octeon: add support for the octeon mips64 SoC
[openwrt/openwrt.git] / target / linux / octeon / files / drivers / staging / octeon-usb / cvmx-usbcx-defs.h
1 /***********************license start***************
2 * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
3 * reserved.
4 *
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met:
9 *
10 * * Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 *
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
17
18 * * Neither the name of Cavium Networks nor the names of
19 * its contributors may be used to endorse or promote products
20 * derived from this software without specific prior written
21 * permission.
22
23 * This Software, including technical data, may be subject to U.S. export
24 * control laws, including the U.S. Export Administration Act and its associated
25 * regulations, and may be subject to export or import regulations in other
26 * countries.
27
28 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
29 * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
30 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
31 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
32 * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
33 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
34 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
35 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
36 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
37 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
38 ***********************license end**************************************/
39
40
41 /**
42 * cvmx-usbcx-defs.h
43 *
44 * Configuration and status register (CSR) type definitions for
45 * Octeon usbcx.
46 *
47 */
48 #ifndef __CVMX_USBCX_TYPEDEFS_H__
49 #define __CVMX_USBCX_TYPEDEFS_H__
50
51 #define CVMX_USBCXBASE 0x00016F0010000000ull
52 #define CVMX_USBCXREG1(reg, bid) \
53 (CVMX_ADD_IO_SEG(CVMX_USBCXBASE | reg) + \
54 ((bid) & 1) * 0x100000000000ull)
55 #define CVMX_USBCXREG2(reg, bid, off) \
56 (CVMX_ADD_IO_SEG(CVMX_USBCXBASE | reg) + \
57 (((off) & 7) + ((bid) & 1) * 0x8000000000ull) * 32)
58
59 #define CVMX_USBCX_GAHBCFG(bid) CVMX_USBCXREG1(0x008, bid)
60 #define CVMX_USBCX_GHWCFG3(bid) CVMX_USBCXREG1(0x04c, bid)
61 #define CVMX_USBCX_GINTMSK(bid) CVMX_USBCXREG1(0x018, bid)
62 #define CVMX_USBCX_GINTSTS(bid) CVMX_USBCXREG1(0x014, bid)
63 #define CVMX_USBCX_GNPTXFSIZ(bid) CVMX_USBCXREG1(0x028, bid)
64 #define CVMX_USBCX_GNPTXSTS(bid) CVMX_USBCXREG1(0x02c, bid)
65 #define CVMX_USBCX_GOTGCTL(bid) CVMX_USBCXREG1(0x000, bid)
66 #define CVMX_USBCX_GRSTCTL(bid) CVMX_USBCXREG1(0x010, bid)
67 #define CVMX_USBCX_GRXFSIZ(bid) CVMX_USBCXREG1(0x024, bid)
68 #define CVMX_USBCX_GRXSTSPH(bid) CVMX_USBCXREG1(0x020, bid)
69 #define CVMX_USBCX_GUSBCFG(bid) CVMX_USBCXREG1(0x00c, bid)
70 #define CVMX_USBCX_HAINT(bid) CVMX_USBCXREG1(0x414, bid)
71 #define CVMX_USBCX_HAINTMSK(bid) CVMX_USBCXREG1(0x418, bid)
72 #define CVMX_USBCX_HCCHARX(off, bid) CVMX_USBCXREG2(0x500, bid, off)
73 #define CVMX_USBCX_HCFG(bid) CVMX_USBCXREG1(0x400, bid)
74 #define CVMX_USBCX_HCINTMSKX(off, bid) CVMX_USBCXREG2(0x50c, bid, off)
75 #define CVMX_USBCX_HCINTX(off, bid) CVMX_USBCXREG2(0x508, bid, off)
76 #define CVMX_USBCX_HCSPLTX(off, bid) CVMX_USBCXREG2(0x504, bid, off)
77 #define CVMX_USBCX_HCTSIZX(off, bid) CVMX_USBCXREG2(0x510, bid, off)
78 #define CVMX_USBCX_HFIR(bid) CVMX_USBCXREG1(0x404, bid)
79 #define CVMX_USBCX_HFNUM(bid) CVMX_USBCXREG1(0x408, bid)
80 #define CVMX_USBCX_HPRT(bid) CVMX_USBCXREG1(0x440, bid)
81 #define CVMX_USBCX_HPTXFSIZ(bid) CVMX_USBCXREG1(0x100, bid)
82 #define CVMX_USBCX_HPTXSTS(bid) CVMX_USBCXREG1(0x410, bid)
83
84 /**
85 * cvmx_usbc#_gahbcfg
86 *
87 * Core AHB Configuration Register (GAHBCFG)
88 *
89 * This register can be used to configure the core after power-on or a change in
90 * mode of operation. This register mainly contains AHB system-related
91 * configuration parameters. The AHB is the processor interface to the O2P USB
92 * core. In general, software need not know about this interface except to
93 * program the values as specified.
94 *
95 * The application must program this register as part of the O2P USB core
96 * initialization. Do not change this register after the initial programming.
97 */
98 union cvmx_usbcx_gahbcfg {
99 uint32_t u32;
100 /**
101 * struct cvmx_usbcx_gahbcfg_s
102 * @ptxfemplvl: Periodic TxFIFO Empty Level (PTxFEmpLvl)
103 * Software should set this bit to 0x1.
104 * Indicates when the Periodic TxFIFO Empty Interrupt bit in the
105 * Core Interrupt register (GINTSTS.PTxFEmp) is triggered. This
106 * bit is used only in Slave mode.
107 * * 1'b0: GINTSTS.PTxFEmp interrupt indicates that the Periodic
108 * TxFIFO is half empty
109 * * 1'b1: GINTSTS.PTxFEmp interrupt indicates that the Periodic
110 * TxFIFO is completely empty
111 * @nptxfemplvl: Non-Periodic TxFIFO Empty Level (NPTxFEmpLvl)
112 * Software should set this bit to 0x1.
113 * Indicates when the Non-Periodic TxFIFO Empty Interrupt bit in
114 * the Core Interrupt register (GINTSTS.NPTxFEmp) is triggered.
115 * This bit is used only in Slave mode.
116 * * 1'b0: GINTSTS.NPTxFEmp interrupt indicates that the Non-
117 * Periodic TxFIFO is half empty
118 * * 1'b1: GINTSTS.NPTxFEmp interrupt indicates that the Non-
119 * Periodic TxFIFO is completely empty
120 * @dmaen: DMA Enable (DMAEn)
121 * * 1'b0: Core operates in Slave mode
122 * * 1'b1: Core operates in a DMA mode
123 * @hbstlen: Burst Length/Type (HBstLen)
124 * This field has not effect and should be left as 0x0.
125 * @glblintrmsk: Global Interrupt Mask (GlblIntrMsk)
126 * Software should set this field to 0x1.
127 * The application uses this bit to mask or unmask the interrupt
128 * line assertion to itself. Irrespective of this bit's setting,
129 * the interrupt status registers are updated by the core.
130 * * 1'b0: Mask the interrupt assertion to the application.
131 * * 1'b1: Unmask the interrupt assertion to the application.
132 */
133 struct cvmx_usbcx_gahbcfg_s {
134 uint32_t reserved_9_31 : 23;
135 uint32_t ptxfemplvl : 1;
136 uint32_t nptxfemplvl : 1;
137 uint32_t reserved_6_6 : 1;
138 uint32_t dmaen : 1;
139 uint32_t hbstlen : 4;
140 uint32_t glblintrmsk : 1;
141 } s;
142 };
143 typedef union cvmx_usbcx_gahbcfg cvmx_usbcx_gahbcfg_t;
144
145 /**
146 * cvmx_usbc#_ghwcfg3
147 *
148 * User HW Config3 Register (GHWCFG3)
149 *
150 * This register contains the configuration options of the O2P USB core.
151 */
152 union cvmx_usbcx_ghwcfg3 {
153 uint32_t u32;
154 /**
155 * struct cvmx_usbcx_ghwcfg3_s
156 * @dfifodepth: DFIFO Depth (DfifoDepth)
157 * This value is in terms of 32-bit words.
158 * * Minimum value is 32
159 * * Maximum value is 32768
160 * @ahbphysync: AHB and PHY Synchronous (AhbPhySync)
161 * Indicates whether AHB and PHY clocks are synchronous to
162 * each other.
163 * * 1'b0: No
164 * * 1'b1: Yes
165 * This bit is tied to 1.
166 * @rsttype: Reset Style for Clocked always Blocks in RTL (RstType)
167 * * 1'b0: Asynchronous reset is used in the core
168 * * 1'b1: Synchronous reset is used in the core
169 * @optfeature: Optional Features Removed (OptFeature)
170 * Indicates whether the User ID register, GPIO interface ports,
171 * and SOF toggle and counter ports were removed for gate count
172 * optimization.
173 * @vendor_control_interface_support: Vendor Control Interface Support
174 * * 1'b0: Vendor Control Interface is not available on the core.
175 * * 1'b1: Vendor Control Interface is available.
176 * @i2c_selection: I2C Selection
177 * * 1'b0: I2C Interface is not available on the core.
178 * * 1'b1: I2C Interface is available on the core.
179 * @otgen: OTG Function Enabled (OtgEn)
180 * The application uses this bit to indicate the O2P USB core's
181 * OTG capabilities.
