nopri_data = *aif--;
1322 if (pr->otpid_sel) // OTPID action
1323 pr->otpid_data = *aif--;
1324 if (pr->itpid_sel) // ITPID action
1325 pr->itpid_data = *aif--;
1326 if (pr->shaper_sel) // Traffic shaper action
1327 pr->shaper_data = *aif--;
1328 }
1329
1330 static void rtl838x_pie_rule_dump_raw(u32 r[])
1331 {
1332 pr_info("Raw IACL table entry:\n");
1333 pr_info("Match : %08x %08x %08x %08x %08x %08x\n", r[0], r[1], r[2], r[3], r[4], r[5]);
1334 pr_info("Fixed : %08x\n", r[6]);
1335 pr_info("Match M: %08x %08x %08x %08x %08x %08x\n", r[7], r[8], r[9], r[10], r[11], r[12]);
1336 pr_info("Fixed M: %08x\n", r[13]);
1337 pr_info("AIF : %08x %08x %08x\n", r[14], r[15], r[16]);
1338 pr_info("Sel : %08x\n", r[17]);
1339 }
1340
1341 static void rtl838x_pie_rule_dump(struct pie_rule *pr)
1342 {
1343 pr_info("Drop: %d, fwd: %d, ovid: %d, ivid: %d, flt: %d, log: %d, rmk: %d, meter: %d tagst: %d, mir: %d, nopri: %d, cpupri: %d, otpid: %d, itpid: %d, shape: %d\n",
1344 pr->drop, pr->fwd_sel, pr->ovid_sel, pr->ivid_sel, pr->flt_sel, pr->log_sel, pr->rmk_sel, pr->log_sel, pr->tagst_sel, pr->mir_sel, pr->nopri_sel,
1345 pr->cpupri_sel, pr->otpid_sel, pr->itpid_sel, pr->shaper_sel);
1346 if (pr->fwd_sel)
1347 pr_info("FWD: %08x\n", pr->fwd_data);
1348 pr_info("TID: %x, %x\n", pr->tid, pr->tid_m);
1349 }
1350
1351 static int rtl838x_pie_rule_read(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
1352 {
1353 // Read IACL table (1) via register 0
1354 struct table_reg *q = rtl_table_get(RTL8380_TBL_0, 1);
1355 u32 r[18];
1356 int i;
1357 int block = idx / PIE_BLOCK_SIZE;
1358 u32 t_select = sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block));
1359
1360 memset(pr, 0, sizeof(*pr));
1361 rtl_table_read(q, idx);
1362 for (i = 0; i < 18; i++)
1363 r[i] = sw_r32(rtl_table_data(q, i));
1364
1365 rtl_table_release(q);
1366
1367 rtl838x_read_pie_fixed_fields(r, pr);
1368 if (!pr->valid)
1369 return 0;
1370
1371 pr_info("%s: template_selectors %08x, tid: %d\n", __func__, t_select, pr->tid);
1372 rtl838x_pie_rule_dump_raw(r);
1373
1374 rtl838x_read_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]);
1375
1376 rtl838x_read_pie_action(r, pr);
1377
1378 return 0;
1379 }
1380
1381 static int rtl838x_pie_rule_write(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
1382 {
1383 // Access IACL table (1) via register 0
1384 struct table_reg *q = rtl_table_get(RTL8380_TBL_0, 1);
1385 u32 r[18];
1386 int i, err = 0;
1387 int block = idx / PIE_BLOCK_SIZE;
1388 u32 t_select = sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block));
1389
1390 pr_debug("%s: %d, t_select: %08x\n", __func__, idx, t_select);
1391
1392 for (i = 0; i < 18; i++)
1393 r[i] = 0;
1394
1395 if (!pr->valid)
1396 goto err_out;
1397
1398 rtl838x_write_pie_fixed_fields(r, pr);
1399
1400 pr_debug("%s: template %d\n", __func__, (t_select >> (pr->tid * 3)) & 0x7);
1401 rtl838x_write_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]);
1402
1403 if (rtl838x_write_pie_action(r, pr)) {