182 * * 1'b0: Not OTG capable
183 * * 1'b1: OTG Capable
184 * @pktsizewidth: Width of Packet Size Counters (PktSizeWidth)
185 * * 3'b000: 4 bits
186 * * 3'b001: 5 bits
187 * * 3'b010: 6 bits
188 * * 3'b011: 7 bits
189 * * 3'b100: 8 bits
190 * * 3'b101: 9 bits
191 * * 3'b110: 10 bits
192 * * Others: Reserved
193 * @xfersizewidth: Width of Transfer Size Counters (XferSizeWidth)
194 * * 4'b0000: 11 bits
195 * * 4'b0001: 12 bits
196 * - ...
197 * * 4'b1000: 19 bits
198 * * Others: Reserved
199 */
200 struct cvmx_usbcx_ghwcfg3_s {
201 uint32_t dfifodepth : 16;
202 uint32_t reserved_13_15 : 3;
203 uint32_t ahbphysync : 1;
204 uint32_t rsttype : 1;
205 uint32_t optfeature : 1;
206 uint32_t vendor_control_interface_support : 1;
207 uint32_t i2c_selection : 1;
208 uint32_t otgen : 1;
209 uint32_t pktsizewidth : 3;
210 uint32_t xfersizewidth : 4;
211 } s;
212 };
213 typedef union cvmx_usbcx_ghwcfg3 cvmx_usbcx_ghwcfg3_t;
214
215 /**
216 * cvmx_usbc#_gintmsk
217 *
218 * Core Interrupt Mask Register (GINTMSK)
219 *
220 * This register works with the Core Interrupt register to interrupt the
221 * application. When an interrupt bit is masked, the interrupt associated with
222 * that bit will not be generated. However, the Core Interrupt (GINTSTS)
223 * register bit corresponding to that interrupt will still be set.
224 * Mask interrupt: 1'b0, Unmask interrupt: 1'b1
225 */
226 union cvmx_usbcx_gintmsk {
227 uint32_t u32;
228 /**
229 * struct cvmx_usbcx_gintmsk_s
230 * @wkupintmsk: Resume/Remote Wakeup Detected Interrupt Mask
231 * (WkUpIntMsk)
232 * @sessreqintmsk: Session Request/New Session Detected Interrupt Mask
233 * (SessReqIntMsk)
234 * @disconnintmsk: Disconnect Detected Interrupt Mask (DisconnIntMsk)
235 * @conidstschngmsk: Connector ID Status Change Mask (ConIDStsChngMsk)
236 * @ptxfempmsk: Periodic TxFIFO Empty Mask (PTxFEmpMsk)
237 * @hchintmsk: Host Channels Interrupt Mask (HChIntMsk)
238 * @prtintmsk: Host Port Interrupt Mask (PrtIntMsk)
239 * @fetsuspmsk: Data Fetch Suspended Mask (FetSuspMsk)
240 * @incomplpmsk: Incomplete Periodic Transfer Mask (incomplPMsk)
241 * Incomplete Isochronous OUT Transfer Mask
242 * (incompISOOUTMsk)
243 * @incompisoinmsk: Incomplete Isochronous IN Transfer Mask
244 * (incompISOINMsk)
245 * @oepintmsk: OUT Endpoints Interrupt Mask (OEPIntMsk)
246 * @inepintmsk: IN Endpoints Interrupt Mask (INEPIntMsk)
247 * @epmismsk: Endpoint Mismatch Interrupt Mask (EPMisMsk)
248 * @eopfmsk: End of Periodic Frame Interrupt Mask (EOPFMsk)
249 * @isooutdropmsk: Isochronous OUT Packet Dropped Interrupt Mask
250 * (ISOOutDropMsk)
251 * @enumdonemsk: Enumeration Done Mask (EnumDoneMsk)
252 * @usbrstmsk: USB Reset Mask (USBRstMsk)
253 * @usbsuspmsk: USB Suspend Mask (USBSuspMsk)
254 * @erlysuspmsk: Early Suspend Mask (ErlySuspMsk)
255 * @i2cint: I2C Interrupt Mask (I2CINT)
256 * @ulpickintmsk: ULPI Carkit Interrupt Mask (ULPICKINTMsk)
257 * I2C Carkit Interrupt Mask (I2CCKINTMsk)
258 * @goutnakeffmsk: Global OUT NAK Effective Mask (GOUTNakEffMsk)
259 * @ginnakeffmsk: Global Non-Periodic IN NAK Effective Mask
260 * (GINNakEffMsk)
261 * @nptxfempmsk: Non-Periodic TxFIFO Empty Mask (NPTxFEmpMsk)
262 * @rxflvlmsk: Receive FIFO Non-Empty Mask (RxFLvlMsk)
263 * @sofmsk: Start of (micro)Frame Mask (SofMsk)
264 * @otgintmsk: OTG Interrupt Mask (OTGIntMsk)
265 * @modemismsk: Mode Mismatch Interrupt Mask (ModeMisMsk)
266 */
267 struct cvmx_usbcx_gintmsk_s {
268 uint32_t wkupintmsk : 1;
269 uint32_t sessreqintmsk : 1;
270 uint32_t disconnintmsk : 1;
271 uint32_t conidstschngmsk : 1;
272 uint32_t reserved_27_27 : 1;
273 uint32_t ptxfempmsk : 1;
274 uint32_t hchintmsk : 1;
275 uint32_t prtintmsk : 1;
276 uint32_t reserved_23_23 : 1;
277 uint32_t fetsuspmsk : 1;
278 uint32_t incomplpmsk : 1;
279 uint32_t incompisoinmsk : 1;
280 uint32_t oepintmsk : 1;
281 uint32_t inepintmsk : 1;
282 uint32_t epmismsk : 1;
283 uint32_t reserved_16_16 : 1;
284 uint32_t eopfmsk : 1;
285 uint32_t isooutdropmsk : 1;
286 uint32_t enumdonemsk : 1;
287 uint32_t usbrstmsk : 1;
288 uint32_t usbsuspmsk : 1;
289 uint32_t erlysuspmsk : 1;
290 uint32_t i2cint : 1;
291 uint32_t ulpickintmsk : 1;
292 uint32_t goutnakeffmsk : 1;
293 uint32_t ginnakeffmsk : 1;
294 uint32_t nptxfempmsk : 1;
295 uint32_t rxflvlmsk : 1;
296 uint32_t sofmsk : 1;
297 uint32_t otgintmsk : 1;
298 uint32_t modemismsk : 1;
299 uint32_t reserved_0_0 : 1;
300 } s;
301 };
302 typedef union cvmx_usbcx_gintmsk cvmx_usbcx_gintmsk_t;
303
304 /**
305 * cvmx_usbc#_gintsts
306 *
307 * Core Interrupt Register (GINTSTS)
308 *
309 * This register interrupts the application for system-level events in the
310 * current mode of operation (Device mode or Host mode). It is shown in
311 * Interrupt. Some of the bits in this register are valid only in Host mode,
312 * while others are valid in Device mode only. This register also indicates the
313 * current mode of operation. In order to clear the interrupt status bits of
314 * type R_SS_WC, the application must write 1'b1 into the bit. The FIFO status
315 * interrupts are read only; once software reads from or writes to the FIFO
316 * while servicing these interrupts, FIFO interrupt conditions are cleared
317 * automatically.
318 */
319 union cvmx_usbcx_gintsts {
320 uint32_t u32;
321 /**
322 * struct cvmx_usbcx_gintsts_s
323 * @wkupint: Resume/Remote Wakeup Detected Interrupt (WkUpInt)
324 * In Device mode, this interrupt is asserted when a resume is
325 * detected on the USB. In Host mode, this interrupt is asserted
326 * when a remote wakeup is detected on the USB.
327 * For more information on how to use this interrupt, see "Partial
328 * Power-Down and Clock Gating Programming Model" on
329 * page 353.
330 * @sessreqint: Session Request/New Session Detected Interrupt
331 * (SessReqInt)
332 * In Host mode, this interrupt is asserted when a session request
333 * is detected from the device. In Device mode, this interrupt is
334 * asserted when the utmiotg_bvalid signal goes high.
335 * For more information on how to use this interrupt, see "Partial
336 * Power-Down and Clock Gating Programming Model" on
337 * page 353.
338 * @disconnint: Disconnect Detected Interrupt (DisconnInt)
339 * Asserted when a device disconnect is detected.
340 * @conidstschng: Connector ID Status Change (ConIDStsChng)
341 * The core sets this bit when there is a change in connector ID
342 * status.
343 * @ptxfemp: Periodic TxFIFO Empty (PTxFEmp)
344 * Asserted when the Periodic Transmit FIFO is either half or
345 * completely empty and there is space for at least one entry to be
346 * written in the Periodic Request Queue. The half or completely
347 * empty status is determined by the Periodic TxFIFO Empty Level
348 * bit in the Core AHB Configuration register
349 * (GAHBCFG.PTxFEmpLvl).
350 * @hchint: Host Channels Interrupt (HChInt)
351 * The core sets this bit to indicate that an interrupt is pending
352 * on one of the channels of the core (in Host mode). The
353 * application must read the Host All Channels Interrupt (HAINT)
354 * register to determine the exact number of the channel on which
355 * the interrupt occurred, and then read the corresponding Host
356 * Channel-n Interrupt (HCINTn) register to determine the exact
357 * cause of the interrupt. The application must clear the
358 * appropriate status bit in the HCINTn register to clear this bit.