1404 pr_err("Rule actions too complex\n");
1405 goto err_out;
1406 }
1407
1408 // rtl838x_pie_rule_dump_raw(r);
1409
1410 for (i = 0; i < 18; i++)
1411 sw_w32(r[i], rtl_table_data(q, i));
1412
1413 err_out:
1414 rtl_table_write(q, idx);
1415 rtl_table_release(q);
1416
1417 return err;
1418 }
1419
1420 static bool rtl838x_pie_templ_has(int t, enum template_field_id field_type)
1421 {
1422 int i;
1423 enum template_field_id ft;
1424
1425 for (i = 0; i < N_FIXED_FIELDS; i++) {
1426 ft = fixed_templates[t][i];
1427 if (field_type == ft)
1428 return true;
1429 }
1430
1431 return false;
1432 }
1433
1434 static int rtl838x_pie_verify_template(struct rtl838x_switch_priv *priv,
1435 struct pie_rule *pr, int t, int block)
1436 {
1437 int i;
1438
1439 if (!pr->is_ipv6 && pr->sip_m && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SIP0))
1440 return -1;
1441
1442 if (!pr->is_ipv6 && pr->dip_m && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DIP0))
1443 return -1;
1444
1445 if (pr->is_ipv6) {
1446 if ((pr->sip6_m.s6_addr32[0] || pr->sip6_m.s6_addr32[1]
1447 || pr->sip6_m.s6_addr32[2] || pr->sip6_m.s6_addr32[3])
1448 && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SIP2))
1449 return -1;
1450 if ((pr->dip6_m.s6_addr32[0] || pr->dip6_m.s6_addr32[1]
1451 || pr->dip6_m.s6_addr32[2] || pr->dip6_m.s6_addr32[3])
1452 && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DIP2))
1453 return -1;
1454 }
1455
1456 if (ether_addr_to_u64(pr->smac) && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SMAC0))
1457 return -1;
1458
1459 if (ether_addr_to_u64(pr->dmac) && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DMAC0))
1460 return -1;
1461
1462 // TODO: Check more
1463
1464 i = find_first_zero_bit(&priv->pie_use_bm[block * 4], PIE_BLOCK_SIZE);
1465
1466 if (i >= PIE_BLOCK_SIZE)
1467 return -1;
1468
1469 return i + PIE_BLOCK_SIZE * block;
1470 }
1471
1472 static int rtl838x_pie_rule_add(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
1473 {
1474 int idx, block, j, t;
1475
1476 pr_debug("In %s\n", __func__);
1477
1478 mutex_lock(&priv->pie_mutex);
1479
1480 for (block = 0; block < priv->n_pie_blocks; block++) {
1481 for (j = 0; j < 3; j++) {
1482 t = (sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block)) >> (j * 3)) & 0x7;
1483 pr_debug("Testing block %d, template %d, template id %d\n", block, j, t);
1484 idx = rtl838x_pie_verify_template(priv, pr, t, block);
1485 if (idx >= 0)
1486 break;
1487 }
1488 if (j < 3)
1489 break;
1490 }
1491
1492 if (block >= priv->n_pie_blocks) {
1493 mutex_unlock(&priv->pie_mutex);
1494 return -EOPNOTSUPP;
1495 }
1496
1497 pr_debug("Using block: %d, index %d, template-id %d\n", block, idx, j);
1498 set_bit(idx, priv->pie_use_bm);
1499
1500 pr->valid = true;
1501 pr->tid = j; // Mapped to template number
1502 pr->tid_m = 0x3;
1503 pr->id = idx;
1504
1505 rtl838x_pie_lookup_enable(priv, idx);
1506 rtl838x_pie_rule_write(priv, idx, pr);
1507
1508 mutex_unlock(&priv->pie_mutex);