359 * @prtint: Host Port Interrupt (PrtInt)
360 * The core sets this bit to indicate a change in port status of
361 * one of the O2P USB core ports in Host mode. The application must
362 * read the Host Port Control and Status (HPRT) register to
363 * determine the exact event that caused this interrupt. The
364 * application must clear the appropriate status bit in the Host
365 * Port Control and Status register to clear this bit.
366 * @fetsusp: Data Fetch Suspended (FetSusp)
367 * This interrupt is valid only in DMA mode. This interrupt
368 * indicates that the core has stopped fetching data for IN
369 * endpoints due to the unavailability of TxFIFO space or Request
370 * Queue space. This interrupt is used by the application for an
371 * endpoint mismatch algorithm.
372 * @incomplp: Incomplete Periodic Transfer (incomplP)
373 * In Host mode, the core sets this interrupt bit when there are
374 * incomplete periodic transactions still pending which are
375 * scheduled for the current microframe.
376 * Incomplete Isochronous OUT Transfer (incompISOOUT)
377 * The Device mode, the core sets this interrupt to indicate that
378 * there is at least one isochronous OUT endpoint on which the
379 * transfer is not completed in the current microframe. This
380 * interrupt is asserted along with the End of Periodic Frame
381 * Interrupt (EOPF) bit in this register.
382 * @incompisoin: Incomplete Isochronous IN Transfer (incompISOIN)
383 * The core sets this interrupt to indicate that there is at least
384 * one isochronous IN endpoint on which the transfer is not
385 * completed in the current microframe. This interrupt is asserted
386 * along with the End of Periodic Frame Interrupt (EOPF) bit in
387 * this register.
388 * @oepint: OUT Endpoints Interrupt (OEPInt)
389 * The core sets this bit to indicate that an interrupt is pending
390 * on one of the OUT endpoints of the core (in Device mode). The
391 * application must read the Device All Endpoints Interrupt
392 * (DAINT) register to determine the exact number of the OUT
393 * endpoint on which the interrupt occurred, and then read the
394 * corresponding Device OUT Endpoint-n Interrupt (DOEPINTn)
395 * register to determine the exact cause of the interrupt. The
396 * application must clear the appropriate status bit in the
397 * corresponding DOEPINTn register to clear this bit.
398 * @iepint: IN Endpoints Interrupt (IEPInt)
399 * The core sets this bit to indicate that an interrupt is pending
400 * on one of the IN endpoints of the core (in Device mode). The
401 * application must read the Device All Endpoints Interrupt
402 * (DAINT) register to determine the exact number of the IN
403 * endpoint on which the interrupt occurred, and then read the
404 * corresponding Device IN Endpoint-n Interrupt (DIEPINTn)
405 * register to determine the exact cause of the interrupt. The
406 * application must clear the appropriate status bit in the
407 * corresponding DIEPINTn register to clear this bit.
408 * @epmis: Endpoint Mismatch Interrupt (EPMis)
409 * Indicates that an IN token has been received for a non-periodic
410 * endpoint, but the data for another endpoint is present in the
411 * top of the Non-Periodic Transmit FIFO and the IN endpoint
412 * mismatch count programmed by the application has expired.
413 * @eopf: End of Periodic Frame Interrupt (EOPF)
414 * Indicates that the period specified in the Periodic Frame
415 * Interval field of the Device Configuration register
416 * (DCFG.PerFrInt) has been reached in the current microframe.
417 * @isooutdrop: Isochronous OUT Packet Dropped Interrupt (ISOOutDrop)
418 * The core sets this bit when it fails to write an isochronous OUT
419 * packet into the RxFIFO because the RxFIFO doesn't have
420 * enough space to accommodate a maximum packet size packet
421 * for the isochronous OUT endpoint.
422 * @enumdone: Enumeration Done (EnumDone)
423 * The core sets this bit to indicate that speed enumeration is
424 * complete. The application must read the Device Status (DSTS)
425 * register to obtain the enumerated speed.
426 * @usbrst: USB Reset (USBRst)
427 * The core sets this bit to indicate that a reset is detected on
428 * the USB.
429 * @usbsusp: USB Suspend (USBSusp)
430 * The core sets this bit to indicate that a suspend was detected
431 * on the USB. The core enters the Suspended state when there
432 * is no activity on the phy_line_state_i signal for an extended
433 * period of time.
434 * @erlysusp: Early Suspend (ErlySusp)
435 * The core sets this bit to indicate that an Idle state has been
436 * detected on the USB for 3 ms.
437 * @i2cint: I2C Interrupt (I2CINT)
438 * This bit is always 0x0.
439 * @ulpickint: ULPI Carkit Interrupt (ULPICKINT)
440 * This bit is always 0x0.
441 * @goutnakeff: Global OUT NAK Effective (GOUTNakEff)
442 * Indicates that the Set Global OUT NAK bit in the Device Control
443 * register (DCTL.SGOUTNak), set by the application, has taken
444 * effect in the core. This bit can be cleared by writing the Clear
445 * Global OUT NAK bit in the Device Control register
446 * (DCTL.CGOUTNak).
447 * @ginnakeff: Global IN Non-Periodic NAK Effective (GINNakEff)
448 * Indicates that the Set Global Non-Periodic IN NAK bit in the
449 * Device Control register (DCTL.SGNPInNak), set by the
450 * application, has taken effect in the core. That is, the core has
451 * sampled the Global IN NAK bit set by the application. This bit
452 * can be cleared by clearing the Clear Global Non-Periodic IN
453 * NAK bit in the Device Control register (DCTL.CGNPInNak).
454 * This interrupt does not necessarily mean that a NAK handshake
455 * is sent out on the USB. The STALL bit takes precedence over
456 * the NAK bit.
457 * @nptxfemp: Non-Periodic TxFIFO Empty (NPTxFEmp)
458 * This interrupt is asserted when the Non-Periodic TxFIFO is
459 * either half or completely empty, and there is space for at least
460 * one entry to be written to the Non-Periodic Transmit Request
461 * Queue. The half or completely empty status is determined by
462 * the Non-Periodic TxFIFO Empty Level bit in the Core AHB
463 * Configuration register (GAHBCFG.NPTxFEmpLvl).
464 * @rxflvl: RxFIFO Non-Empty (RxFLvl)
465 * Indicates that there is at least one packet pending to be read
466 * from the RxFIFO.
467 * @sof: Start of (micro)Frame (Sof)
468 * In Host mode, the core sets this bit to indicate that an SOF
469 * (FS), micro-SOF (HS), or Keep-Alive (LS) is transmitted on the
470 * USB. The application must write a 1 to this bit to clear the
471 * interrupt.
472 * In Device mode, in the core sets this bit to indicate that an
473 * SOF token has been received on the USB. The application can read
474 * the Device Status register to get the current (micro)frame
475 * number. This interrupt is seen only when the core is operating
476 * at either HS or FS.
477 * @otgint: OTG Interrupt (OTGInt)
478 * The core sets this bit to indicate an OTG protocol event. The
479 * application must read the OTG Interrupt Status (GOTGINT)
480 * register to determine the exact event that caused this
481 * interrupt. The application must clear the appropriate status bit
482 * in the GOTGINT register to clear this bit.
483 * @modemis: Mode Mismatch Interrupt (ModeMis)
484 * The core sets this bit when the application is trying to access:
485 * * A Host mode register, when the core is operating in Device
486 * mode
487 * * A Device mode register, when the core is operating in Host
488 * mode
489 * The register access is completed on the AHB with an OKAY
490 * response, but is ignored by the core internally and doesn't
491 * affect the operation of the core.
492 * @curmod: Current Mode of Operation (CurMod)
493 * Indicates the current mode of operation.
494 * * 1'b0: Device mode
495 * * 1'b1: Host mode
496 */
497 struct cvmx_usbcx_gintsts_s {
498 uint32_t wkupint : 1;
499 uint32_t sessreqint : 1;
500 uint32_t disconnint : 1;
501 uint32_t conidstschng : 1;
502 uint32_t reserved_27_27 : 1;
503 uint32_t ptxfemp : 1;
504 uint32_t hchint : 1;
505 uint32_t prtint : 1;
506 uint32_t reserved_23_23 : 1;
507 uint32_t fetsusp : 1;
508 uint32_t incomplp : 1;
509 uint32_t incompisoin : 1;
510 uint32_t oepint : 1;
511 uint32_t iepint : 1;
512 uint32_t epmis : 1;
513 uint32_t reserved_16_16 : 1;
514 uint32_t eopf : 1;
515 uint32_t isooutdrop : 1;
516 uint32_t enumdone : 1;
517 uint32_t usbrst : 1;
518 uint32_t usbsusp : 1;
519 uint32_t erlysusp : 1;
520 uint32_t i2cint : 1;
521 uint32_t ulpickint : 1;
522 uint32_t goutnakeff : 1;
523 uint32_t ginnakeff : 1;
524 uint32_t nptxfemp : 1;
525 uint32_t rxflvl : 1;
526 uint32_t sof : 1;
527 uint32_t otgint : 1;
528 uint32_t modemis : 1;
529 uint32_t curmod : 1;
530 } s;
531 };
532 typedef union cvmx_usbcx_gintsts cvmx_usbcx_gintsts_t;
533
534 /**
535 * cvmx_usbc#_gnptxfsiz
536 *
537 * Non-Periodic Transmit FIFO Size Register (GNPTXFSIZ)
538 *
539 * The application can program the RAM size and the memory start address for the
540 * Non-Periodic TxFIFO.