1509 return 0;
1510 }
1511
1512 static void rtl838x_pie_rule_rm(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
1513 {
1514 int idx = pr->id;
1515
1516 rtl838x_pie_rule_del(priv, idx, idx);
1517 clear_bit(idx, priv->pie_use_bm);
1518 }
1519
1520 /*
1521 * Initializes the Packet Inspection Engine:
1522 * powers it up, enables default matching templates for all blocks
1523 * and clears all rules possibly installed by u-boot
1524 */
1525 static void rtl838x_pie_init(struct rtl838x_switch_priv *priv)
1526 {
1527 int i;
1528 u32 template_selectors;
1529
1530 mutex_init(&priv->pie_mutex);
1531
1532 // Enable ACL lookup on all ports, including CPU_PORT
1533 for (i = 0; i <= priv->cpu_port; i++)
1534 sw_w32(1, RTL838X_ACL_PORT_LOOKUP_CTRL(i));
1535
1536 // Power on all PIE blocks
1537 for (i = 0; i < priv->n_pie_blocks; i++)
1538 sw_w32_mask(0, BIT(i), RTL838X_ACL_BLK_PWR_CTRL);
1539
1540 // Include IPG in metering
1541 sw_w32(1, RTL838X_METER_GLB_CTRL);
1542
1543 // Delete all present rules
1544 rtl838x_pie_rule_del(priv, 0, priv->n_pie_blocks * PIE_BLOCK_SIZE - 1);
1545
1546 // Routing bypasses source port filter: disable write-protection, first
1547 sw_w32_mask(0, 3, RTL838X_INT_RW_CTRL);
1548 sw_w32_mask(0, 1, RTL838X_DMY_REG27);
1549 sw_w32_mask(3, 0, RTL838X_INT_RW_CTRL);
1550
1551 // Enable predefined templates 0, 1 and 2 for even blocks
1552 template_selectors = 0 | (1 << 3) | (2 << 6);
1553 for (i = 0; i < 6; i += 2)
1554 sw_w32(template_selectors, RTL838X_ACL_BLK_TMPLTE_CTRL(i));
1555
1556 // Enable predefined templates 0, 3 and 4 (IPv6 support) for odd blocks
1557 template_selectors = 0 | (3 << 3) | (4 << 6);
1558 for (i = 1; i < priv->n_pie_blocks; i += 2)
1559 sw_w32(template_selectors, RTL838X_ACL_BLK_TMPLTE_CTRL(i));
1560
1561 // Group each pair of physical blocks together to a logical block
1562 sw_w32(0b10101010101, RTL838X_ACL_BLK_GROUP_CTRL);
1563 }
1564
1565 static u32 rtl838x_packet_cntr_read(int counter)
1566 {
1567 u32 v;
1568
1569 // Read LOG table (3) via register RTL8380_TBL_0
1570 struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 3);
1571
1572 pr_debug("In %s, id %d\n", __func__, counter);
1573 rtl_table_read(r, counter / 2);
1574
1575 pr_debug("Registers: %08x %08x\n",
1576 sw_r32(rtl_table_data(r, 0)), sw_r32(rtl_table_data(r, 1)));
1577 // The table has a size of 2 registers
1578 if (counter % 2)
1579 v = sw_r32(rtl_table_data(r, 0));
1580 else
1581 v = sw_r32(rtl_table_data(r, 1));
1582
1583 rtl_table_release(r);
1584
1585 return v;
1586 }
1587
1588 static void rtl838x_packet_cntr_clear(int counter)
1589 {
1590 // Access LOG table (3) via register RTL8380_TBL_0
1591 struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 3);
1592
1593 pr_debug("In %s, id %d\n", __func__, counter);
1594 // The table has a size of 2 registers
1595 if (counter % 2)
1596 sw_w32(0, rtl_table_data(r, 0));
1597 else
1598 sw_w32(0, rtl_table_data(r, 1));
1599
1600 rtl_table_write(r, counter / 2);
1601
1602 rtl_table_release(r);
1603 }
1604
1605 static void rtl838x_route_read(int idx, struct rtl83xx_route *rt)
1606 {
1607 // Read ROUTING table (2) via register RTL8380_TBL_1
1608 struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 2);
1609
1610 pr_debug("In %s, id %d\n", __func__, idx);
1611 rtl_table_read(r, idx);
1612
1613 // The table has a size of 2 registers
1614 rt->nh.gw = sw_r32(rtl_table_data(r, 0));
1615 rt->nh.gw <<= 32;
1616 rt->nh.gw |= sw_r32(rtl_table_data(r, 1));
1617
1618 rtl_table_release(r);
1619 }
1620
1621 static void rtl838x_route_write(int idx, struct rtl83xx_route *rt)
1622 {
1623 // Access ROUTING table (2) via register RTL8380_TBL_1
1624 struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 2);
1625
1626 pr_debug("In %s, id %d, gw: %016llx\n", __func__, idx, rt->nh.gw);
1627 sw_w32(rt->nh.gw >> 32, rtl_table_data(r, 0));
1628 sw_w32(rt->nh.gw, rtl_table_data(r, 1));
1629 rtl_table_write(r, idx);
1630
1631 rtl_table_release(r);
1632 }
1633
1634 static int rtl838x_l3_setup(struct rtl838x_switch_priv *priv)
1635 {
1636 // Nothing to be done
1637 return 0;
1638 }
1639
1640 void rtl838x_vlan_port_keep_tag_set(int port, bool keep_outer, bool keep_inner)
1641 {
1642 sw_w32(FIELD_PREP(RTL838X_VLAN_PORT_TAG_STS_CTRL_OTAG_STS_MASK,
1643 keep_outer ? RTL838X_VLAN_PORT_TAG_STS_TAGGED : RTL838X_VLAN_PORT_TAG_STS_UNTAG) |
1644 FIELD_PREP(RTL838X_VLAN_PORT_TAG_STS_CTRL_ITAG_STS_MASK,
1645 keep_inner ? RTL838X_VLAN_PORT_TAG_STS_TAGGED : RTL838X_VLAN_PORT_TAG_STS_UNTAG),
1646 RTL838X_VLAN_PORT_TAG_STS_CTRL(port));
1647 }
1648
1649 void rtl838x_vlan_port_pvidmode_set(int port, enum pbvlan_type type, enum pbvlan_mode mode)
1650 {
1651 if (type == PBVLAN_TYPE_INNER)
1652 sw_w32_mask(0x3, mode, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
1653 else
1654 sw_w32_mask(0x3 << 14, mode << 14, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
1655 }
1656
1657 void rtl838x_vlan_port_pvid_set(int port, enum pbvlan_type type, int pvid)
1658 {
1659 if (type == PBVLAN_TYPE_INNER)
1660 sw_w32_mask(0xfff << 2, pvid << 2, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
1661 else
1662 sw_w32_mask(0xfff << 16, pvid << 16, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
1663 }
1664
1665 static int rtl838x_set_ageing_time(unsigned long msec)
1666 {
1667 int t = sw_r32(RTL838X_L2_CTRL_1);
1668
1669 t &= 0x7FFFFF;
1670 t = t * 128 / 625; /* Aging time in seconds. 0: L2 aging disabled */
1671 pr_debug("L2 AGING time: %d sec\n", t);
1672
1673 t = (msec * 625 + 127000) / 128000;
1674 t = t > 0x7FFFFF ? 0x7FFFFF : t;
1675 sw_w32_mask(0x7FFFFF, t, RTL838X_L2_CTRL_1);
1676 pr_debug("Dynamic aging for ports: %x\n", sw_r32(RTL838X_L2_PORT_AGING_OUT));
1677
1678 return 0;
1679 }
1680
1681 static void rtl838x_set_igr_filter(int port, enum igr_filter state)
1682 {
1683 sw_w32_mask(0x3 << ((port & 0xf)<<1), state << ((port & 0xf)<<1),
1684 RTL838X_VLAN_PORT_IGR_FLTR + (((port >> 4) << 2)));
1685 }
1686