541 */
542 union cvmx_usbcx_gnptxfsiz {
543 uint32_t u32;
544 /**
545 * struct cvmx_usbcx_gnptxfsiz_s
546 * @nptxfdep: Non-Periodic TxFIFO Depth (NPTxFDep)
547 * This value is in terms of 32-bit words.
548 * Minimum value is 16
549 * Maximum value is 32768
550 * @nptxfstaddr: Non-Periodic Transmit RAM Start Address (NPTxFStAddr)
551 * This field contains the memory start address for Non-Periodic
552 * Transmit FIFO RAM.
553 */
554 struct cvmx_usbcx_gnptxfsiz_s {
555 uint32_t nptxfdep : 16;
556 uint32_t nptxfstaddr : 16;
557 } s;
558 };
559 typedef union cvmx_usbcx_gnptxfsiz cvmx_usbcx_gnptxfsiz_t;
560
561 /**
562 * cvmx_usbc#_gnptxsts
563 *
564 * Non-Periodic Transmit FIFO/Queue Status Register (GNPTXSTS)
565 *
566 * This read-only register contains the free space information for the
567 * Non-Periodic TxFIFO and the Non-Periodic Transmit Request Queue.
568 */
569 union cvmx_usbcx_gnptxsts {
570 uint32_t u32;
571 /**
572 * struct cvmx_usbcx_gnptxsts_s
573 * @nptxqtop: Top of the Non-Periodic Transmit Request Queue (NPTxQTop)
574 * Entry in the Non-Periodic Tx Request Queue that is currently
575 * being processed by the MAC.
576 * * Bits [30:27]: Channel/endpoint number
577 * * Bits [26:25]:
578 * - 2'b00: IN/OUT token
579 * - 2'b01: Zero-length transmit packet (device IN/host OUT)
580 * - 2'b10: PING/CSPLIT token
581 * - 2'b11: Channel halt command
582 * * Bit [24]: Terminate (last entry for selected channel/endpoint)
583 * @nptxqspcavail: Non-Periodic Transmit Request Queue Space Available
584 * (NPTxQSpcAvail)
585 * Indicates the amount of free space available in the Non-
586 * Periodic Transmit Request Queue. This queue holds both IN
587 * and OUT requests in Host mode. Device mode has only IN
588 * requests.
589 * * 8'h0: Non-Periodic Transmit Request Queue is full
590 * * 8'h1: 1 location available
591 * * 8'h2: 2 locations available
592 * * n: n locations available (0..8)
593 * * Others: Reserved
594 * @nptxfspcavail: Non-Periodic TxFIFO Space Avail (NPTxFSpcAvail)
595 * Indicates the amount of free space available in the Non-
596 * Periodic TxFIFO.
597 * Values are in terms of 32-bit words.
598 * * 16'h0: Non-Periodic TxFIFO is full
599 * * 16'h1: 1 word available
600 * * 16'h2: 2 words available
601 * * 16'hn: n words available (where 0..32768)
602 * * 16'h8000: 32768 words available
603 * * Others: Reserved
604 */
605 struct cvmx_usbcx_gnptxsts_s {
606 uint32_t reserved_31_31 : 1;
607 uint32_t nptxqtop : 7;
608 uint32_t nptxqspcavail : 8;
609 uint32_t nptxfspcavail : 16;
610 } s;
611 };
612 typedef union cvmx_usbcx_gnptxsts cvmx_usbcx_gnptxsts_t;
613
614 /**
615 * cvmx_usbc#_grstctl
616 *
617 * Core Reset Register (GRSTCTL)
618 *
619 * The application uses this register to reset various hardware features inside
620 * the core.
621 */
622 union cvmx_usbcx_grstctl {
623 uint32_t u32;
624 /**
625 * struct cvmx_usbcx_grstctl_s
626 * @ahbidle: AHB Master Idle (AHBIdle)
627 * Indicates that the AHB Master State Machine is in the IDLE
628 * condition.
629 * @dmareq: DMA Request Signal (DMAReq)
630 * Indicates that the DMA request is in progress. Used for debug.
631 * @txfnum: TxFIFO Number (TxFNum)
632 * This is the FIFO number that must be flushed using the TxFIFO
633 * Flush bit. This field must not be changed until the core clears
634 * the TxFIFO Flush bit.
635 * * 5'h0: Non-Periodic TxFIFO flush
636 * * 5'h1: Periodic TxFIFO 1 flush in Device mode or Periodic
637 * TxFIFO flush in Host mode
638 * * 5'h2: Periodic TxFIFO 2 flush in Device mode
639 * - ...
640 * * 5'hF: Periodic TxFIFO 15 flush in Device mode
641 * * 5'h10: Flush all the Periodic and Non-Periodic TxFIFOs in the
642 * core
643 * @txfflsh: TxFIFO Flush (TxFFlsh)
644 * This bit selectively flushes a single or all transmit FIFOs, but
645 * cannot do so if the core is in the midst of a transaction.
646 * The application must only write this bit after checking that the
647 * core is neither writing to the TxFIFO nor reading from the
648 * TxFIFO.
649 * The application must wait until the core clears this bit before
650 * performing any operations. This bit takes 8 clocks (of phy_clk
651 * or hclk, whichever is slower) to clear.
652 * @rxfflsh: RxFIFO Flush (RxFFlsh)
653 * The application can flush the entire RxFIFO using this bit, but
654 * must first ensure that the core is not in the middle of a
655 * transaction.
656 * The application must only write to this bit after checking that
657 * the core is neither reading from the RxFIFO nor writing to the
658 * RxFIFO.
659 * The application must wait until the bit is cleared before
660 * performing any other operations. This bit will take 8 clocks
661 * (slowest of PHY or AHB clock) to clear.
662 * @intknqflsh: IN Token Sequence Learning Queue Flush (INTknQFlsh)
663 * The application writes this bit to flush the IN Token Sequence
664 * Learning Queue.
665 * @frmcntrrst: Host Frame Counter Reset (FrmCntrRst)
666 * The application writes this bit to reset the (micro)frame number
667 * counter inside the core. When the (micro)frame counter is reset,
668 * the subsequent SOF sent out by the core will have a
669 * (micro)frame number of 0.
670 * @hsftrst: HClk Soft Reset (HSftRst)
671 * The application uses this bit to flush the control logic in the
672 * AHB Clock domain. Only AHB Clock Domain pipelines are reset.
673 * * FIFOs are not flushed with this bit.
674 * * All state machines in the AHB clock domain are reset to the
675 * Idle state after terminating the transactions on the AHB,
676 * following the protocol.
677 * * CSR control bits used by the AHB clock domain state
678 * machines are cleared.
679 * * To clear this interrupt, status mask bits that control the
680 * interrupt status and are generated by the AHB clock domain
681 * state machine are cleared.
682 * * Because interrupt status bits are not cleared, the application
683 * can get the status of any core events that occurred after it set
684 * this bit.
685 * This is a self-clearing bit that the core clears after all
686 * necessary logic is reset in the core. This may take several
687 * clocks, depending on the core's current state.
688 * @csftrst: Core Soft Reset (CSftRst)
689 * Resets the hclk and phy_clock domains as follows:
690 * * Clears the interrupts and all the CSR registers except the
691 * following register bits:
692 * - PCGCCTL.RstPdwnModule
693 * - PCGCCTL.GateHclk
694 * - PCGCCTL.PwrClmp
695 * - PCGCCTL.StopPPhyLPwrClkSelclk
696 * - GUSBCFG.PhyLPwrClkSel
697 * - GUSBCFG.DDRSel
698 * - GUSBCFG.PHYSel
699 * - GUSBCFG.FSIntf
700 * - GUSBCFG.ULPI_UTMI_Sel
701 * - GUSBCFG.PHYIf
702 * - HCFG.FSLSPclkSel
703 * - DCFG.DevSpd
704 * * All module state machines (except the AHB Slave Unit) are
705 * reset to the IDLE state, and all the transmit FIFOs and the
706 * receive FIFO are flushed.
707 * * Any transactions on the AHB Master are terminated as soon
708 * as possible, after gracefully completing the last data phase of
709 * an AHB transfer. Any transactions on the USB are terminated
710 * immediately.
711 * The application can write to this bit any time it wants to reset
712 * the core. This is a self-clearing bit and the core clears this
713 * bit after all the necessary logic is reset in the core, which
714 * may take several clocks, depending on the current state of the
715 * core. Once this bit is cleared software should wait at least 3
716 * PHY clocks before doing any access to the PHY domain
717 * (synchronization delay). Software should also should check that
718 * bit 31 of this register is 1 (AHB Master is IDLE) before
719 * starting any operation.
720 * Typically software reset is used during software development
721 * and also when you dynamically change the PHY selection bits
722 * in the USB configuration registers listed above. When you
723 * change the PHY, the corresponding clock for the PHY is
724 * selected and used in the PHY domain. Once a new clock is
725 * selected, the PHY domain has to be reset for proper operation.
726 */
727 struct cvmx_usbcx_grstctl_s {
728 uint32_t ahbidle : 1;
729 uint32_t dmareq : 1;
730 uint32_t reserved_11_29 : 19;
731 uint32_t txfnum : 5;
732 uint32_t txfflsh : 1;
733 uint32_t rxfflsh : 1;
734 uint32_t intknqflsh : 1;
735 uint32_t frmcntrrst : 1;
736 uint32_t hsftrst : 1;
737 uint32_t csftrst : 1;
738 } s;
739 };
740 typedef union cvmx_usbcx_grstctl cvmx_usbcx_grstctl_t;
741
742 /**
743 * cvmx_usbc#_grxfsiz
744 *
745 * Receive FIFO Size Register (GRXFSIZ)
746 *
747 * The application can program the RAM size that must be allocated to the
748 * RxFIFO.