1687 static void rtl838x_set_egr_filter(int port, enum egr_filter state)
1688 {
1689 sw_w32_mask(0x1 << (port % 0x1d), state << (port % 0x1d),
1690 RTL838X_VLAN_PORT_EGR_FLTR + (((port / 29) << 2)));
1691 }
1692
1693 void rtl838x_set_distribution_algorithm(int group, int algoidx, u32 algomsk)
1694 {
1695 algoidx &= 1; // RTL838X only supports 2 concurrent algorithms
1696 sw_w32_mask(1 << (group % 8), algoidx << (group % 8),
1697 RTL838X_TRK_HASH_IDX_CTRL + ((group >> 3) << 2));
1698 sw_w32(algomsk, RTL838X_TRK_HASH_CTRL + (algoidx << 2));
1699 }
1700
1701 void rtl838x_set_receive_management_action(int port, rma_ctrl_t type, action_type_t action)
1702 {
1703 switch(type) {
1704 case BPDU:
1705 sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
1706 RTL838X_RMA_BPDU_CTRL + ((port >> 4) << 2));
1707 break;
1708 case PTP:
1709 sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
1710 RTL838X_RMA_PTP_CTRL + ((port >> 4) << 2));
1711 break;
1712 case LLTP:
1713 sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
1714 RTL838X_RMA_LLTP_CTRL + ((port >> 4) << 2));
1715 break;
1716 default:
1717 break;
1718 }
1719 }
1720
1721 const struct rtl838x_reg rtl838x_reg = {
1722 .mask_port_reg_be = rtl838x_mask_port_reg,
1723 .set_port_reg_be = rtl838x_set_port_reg,
1724 .get_port_reg_be = rtl838x_get_port_reg,
1725 .mask_port_reg_le = rtl838x_mask_port_reg,
1726 .set_port_reg_le = rtl838x_set_port_reg,
1727 .get_port_reg_le = rtl838x_get_port_reg,
1728 .stat_port_rst = RTL838X_STAT_PORT_RST,
1729 .stat_rst = RTL838X_STAT_RST,
1730 .stat_port_std_mib = RTL838X_STAT_PORT_STD_MIB,
1731 .port_iso_ctrl = rtl838x_port_iso_ctrl,
1732 .traffic_enable = rtl838x_traffic_enable,
1733 .traffic_disable = rtl838x_traffic_disable,
1734 .traffic_get = rtl838x_traffic_get,
1735 .traffic_set = rtl838x_traffic_set,
1736 .l2_ctrl_0 = RTL838X_L2_CTRL_0,
1737 .l2_ctrl_1 = RTL838X_L2_CTRL_1,
1738 .l2_port_aging_out = RTL838X_L2_PORT_AGING_OUT,
1739 .set_ageing_time = rtl838x_set_ageing_time,
1740 .smi_poll_ctrl = RTL838X_SMI_POLL_CTRL,
1741 .l2_tbl_flush_ctrl = RTL838X_L2_TBL_FLUSH_CTRL,
1742 .exec_tbl0_cmd = rtl838x_exec_tbl0_cmd,
1743 .exec_tbl1_cmd = rtl838x_exec_tbl1_cmd,
1744 .tbl_access_data_0 = rtl838x_tbl_access_data_0,
1745 .isr_glb_src = RTL838X_ISR_GLB_SRC,
1746 .isr_port_link_sts_chg = RTL838X_ISR_PORT_LINK_STS_CHG,
1747 .imr_port_link_sts_chg = RTL838X_IMR_PORT_LINK_STS_CHG,
1748 .imr_glb = RTL838X_IMR_GLB,
1749 .vlan_tables_read = rtl838x_vlan_tables_read,
1750 .vlan_set_tagged = rtl838x_vlan_set_tagged,
1751 .vlan_set_untagged = rtl838x_vlan_set_untagged,
1752 .mac_force_mode_ctrl = rtl838x_mac_force_mode_ctrl,
1753 .vlan_profile_dump = rtl838x_vlan_profile_dump,
1754 .vlan_profile_setup = rtl838x_vlan_profile_setup,
1755 .vlan_fwd_on_inner = rtl838x_vlan_fwd_on_inner,
1756 .set_vlan_igr_filter = rtl838x_set_igr_filter,
1757 .set_vlan_egr_filter = rtl838x_set_egr_filter,
1758 .enable_learning = rtl838x_enable_learning,
1759 .enable_flood = rtl838x_enable_flood,
1760 .enable_mcast_flood = rtl838x_enable_mcast_flood,
1761 .enable_bcast_flood = rtl838x_enable_bcast_flood,
1762 .set_static_move_action = rtl838x_set_static_move_action,
1763 .stp_get = rtl838x_stp_get,
1764 .stp_set = rtl838x_stp_set,
1765 .mac_port_ctrl = rtl838x_mac_port_ctrl,
1766 .l2_port_new_salrn = rtl838x_l2_port_new_salrn,
1767 .l2_port_new_sa_fwd = rtl838x_l2_port_new_sa_fwd,
1768 .mir_ctrl = RTL838X_MIR_CTRL,
1769 .mir_dpm = RTL838X_MIR_DPM_CTRL,
1770 .mir_spm = RTL838X_MIR_SPM_CTRL,
1771 .mac_link_sts = RTL838X_MAC_LINK_STS,
1772 .mac_link_dup_sts = RTL838X_MAC_LINK_DUP_STS,
1773 .mac_link_spd_sts = rtl838x_mac_link_spd_sts,
1774 .mac_rx_pause_sts = RTL838X_MAC_RX_PAUSE_STS,
1775 .mac_tx_pause_sts = RTL838X_MAC_TX_PAUSE_STS,
1776 .read_l2_entry_using_hash = rtl838x_read_l2_entry_using_hash,
1777 .write_l2_entry_using_hash = rtl838x_write_l2_entry_using_hash,
1778 .read_cam = rtl838x_read_cam,
1779 .write_cam = rtl838x_write_cam,
1780 .vlan_port_keep_tag_set = rtl838x_vlan_port_keep_tag_set,
1781 .vlan_port_pvidmode_set = rtl838x_vlan_port_pvidmode_set,
1782 .vlan_port_pvid_set = rtl838x_vlan_port_pvid_set,
1783 .trk_mbr_ctr = rtl838x_trk_mbr_ctr,
1784 .rma_bpdu_fld_pmask = RTL838X_RMA_BPDU_FLD_PMSK,
1785 .spcl_trap_eapol_ctrl = RTL838X_SPCL_TRAP_EAPOL_CTRL,
1786 .init_eee = rtl838x_init_eee,
1787 .port_eee_set = rtl838x_port_eee_set,
1788 .eee_port_ability = rtl838x_eee_port_ability,
1789 .l2_hash_seed = rtl838x_l2_hash_seed,
1790 .l2_hash_key = rtl838x_l2_hash_key,
1791 .read_mcast_pmask = rtl838x_read_mcast_pmask,
1792 .write_mcast_pmask = rtl838x_write_mcast_pmask,
1793 .pie_init = rtl838x_pie_init,
1794 .pie_rule_read = rtl838x_pie_rule_read,
1795 .pie_rule_write = rtl838x_pie_rule_write,
1796 .pie_rule_add = rtl838x_pie_rule_add,
1797 .pie_rule_rm = rtl838x_pie_rule_rm,
1798 .l2_learning_setup = rtl838x_l2_learning_setup,
1799 .packet_cntr_read = rtl838x_packet_cntr_read,
1800 .packet_cntr_clear = rtl838x_packet_cntr_clear,
1801 .route_read = rtl838x_route_read,
1802 .route_write = rtl838x_route_write,
1803 .l3_setup = rtl838x_l3_setup,
1804 .set_distribution_algorithm = rtl838x_set_distribution_algorithm,
1805 .set_receive_management_action = rtl838x_set_receive_management_action,
1806 };
1807
1808 irqreturn_t rtl838x_switch_irq(int irq, void *dev_id)
1809 {
1810 struct dsa_switch *ds = dev_id;
1811 u32 status = sw_r32(RTL838X_ISR_GLB_SRC);
1812 u32 ports = sw_r32(RTL838X_ISR_PORT_LINK_STS_CHG);
1813 u32 link;
1814 int i;
1815
1816 /* Clear status */
1817 sw_w32(ports, RTL838X_ISR_PORT_LINK_STS_CHG);
1818 pr_info("RTL8380 Link change: status: %x, ports %x\n", status, ports);
1819
1820 for (i = 0; i < 28; i++) {
1821 if (ports & BIT(i)) {
1822 link = sw_r32(RTL838X_MAC_LINK_STS);
1823 if (link & BIT(i))
1824 dsa_port_phylink_mac_change(ds, i, true);
1825 else
1826 dsa_port_phylink_mac_change(ds, i, false);
1827 }
1828 }
1829 return IRQ_HANDLED;
1830 }
1831
1832 int rtl838x_smi_wait_op(int timeout)