749 */
750 union cvmx_usbcx_grxfsiz {
751 uint32_t u32;
752 /**
753 * struct cvmx_usbcx_grxfsiz_s
754 * @rxfdep: RxFIFO Depth (RxFDep)
755 * This value is in terms of 32-bit words.
756 * * Minimum value is 16
757 * * Maximum value is 32768
758 */
759 struct cvmx_usbcx_grxfsiz_s {
760 uint32_t reserved_16_31 : 16;
761 uint32_t rxfdep : 16;
762 } s;
763 };
764 typedef union cvmx_usbcx_grxfsiz cvmx_usbcx_grxfsiz_t;
765
766 /**
767 * cvmx_usbc#_grxstsph
768 *
769 * Receive Status Read and Pop Register, Host Mode (GRXSTSPH)
770 *
771 * A read to the Receive Status Read and Pop register returns and additionally
772 * pops the top data entry out of the RxFIFO.
773 * This Description is only valid when the core is in Host Mode. For Device Mode
774 * use USBC_GRXSTSPD instead.
775 * NOTE: GRXSTSPH and GRXSTSPD are physically the same register and share the
776 * same offset in the O2P USB core. The offset difference shown in this
777 * document is for software clarity and is actually ignored by the
778 * hardware.
779 */
780 union cvmx_usbcx_grxstsph {
781 uint32_t u32;
782 /**
783 * struct cvmx_usbcx_grxstsph_s
784 * @pktsts: Packet Status (PktSts)
785 * Indicates the status of the received packet
786 * * 4'b0010: IN data packet received
787 * * 4'b0011: IN transfer completed (triggers an interrupt)
788 * * 4'b0101: Data toggle error (triggers an interrupt)
789 * * 4'b0111: Channel halted (triggers an interrupt)
790 * * Others: Reserved
791 * @dpid: Data PID (DPID)
792 * * 2'b00: DATA0
793 * * 2'b10: DATA1
794 * * 2'b01: DATA2
795 * * 2'b11: MDATA
796 * @bcnt: Byte Count (BCnt)
797 * Indicates the byte count of the received IN data packet
798 * @chnum: Channel Number (ChNum)
799 * Indicates the channel number to which the current received
800 * packet belongs.
801 */
802 struct cvmx_usbcx_grxstsph_s {
803 uint32_t reserved_21_31 : 11;
804 uint32_t pktsts : 4;
805 uint32_t dpid : 2;
806 uint32_t bcnt : 11;
807 uint32_t chnum : 4;
808 } s;
809 };
810 typedef union cvmx_usbcx_grxstsph cvmx_usbcx_grxstsph_t;
811
812 /**
813 * cvmx_usbc#_gusbcfg
814 *
815 * Core USB Configuration Register (GUSBCFG)
816 *
817 * This register can be used to configure the core after power-on or a changing
818 * to Host mode or Device mode. It contains USB and USB-PHY related
819 * configuration parameters. The application must program this register before
820 * starting any transactions on either the AHB or the USB. Do not make changes
821 * to this register after the initial programming.
822 */
823 union cvmx_usbcx_gusbcfg {
824 uint32_t u32;
825 /**
826 * struct cvmx_usbcx_gusbcfg_s
827 * @otgi2csel: UTMIFS or I2C Interface Select (OtgI2CSel)
828 * This bit is always 0x0.
829 * @phylpwrclksel: PHY Low-Power Clock Select (PhyLPwrClkSel)
830 * Software should set this bit to 0x0.
831 * Selects either 480-MHz or 48-MHz (low-power) PHY mode. In
832 * FS and LS modes, the PHY can usually operate on a 48-MHz
833 * clock to save power.
834 * * 1'b0: 480-MHz Internal PLL clock
835 * * 1'b1: 48-MHz External Clock
836 * In 480 MHz mode, the UTMI interface operates at either 60 or
837 * 30-MHz, depending upon whether 8- or 16-bit data width is
838 * selected. In 48-MHz mode, the UTMI interface operates at 48
839 * MHz in FS mode and at either 48 or 6 MHz in LS mode
840 * (depending on the PHY vendor).
841 * This bit drives the utmi_fsls_low_power core output signal, and
842 * is valid only for UTMI+ PHYs.
843 * @usbtrdtim: USB Turnaround Time (USBTrdTim)
844 * Sets the turnaround time in PHY clocks.
845 * Specifies the response time for a MAC request to the Packet
846 * FIFO Controller (PFC) to fetch data from the DFIFO (SPRAM).
847 * This must be programmed to 0x5.
848 * @hnpcap: HNP-Capable (HNPCap)
849 * This bit is always 0x0.
850 * @srpcap: SRP-Capable (SRPCap)
851 * This bit is always 0x0.
852 * @ddrsel: ULPI DDR Select (DDRSel)
853 * Software should set this bit to 0x0.
854 * @physel: USB 2.0 High-Speed PHY or USB 1.1 Full-Speed Serial
855 * Software should set this bit to 0x0.
856 * @fsintf: Full-Speed Serial Interface Select (FSIntf)
857 * Software should set this bit to 0x0.
858 * @ulpi_utmi_sel: ULPI or UTMI+ Select (ULPI_UTMI_Sel)
859 * This bit is always 0x0.
860 * @phyif: PHY Interface (PHYIf)
861 * This bit is always 0x1.
862 * @toutcal: HS/FS Timeout Calibration (TOutCal)
863 * The number of PHY clocks that the application programs in this
864 * field is added to the high-speed/full-speed interpacket timeout
865 * duration in the core to account for any additional delays
866 * introduced by the PHY. This may be required, since the delay
867 * introduced by the PHY in generating the linestate condition may
868 * vary from one PHY to another.
869 * The USB standard timeout value for high-speed operation is
870 * 736 to 816 (inclusive) bit times. The USB standard timeout
871 * value for full-speed operation is 16 to 18 (inclusive) bit
872 * times. The application must program this field based on the
873 * speed of enumeration. The number of bit times added per PHY
874 * clock are:
875 * High-speed operation:
876 * * One 30-MHz PHY clock = 16 bit times
877 * * One 60-MHz PHY clock = 8 bit times
878 * Full-speed operation:
879 * * One 30-MHz PHY clock = 0.4 bit times
880 * * One 60-MHz PHY clock = 0.2 bit times
881 * * One 48-MHz PHY clock = 0.25 bit times
882 */
883 struct cvmx_usbcx_gusbcfg_s {
884 uint32_t reserved_17_31 : 15;
885 uint32_t otgi2csel : 1;
886 uint32_t phylpwrclksel : 1;
887 uint32_t reserved_14_14 : 1;
888 uint32_t usbtrdtim : 4;
889 uint32_t hnpcap : 1;
890 uint32_t srpcap : 1;
891 uint32_t ddrsel : 1;
892 uint32_t physel : 1;
893 uint32_t fsintf : 1;
894 uint32_t ulpi_utmi_sel : 1;
895 uint32_t phyif : 1;
896 uint32_t toutcal : 3;
897 } s;
898 };
899 typedef union cvmx_usbcx_gusbcfg cvmx_usbcx_gusbcfg_t;
900
901 /**
902 * cvmx_usbc#_haint
903 *
904 * Host All Channels Interrupt Register (HAINT)
905 *
906 * When a significant event occurs on a channel, the Host All Channels Interrupt
907 * register interrupts the application using the Host Channels Interrupt bit of
908 * the Core Interrupt register (GINTSTS.HChInt). This is shown in Interrupt.
909 * There is one interrupt bit per channel, up to a maximum of 16 bits. Bits in
910 * this register are set and cleared when the application sets and clears bits
911 * in the corresponding Host Channel-n Interrupt register.
912 */
913 union cvmx_usbcx_haint {
914 uint32_t u32;
915 /**
916 * struct cvmx_usbcx_haint_s
917 * @haint: Channel Interrupts (HAINT)
918 * One bit per channel: Bit 0 for Channel 0, bit 15 for Channel 15
919 */
920 struct cvmx_usbcx_haint_s {
921 uint32_t reserved_16_31 : 16;
922 uint32_t haint : 16;
923 } s;
924 };
925 typedef union cvmx_usbcx_haint cvmx_usbcx_haint_t;
926
927 /**
928 * cvmx_usbc#_haintmsk
929 *
930 * Host All Channels Interrupt Mask Register (HAINTMSK)
931 *
932 * The Host All Channel Interrupt Mask register works with the Host All Channel
933 * Interrupt register to interrupt the application when an event occurs on a
934 * channel. There is one interrupt mask bit per channel, up to a maximum of 16
935 * bits.