1833 {
1834 int ret = 0;
1835 u32 val;
1836
1837 ret = readx_poll_timeout(sw_r32, RTL838X_SMI_ACCESS_PHY_CTRL_1,
1838 val, !(val & 0x1), 20, timeout);
1839 if (ret)
1840 pr_err("%s: timeout\n", __func__);
1841
1842 return ret;
1843 }
1844
1845 /*
1846 * Reads a register in a page from the PHY
1847 */
1848 int rtl838x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
1849 {
1850 u32 v;
1851 u32 park_page;
1852
1853 if (port > 31) {
1854 *val = 0xffff;
1855 return 0;
1856 }
1857
1858 if (page > 4095 || reg > 31)
1859 return -ENOTSUPP;
1860
1861 mutex_lock(&smi_lock);
1862
1863 if (rtl838x_smi_wait_op(100000))
1864 goto timeout;
1865
1866 sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
1867
1868 park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
1869 v = reg << 20 | page << 3;
1870 sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
1871 sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);
1872
1873 if (rtl838x_smi_wait_op(100000))
1874 goto timeout;
1875
1876 *val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;
1877
1878 mutex_unlock(&smi_lock);
1879 return 0;
1880
1881 timeout:
1882 mutex_unlock(&smi_lock);
1883 return -ETIMEDOUT;
1884 }
1885
1886 /*
1887 * Write to a register in a page of the PHY
1888 */
1889 int rtl838x_write_phy(u32 port, u32 page, u32 reg, u32 val)
1890 {
1891 u32 v;
1892 u32 park_page;
1893
1894 val &= 0xffff;
1895 if (port > 31 || page > 4095 || reg > 31)
1896 return -ENOTSUPP;
1897
1898 mutex_lock(&smi_lock);
1899 if (rtl838x_smi_wait_op(100000))
1900 goto timeout;
1901
1902 sw_w32(BIT(port), RTL838X_SMI_ACCESS_PHY_CTRL_0);
1903 mdelay(10);
1904
1905 sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
1906
1907 park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
1908 v = reg << 20 | page << 3 | 0x4;
1909 sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
1910 sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);
1911
1912 if (rtl838x_smi_wait_op(100000))
1913 goto timeout;
1914
1915 mutex_unlock(&smi_lock);
1916 return 0;
1917
1918 timeout:
1919 mutex_unlock(&smi_lock);
1920 return -ETIMEDOUT;
1921 }
1922
1923 /*
1924 * Read an mmd register of a PHY
1925 */
1926 int rtl838x_read_mmd_phy(u32 port, u32 addr, u32 reg, u32 *val)
1927 {
1928 u32 v;
1929
1930 mutex_lock(&smi_lock);
1931
1932 if (rtl838x_smi_wait_op(100000))
1933 goto timeout;
1934
1935 sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
1936 mdelay(10);
1937
1938 sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
1939
1940 v = addr << 16 | reg;
1941 sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_3);
1942
1943 /* mmd-access | read | cmd-start */
1944 v = 1 << 1 | 0 << 2 | 1;
1945 sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1);
1946
1947 if (rtl838x_smi_wait_op(100000))
1948 goto timeout;
1949
1950 *val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;
1951
1952 mutex_unlock(&smi_lock);
1953 return 0;
1954
1955 timeout:
1956 mutex_unlock(&smi_lock);
1957 return -ETIMEDOUT;