936 * Mask interrupt: 1'b0 Unmask interrupt: 1'b1
937 */
938 union cvmx_usbcx_haintmsk {
939 uint32_t u32;
940 /**
941 * struct cvmx_usbcx_haintmsk_s
942 * @haintmsk: Channel Interrupt Mask (HAINTMsk)
943 * One bit per channel: Bit 0 for channel 0, bit 15 for channel 15
944 */
945 struct cvmx_usbcx_haintmsk_s {
946 uint32_t reserved_16_31 : 16;
947 uint32_t haintmsk : 16;
948 } s;
949 };
950 typedef union cvmx_usbcx_haintmsk cvmx_usbcx_haintmsk_t;
951
952 /**
953 * cvmx_usbc#_hcchar#
954 *
955 * Host Channel-n Characteristics Register (HCCHAR)
956 *
957 */
958 union cvmx_usbcx_hccharx {
959 uint32_t u32;
960 /**
961 * struct cvmx_usbcx_hccharx_s
962 * @chena: Channel Enable (ChEna)
963 * This field is set by the application and cleared by the OTG
964 * host.
965 * * 1'b0: Channel disabled
966 * * 1'b1: Channel enabled
967 * @chdis: Channel Disable (ChDis)
968 * The application sets this bit to stop transmitting/receiving
969 * data on a channel, even before the transfer for that channel is
970 * complete. The application must wait for the Channel Disabled
971 * interrupt before treating the channel as disabled.
972 * @oddfrm: Odd Frame (OddFrm)
973 * This field is set (reset) by the application to indicate that
974 * the OTG host must perform a transfer in an odd (micro)frame.
975 * This field is applicable for only periodic (isochronous and
976 * interrupt) transactions.
977 * * 1'b0: Even (micro)frame
978 * * 1'b1: Odd (micro)frame
979 * @devaddr: Device Address (DevAddr)
980 * This field selects the specific device serving as the data
981 * source or sink.
982 * @ec: Multi Count (MC) / Error Count (EC)
983 * When the Split Enable bit of the Host Channel-n Split Control
984 * register (HCSPLTn.SpltEna) is reset (1'b0), this field indicates
985 * to the host the number of transactions that should be executed
986 * per microframe for this endpoint.
987 * * 2'b00: Reserved. This field yields undefined results.
988 * * 2'b01: 1 transaction
989 * * 2'b10: 2 transactions to be issued for this endpoint per
990 * microframe
991 * * 2'b11: 3 transactions to be issued for this endpoint per
992 * microframe
993 * When HCSPLTn.SpltEna is set (1'b1), this field indicates the
994 * number of immediate retries to be performed for a periodic split
995 * transactions on transaction errors. This field must be set to at
996 * least 2'b01.
997 * @eptype: Endpoint Type (EPType)
998 * Indicates the transfer type selected.
999 * * 2'b00: Control
1000 * * 2'b01: Isochronous
1001 * * 2'b10: Bulk
1002 * * 2'b11: Interrupt
1003 * @lspddev: Low-Speed Device (LSpdDev)
1004 * This field is set by the application to indicate that this
1005 * channel is communicating to a low-speed device.
1006 * @epdir: Endpoint Direction (EPDir)
1007 * Indicates whether the transaction is IN or OUT.
1008 * * 1'b0: OUT
1009 * * 1'b1: IN
1010 * @epnum: Endpoint Number (EPNum)
1011 * Indicates the endpoint number on the device serving as the
1012 * data source or sink.
1013 * @mps: Maximum Packet Size (MPS)
1014 * Indicates the maximum packet size of the associated endpoint.
1015 */
1016 struct cvmx_usbcx_hccharx_s {
1017 uint32_t chena : 1;
1018 uint32_t chdis : 1;
1019 uint32_t oddfrm : 1;
1020 uint32_t devaddr : 7;
1021 uint32_t ec : 2;
1022 uint32_t eptype : 2;
1023 uint32_t lspddev : 1;
1024 uint32_t reserved_16_16 : 1;
1025 uint32_t epdir : 1;
1026 uint32_t epnum : 4;
1027 uint32_t mps : 11;
1028 } s;
1029 };
1030 typedef union cvmx_usbcx_hccharx cvmx_usbcx_hccharx_t;
1031
1032 /**
1033 * cvmx_usbc#_hcfg
1034 *
1035 * Host Configuration Register (HCFG)
1036 *
1037 * This register configures the core after power-on. Do not make changes to this
1038 * register after initializing the host.
1039 */
1040 union cvmx_usbcx_hcfg {
1041 uint32_t u32;
1042 /**
1043 * struct cvmx_usbcx_hcfg_s
1044 * @fslssupp: FS- and LS-Only Support (FSLSSupp)
1045 * The application uses this bit to control the core's enumeration
1046 * speed. Using this bit, the application can make the core
1047 * enumerate as a FS host, even if the connected device supports
1048 * HS traffic. Do not make changes to this field after initial
1049 * programming.
1050 * * 1'b0: HS/FS/LS, based on the maximum speed supported by
1051 * the connected device
1052 * * 1'b1: FS/LS-only, even if the connected device can support HS
1053 * @fslspclksel: FS/LS PHY Clock Select (FSLSPclkSel)
1054 * When the core is in FS Host mode
1055 * * 2'b00: PHY clock is running at 30/60 MHz
1056 * * 2'b01: PHY clock is running at 48 MHz
1057 * * Others: Reserved
1058 * When the core is in LS Host mode
1059 * * 2'b00: PHY clock is running at 30/60 MHz. When the
1060 * UTMI+/ULPI PHY Low Power mode is not selected, use
1061 * 30/60 MHz.
1062 * * 2'b01: PHY clock is running at 48 MHz. When the UTMI+
1063 * PHY Low Power mode is selected, use 48MHz if the PHY
1064 * supplies a 48 MHz clock during LS mode.
1065 * * 2'b10: PHY clock is running at 6 MHz. In USB 1.1 FS mode,
1066 * use 6 MHz when the UTMI+ PHY Low Power mode is
1067 * selected and the PHY supplies a 6 MHz clock during LS
1068 * mode. If you select a 6 MHz clock during LS mode, you must
1069 * do a soft reset.
1070 * * 2'b11: Reserved
1071 */
1072 struct cvmx_usbcx_hcfg_s {
1073 uint32_t reserved_3_31 : 29;
1074 uint32_t fslssupp : 1;
1075 uint32_t fslspclksel : 2;
1076 } s;
1077 };
1078 typedef union cvmx_usbcx_hcfg cvmx_usbcx_hcfg_t;
1079
1080 /**
1081 * cvmx_usbc#_hcint#
1082 *
1083 * Host Channel-n Interrupt Register (HCINT)
1084 *
1085 * This register indicates the status of a channel with respect to USB- and
1086 * AHB-related events. The application must read this register when the Host
1087 * Channels Interrupt bit of the Core Interrupt register (GINTSTS.HChInt) is
1088 * set. Before the application can read this register, it must first read
1089 * the Host All Channels Interrupt (HAINT) register to get the exact channel
1090 * number for the Host Channel-n Interrupt register. The application must clear
1091 * the appropriate bit in this register to clear the corresponding bits in the
1092 * HAINT and GINTSTS registers.
1093 */
1094 union cvmx_usbcx_hcintx {
1095 uint32_t u32;
1096 /**
1097 * struct cvmx_usbcx_hcintx_s
1098 * @datatglerr: Data Toggle Error (DataTglErr)
1099 * @frmovrun: Frame Overrun (FrmOvrun)
1100 * @bblerr: Babble Error (BblErr)
1101 * @xacterr: Transaction Error (XactErr)
1102 * @nyet: NYET Response Received Interrupt (NYET)
1103 * @ack: ACK Response Received Interrupt (ACK)
1104 * @nak: NAK Response Received Interrupt (NAK)
1105 * @stall: STALL Response Received Interrupt (STALL)
1106 * @ahberr: This bit is always 0x0.
1107 * @chhltd: Channel Halted (ChHltd)
1108 * Indicates the transfer completed abnormally either because of
1109 * any USB transaction error or in response to disable request by
1110 * the application.
1111 * @xfercompl: Transfer Completed (XferCompl)
1112 * Transfer completed normally without any errors.
1113 */
1114 struct cvmx_usbcx_hcintx_s {
1115 uint32_t reserved_11_31 : 21;
1116 uint32_t datatglerr : 1;
1117 uint32_t frmovrun : 1;
1118 uint32_t bblerr : 1;
1119 uint32_t xacterr : 1;
1120 uint32_t nyet : 1;
1121 uint32_t ack : 1;
1122 uint32_t nak : 1;
1123 uint32_t stall : 1;
1124 uint32_t ahberr : 1;
1125 uint32_t chhltd : 1;
1126 uint32_t xfercompl : 1;
1127 } s;
1128 };
1129 typedef union cvmx_usbcx_hcintx cvmx_usbcx_hcintx_t;
1130
1131 /**
1132 * cvmx_usbc#_hcintmsk#
1133 *
1134 * Host Channel-n Interrupt Mask Register (HCINTMSKn)
1135 *
1136 * This register reflects the mask for each channel status described in the
1137 * previous section.