1958 }
1959
1960 /*
1961 * Write to an mmd register of a PHY
1962 */
1963 int rtl838x_write_mmd_phy(u32 port, u32 addr, u32 reg, u32 val)
1964 {
1965 u32 v;
1966
1967 pr_debug("MMD write: port %d, dev %d, reg %d, val %x\n", port, addr, reg, val);
1968 val &= 0xffff;
1969 mutex_lock(&smi_lock);
1970
1971 if (rtl838x_smi_wait_op(100000))
1972 goto timeout;
1973
1974 sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
1975 mdelay(10);
1976
1977 sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
1978
1979 sw_w32_mask(0x1f << 16, addr << 16, RTL838X_SMI_ACCESS_PHY_CTRL_3);
1980 sw_w32_mask(0xffff, reg, RTL838X_SMI_ACCESS_PHY_CTRL_3);
1981 /* mmd-access | write | cmd-start */
1982 v = 1 << 1 | 1 << 2 | 1;
1983 sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1);
1984
1985 if (rtl838x_smi_wait_op(100000))
1986 goto timeout;
1987
1988 mutex_unlock(&smi_lock);
1989 return 0;
1990
1991 timeout:
1992 mutex_unlock(&smi_lock);
1993 return -ETIMEDOUT;
1994 }
1995
1996 void rtl8380_get_version(struct rtl838x_switch_priv *priv)
1997 {
1998 u32 rw_save, info_save;
1999 u32 info;
2000
2001 rw_save = sw_r32(RTL838X_INT_RW_CTRL);
2002 sw_w32(rw_save | 0x3, RTL838X_INT_RW_CTRL);
2003
2004 info_save = sw_r32(RTL838X_CHIP_INFO);
2005 sw_w32(info_save | 0xA0000000, RTL838X_CHIP_INFO);
2006
2007 info = sw_r32(RTL838X_CHIP_INFO);
2008 sw_w32(info_save, RTL838X_CHIP_INFO);
2009 sw_w32(rw_save, RTL838X_INT_RW_CTRL);
2010
2011 if ((info & 0xFFFF) == 0x6275) {
2012 if (((info >> 16) & 0x1F) == 0x1)
2013 priv->version = RTL8380_VERSION_A;
2014 else if (((info >> 16) & 0x1F) == 0x2)
2015 priv->version = RTL8380_VERSION_B;
2016 else
2017 priv->version = RTL8380_VERSION_B;
2018 } else {
2019 priv->version = '-';
2020 }
2021 }
2022
2023 void rtl838x_vlan_profile_dump(int profile)
2024 {
2025 u32 p;
2026
2027 if (profile < 0 || profile > 7)
2028 return;
2029
2030 p = sw_r32(RTL838X_VLAN_PROFILE(profile));
2031
2032 pr_info("VLAN profile %d: L2 learning: %d, UNKN L2MC FLD PMSK %d, \
2033 UNKN IPMC FLD PMSK %d, UNKN IPv6MC FLD PMSK: %d",
2034 profile, p & 1, (p >> 1) & 0x1ff, (p >> 10) & 0x1ff, (p >> 19) & 0x1ff);
2035 }
2036
2037 void rtl8380_sds_rst(int mac)
2038 {
2039 u32 offset = (mac == 24) ? 0 : 0x100;
2040
2041 sw_w32_mask(1 << 11, 0, RTL838X_SDS4_FIB_REG0 + offset);
2042 sw_w32_mask(0x3, 0, RTL838X_SDS4_REG28 + offset);
2043 sw_w32_mask(0x3, 0x3, RTL838X_SDS4_REG28 + offset);
2044 sw_w32_mask(0, 0x1 << 6, RTL838X_SDS4_DUMMY0 + offset);
2045 sw_w32_mask(0x1 << 6, 0, RTL838X_SDS4_DUMMY0 + offset);
2046 pr_debug("SERDES reset: %d\n", mac);
2047 }
2048
2049 int rtl8380_sds_power(int mac, int val)
2050 {
2051 u32 mode = (val == 1) ? 0x4 : 0x9;
2052 u32 offset = (mac == 24) ? 5 : 0;
2053
2054 if ((mac != 24) && (mac != 26)) {
2055 pr_err("%s: not a fibre port: %d\n", __func__, mac);
2056 return -1;
2057 }
2058
2059 sw_w32_mask(0x1f << offset, mode << offset, RTL838X_SDS_MODE_SEL);
2060
2061 rtl8380_sds_rst(mac);
2062
2063 return 0;
2064 }