1138 * Mask interrupt: 1'b0 Unmask interrupt: 1'b1
1139 */
1140 union cvmx_usbcx_hcintmskx {
1141 uint32_t u32;
1142 /**
1143 * struct cvmx_usbcx_hcintmskx_s
1144 * @datatglerrmsk: Data Toggle Error Mask (DataTglErrMsk)
1145 * @frmovrunmsk: Frame Overrun Mask (FrmOvrunMsk)
1146 * @bblerrmsk: Babble Error Mask (BblErrMsk)
1147 * @xacterrmsk: Transaction Error Mask (XactErrMsk)
1148 * @nyetmsk: NYET Response Received Interrupt Mask (NyetMsk)
1149 * @ackmsk: ACK Response Received Interrupt Mask (AckMsk)
1150 * @nakmsk: NAK Response Received Interrupt Mask (NakMsk)
1151 * @stallmsk: STALL Response Received Interrupt Mask (StallMsk)
1152 * @ahberrmsk: AHB Error Mask (AHBErrMsk)
1153 * @chhltdmsk: Channel Halted Mask (ChHltdMsk)
1154 * @xfercomplmsk: Transfer Completed Mask (XferComplMsk)
1155 */
1156 struct cvmx_usbcx_hcintmskx_s {
1157 uint32_t reserved_11_31 : 21;
1158 uint32_t datatglerrmsk : 1;
1159 uint32_t frmovrunmsk : 1;
1160 uint32_t bblerrmsk : 1;
1161 uint32_t xacterrmsk : 1;
1162 uint32_t nyetmsk : 1;
1163 uint32_t ackmsk : 1;
1164 uint32_t nakmsk : 1;
1165 uint32_t stallmsk : 1;
1166 uint32_t ahberrmsk : 1;
1167 uint32_t chhltdmsk : 1;
1168 uint32_t xfercomplmsk : 1;
1169 } s;
1170 };
1171 typedef union cvmx_usbcx_hcintmskx cvmx_usbcx_hcintmskx_t;
1172
1173 /**
1174 * cvmx_usbc#_hcsplt#
1175 *
1176 * Host Channel-n Split Control Register (HCSPLT)
1177 *
1178 */
1179 union cvmx_usbcx_hcspltx {
1180 uint32_t u32;
1181 /**
1182 * struct cvmx_usbcx_hcspltx_s
1183 * @spltena: Split Enable (SpltEna)
1184 * The application sets this field to indicate that this channel is
1185 * enabled to perform split transactions.
1186 * @compsplt: Do Complete Split (CompSplt)
1187 * The application sets this field to request the OTG host to
1188 * perform a complete split transaction.
1189 * @xactpos: Transaction Position (XactPos)
1190 * This field is used to determine whether to send all, first,
1191 * middle, or last payloads with each OUT transaction.
1192 * * 2'b11: All. This is the entire data payload is of this
1193 * transaction (which is less than or equal to 188 bytes).
1194 * * 2'b10: Begin. This is the first data payload of this
1195 * transaction (which is larger than 188 bytes).
1196 * * 2'b00: Mid. This is the middle payload of this transaction
1197 * (which is larger than 188 bytes).
1198 * * 2'b01: End. This is the last payload of this transaction
1199 * (which is larger than 188 bytes).
1200 * @hubaddr: Hub Address (HubAddr)
1201 * This field holds the device address of the transaction
1202 * translator's hub.
1203 * @prtaddr: Port Address (PrtAddr)
1204 * This field is the port number of the recipient transaction
1205 * translator.
1206 */
1207 struct cvmx_usbcx_hcspltx_s {
1208 uint32_t spltena : 1;
1209 uint32_t reserved_17_30 : 14;
1210 uint32_t compsplt : 1;
1211 uint32_t xactpos : 2;
1212 uint32_t hubaddr : 7;
1213 uint32_t prtaddr : 7;
1214 } s;
1215 };
1216 typedef union cvmx_usbcx_hcspltx cvmx_usbcx_hcspltx_t;
1217
1218 /**
1219 * cvmx_usbc#_hctsiz#
1220 *
1221 * Host Channel-n Transfer Size Register (HCTSIZ)
1222 *
1223 */
1224 union cvmx_usbcx_hctsizx {
1225 uint32_t u32;
1226 /**
1227 * struct cvmx_usbcx_hctsizx_s
1228 * @dopng: Do Ping (DoPng)
1229 * Setting this field to 1 directs the host to do PING protocol.
1230 * @pid: PID (Pid)
1231 * The application programs this field with the type of PID to use
1232 * for the initial transaction. The host will maintain this field
1233 * for the rest of the transfer.
1234 * * 2'b00: DATA0
1235 * * 2'b01: DATA2
1236 * * 2'b10: DATA1
1237 * * 2'b11: MDATA (non-control)/SETUP (control)
1238 * @pktcnt: Packet Count (PktCnt)
1239 * This field is programmed by the application with the expected
1240 * number of packets to be transmitted (OUT) or received (IN).
1241 * The host decrements this count on every successful
1242 * transmission or reception of an OUT/IN packet. Once this count
1243 * reaches zero, the application is interrupted to indicate normal
1244 * completion.
1245 * @xfersize: Transfer Size (XferSize)
1246 * For an OUT, this field is the number of data bytes the host will
1247 * send during the transfer.
1248 * For an IN, this field is the buffer size that the application
1249 * has reserved for the transfer. The application is expected to
1250 * program this field as an integer multiple of the maximum packet
1251 * size for IN transactions (periodic and non-periodic).
1252 */
1253 struct cvmx_usbcx_hctsizx_s {
1254 uint32_t dopng : 1;
1255 uint32_t pid : 2;
1256 uint32_t pktcnt : 10;
1257 uint32_t xfersize : 19;
1258 } s;
1259 };
1260 typedef union cvmx_usbcx_hctsizx cvmx_usbcx_hctsizx_t;
1261
1262 /**
1263 * cvmx_usbc#_hfir
1264 *
1265 * Host Frame Interval Register (HFIR)
1266 *
1267 * This register stores the frame interval information for the current speed to
1268 * which the O2P USB core has enumerated.
1269 */
1270 union cvmx_usbcx_hfir {
1271 uint32_t u32;
1272 /**
1273 * struct cvmx_usbcx_hfir_s
1274 * @frint: Frame Interval (FrInt)
1275 * The value that the application programs to this field specifies
1276 * the interval between two consecutive SOFs (FS) or micro-
1277 * SOFs (HS) or Keep-Alive tokens (HS). This field contains the
1278 * number of PHY clocks that constitute the required frame
1279 * interval. The default value set in this field for a FS operation
1280 * when the PHY clock frequency is 60 MHz. The application can
1281 * write a value to this register only after the Port Enable bit of
1282 * the Host Port Control and Status register (HPRT.PrtEnaPort)
1283 * has been set. If no value is programmed, the core calculates
1284 * the value based on the PHY clock specified in the FS/LS PHY
1285 * Clock Select field of the Host Configuration register
1286 * (HCFG.FSLSPclkSel). Do not change the value of this field
1287 * after the initial configuration.
1288 * * 125 us (PHY clock frequency for HS)
1289 * * 1 ms (PHY clock frequency for FS/LS)
1290 */
1291 struct cvmx_usbcx_hfir_s {
1292 uint32_t reserved_16_31 : 16;
1293 uint32_t frint : 16;
1294 } s;
1295 };
1296 typedef union cvmx_usbcx_hfir cvmx_usbcx_hfir_t;
1297
1298 /**
1299 * cvmx_usbc#_hfnum
1300 *
1301 * Host Frame Number/Frame Time Remaining Register (HFNUM)
1302 *
1303 * This register indicates the current frame number.
1304 * It also indicates the time remaining (in terms of the number of PHY clocks)
1305 * in the current (micro)frame.
1306 */
1307 union cvmx_usbcx_hfnum {
1308 uint32_t u32;
1309 /**
1310 * struct cvmx_usbcx_hfnum_s
1311 * @frrem: Frame Time Remaining (FrRem)
1312 * Indicates the amount of time remaining in the current
1313 * microframe (HS) or frame (FS/LS), in terms of PHY clocks.
1314 * This field decrements on each PHY clock. When it reaches
1315 * zero, this field is reloaded with the value in the Frame
1316 * Interval register and a new SOF is transmitted on the USB.
1317 * @frnum: Frame Number (FrNum)
1318 * This field increments when a new SOF is transmitted on the
1319 * USB, and is reset to 0 when it reaches 16'h3FFF.
1320 */
1321 struct cvmx_usbcx_hfnum_s {
1322 uint32_t frrem : 16;
1323 uint32_t frnum : 16;
1324 } s;
1325 };
1326 typedef union cvmx_usbcx_hfnum cvmx_usbcx_hfnum_t;
1327
1328 /**
1329 * cvmx_usbc#_hprt
1330 *
1331 * Host Port Control and Status Register (HPRT)
1332 *
1333 * This register is available in both Host and Device modes.
1334 * Currently, the OTG Host supports only one port.
1335 * A single register holds USB port-related information such as USB reset,
1336 * enable, suspend, resume, connect status, and test mode for each port. The
1337 * R_SS_WC bits in this register can trigger an interrupt to the application
1338 * through the Host Port Interrupt bit of the Core Interrupt register
1339 * (GINTSTS.PrtInt). On a Port Interrupt, the application must read this
1340 * register and clear the bit that caused the interrupt. For the R_SS_WC bits,
1341 * the application must write a 1 to the bit to clear the interrupt.
1342 */
1343 union cvmx_usbcx_hprt {
1344 uint32_t u32;
1345 /**
1346 * struct cvmx_usbcx_hprt_s
1347 * @prtspd: Port Speed (PrtSpd)
1348 * Indicates the speed of the device attached to this port.
1349 * * 2'b00: High speed
1350 * * 2'b01: Full speed
1351 * * 2'b10: Low speed
1352 * * 2'b11: Reserved
1353 * @prttstctl: Port Test Control (PrtTstCtl)
1354 * The application writes a nonzero value to this field to put
1355 * the port into a Test mode, and the corresponding pattern is
1356 * signaled on the port.
1357 * * 4'b0000: Test mode disabled
1358 * * 4'b0001: Test_J mode
1359 * * 4'b0010: Test_K mode
1360 * * 4'b0011: Test_SE0_NAK mode
1361 * * 4'b0100: Test_Packet mode
1362 * * 4'b0101: Test_Force_Enable
1363 * * Others: Reserved
1364 * PrtSpd must be zero (i.e. the interface must be in high-speed
1365 * mode) to use the PrtTstCtl test modes.
1366 * @prtpwr: Port Power (PrtPwr)
1367 * The application uses this field to control power to this port,
1368 * and the core clears this bit on an overcurrent condition.
1369 * * 1'b0: Power off
1370 * * 1'b1: Power on
1371 * @prtlnsts: Port Line Status (PrtLnSts)
1372 * Indicates the current logic level USB data lines
1373 * * Bit [10]: Logic level of D-
1374 * * Bit [11]: Logic level of D+
1375 * @prtrst: Port Reset (PrtRst)
1376 * When the application sets this bit, a reset sequence is
1377 * started on this port. The application must time the reset
1378 * period and clear this bit after the reset sequence is
1379 * complete.
1380 * * 1'b0: Port not in reset
1381 * * 1'b1: Port in reset
1382 * The application must leave this bit set for at least a
1383 * minimum duration mentioned below to start a reset on the
1384 * port. The application can leave it set for another 10 ms in
1385 * addition to the required minimum duration, before clearing
1386 * the bit, even though there is no maximum limit set by the
1387 * USB standard.
1388 * * High speed: 50 ms
1389 * * Full speed/Low speed: 10 ms
1390 * @prtsusp: Port Suspend (PrtSusp)
1391 * The application sets this bit to put this port in Suspend
1392 * mode. The core only stops sending SOFs when this is set.
1393 * To stop the PHY clock, the application must set the Port
1394 * Clock Stop bit, which will assert the suspend input pin of
1395 * the PHY.
1396 * The read value of this bit reflects the current suspend
1397 * status of the port. This bit is cleared by the core after a
1398 * remote wakeup signal is detected or the application sets
1399 * the Port Reset bit or Port Resume bit in this register or the
1400 * Resume/Remote Wakeup Detected Interrupt bit or
1401 * Disconnect Detected Interrupt bit in the Core Interrupt
1402 * register (GINTSTS.WkUpInt or GINTSTS.DisconnInt,
1403 * respectively).
1404 * * 1'b0: Port not in Suspend mode
1405 * * 1'b1: Port in Suspend mode
1406 * @prtres: Port Resume (PrtRes)
1407 * The application sets this bit to drive resume signaling on
1408 * the port. The core continues to drive the resume signal
1409 * until the application clears this bit.
1410 * If the core detects a USB remote wakeup sequence, as
1411 * indicated by the Port Resume/Remote Wakeup Detected
1412 * Interrupt bit of the Core Interrupt register
1413 * (GINTSTS.WkUpInt), the core starts driving resume
1414 * signaling without application intervention and clears this bit
1415 * when it detects a disconnect condition. The read value of
1416 * this bit indicates whether the core is currently driving
1417 * resume signaling.
1418 * * 1'b0: No resume driven
1419 * * 1'b1: Resume driven
1420 * @prtovrcurrchng: Port Overcurrent Change (PrtOvrCurrChng)
1421 * The core sets this bit when the status of the Port
1422 * Overcurrent Active bit (bit 4) in this register changes.
1423 * @prtovrcurract: Port Overcurrent Active (PrtOvrCurrAct)
1424 * Indicates the overcurrent condition of the port.
1425 * * 1'b0: No overcurrent condition
1426 * * 1'b1: Overcurrent condition
1427 * @prtenchng: Port Enable/Disable Change (PrtEnChng)
1428 * The core sets this bit when the status of the Port Enable bit
1429 * [2] of this register changes.
1430 * @prtena: Port Enable (PrtEna)
1431 * A port is enabled only by the core after a reset sequence,
1432 * and is disabled by an overcurrent condition, a disconnect
1433 * condition, or by the application clearing this bit. The
1434 * application cannot set this bit by a register write. It can only
1435 * clear it to disable the port. This bit does not trigger any
1436 * interrupt to the application.
1437 * * 1'b0: Port disabled
1438 * * 1'b1: Port enabled
1439 * @prtconndet: Port Connect Detected (PrtConnDet)
1440 * The core sets this bit when a device connection is detected
1441 * to trigger an interrupt to the application using the Host Port
1442 * Interrupt bit of the Core Interrupt register (GINTSTS.PrtInt).
1443 * The application must write a 1 to this bit to clear the
1444 * interrupt.
1445 * @prtconnsts: Port Connect Status (PrtConnSts)
1446 * * 0: No device is attached to the port.
1447 * * 1: A device is attached to the port.
1448 */
1449 struct cvmx_usbcx_hprt_s {
1450 uint32_t reserved_19_31 : 13;
1451 uint32_t prtspd : 2;
1452 uint32_t prttstctl : 4;
1453 uint32_t prtpwr : 1;
1454 uint32_t prtlnsts : 2;
1455 uint32_t reserved_9_9 : 1;
1456 uint32_t prtrst : 1;
1457 uint32_t prtsusp : 1;
1458 uint32_t prtres : 1;
1459 uint32_t prtovrcurrchng : 1;
1460 uint32_t prtovrcurract : 1;
1461 uint32_t prtenchng : 1;
1462 uint32_t prtena : 1;
1463 uint32_t prtconndet : 1;
1464 uint32_t prtconnsts : 1;
1465 } s;
1466 };
1467 typedef union cvmx_usbcx_hprt cvmx_usbcx_hprt_t;
1468
1469 /**
1470 * cvmx_usbc#_hptxfsiz
1471 *
1472 * Host Periodic Transmit FIFO Size Register (HPTXFSIZ)
1473 *
1474 * This register holds the size and the memory start address of the Periodic
1475 * TxFIFO, as shown in Figures 310 and 311.
1476 */
1477 union cvmx_usbcx_hptxfsiz {
1478 uint32_t u32;
1479 /**
1480 * struct cvmx_usbcx_hptxfsiz_s
1481 * @ptxfsize: Host Periodic TxFIFO Depth (PTxFSize)
1482 * This value is in terms of 32-bit words.
1483 * * Minimum value is 16
1484 * * Maximum value is 32768
1485 * @ptxfstaddr: Host Periodic TxFIFO Start Address (PTxFStAddr)
1486 */
1487 struct cvmx_usbcx_hptxfsiz_s {
1488 uint32_t ptxfsize : 16;
1489 uint32_t ptxfstaddr : 16;
1490 } s;
1491 };
1492 typedef union cvmx_usbcx_hptxfsiz cvmx_usbcx_hptxfsiz_t;
1493
1494 /**
1495 * cvmx_usbc#_hptxsts
1496 *
1497 * Host Periodic Transmit FIFO/Queue Status Register (HPTXSTS)
1498 *
1499 * This read-only register contains the free space information for the Periodic
1500 * TxFIFO and the Periodic Transmit Request Queue
1501 */
1502 union cvmx_usbcx_hptxsts {
1503 uint32_t u32;
1504 /**
1505 * struct cvmx_usbcx_hptxsts_s
1506 * @ptxqtop: Top of the Periodic Transmit Request Queue (PTxQTop)
1507 * This indicates the entry in the Periodic Tx Request Queue that
1508 * is currently being processes by the MAC.
1509 * This register is used for debugging.
1510 * * Bit [31]: Odd/Even (micro)frame
1511 * - 1'b0: send in even (micro)frame
1512 * - 1'b1: send in odd (micro)frame
1513 * * Bits [30:27]: Channel/endpoint number
1514 * * Bits [26:25]: Type
1515 * - 2'b00: IN/OUT
1516 * - 2'b01: Zero-length packet
1517 * - 2'b10: CSPLIT
1518 * - 2'b11: Disable channel command
1519 * * Bit [24]: Terminate (last entry for the selected
1520 * channel/endpoint)
1521 * @ptxqspcavail: Periodic Transmit Request Queue Space Available
1522 * (PTxQSpcAvail)
1523 * Indicates the number of free locations available to be written
1524 * in the Periodic Transmit Request Queue. This queue holds both
1525 * IN and OUT requests.
1526 * * 8'h0: Periodic Transmit Request Queue is full
1527 * * 8'h1: 1 location available
1528 * * 8'h2: 2 locations available
1529 * * n: n locations available (0..8)
1530 * * Others: Reserved
1531 * @ptxfspcavail: Periodic Transmit Data FIFO Space Available
1532 * (PTxFSpcAvail)
1533 * Indicates the number of free locations available to be written
1534 * to in the Periodic TxFIFO.
1535 * Values are in terms of 32-bit words
1536 * * 16'h0: Periodic TxFIFO is full
1537 * * 16'h1: 1 word available
1538 * * 16'h2: 2 words available
1539 * * 16'hn: n words available (where 0..32768)
1540 * * 16'h8000: 32768 words available
1541 * * Others: Reserved
1542 */
1543 struct cvmx_usbcx_hptxsts_s {
1544 uint32_t ptxqtop : 8;
1545 uint32_t ptxqspcavail : 8;
1546 uint32_t ptxfspcavail : 16;
1547 } s;
1548 };
1549 typedef union cvmx_usbcx_hptxsts cvmx_usbcx_hptxsts_t;
1550
1551 #endif