packages: nvram: fix memory leak in _nvram_free
[openwrt/openwrt.git] / package / utils / nvram / src / nvram.c
1 /*
2 * NVRAM variable manipulation (common)
3 *
4 * Copyright 2004, Broadcom Corporation
5 * Copyright 2009-2010, OpenWrt.org
6 * All Rights Reserved.
7 *
8 * THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
9 * KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
10 * SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
11 * FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
12 *
13 */
14
15 #include "nvram.h"
16
17 #define TRACE(msg) \
18 printf("%s(%i) in %s(): %s\n", \
19 __FILE__, __LINE__, __FUNCTION__, msg ? msg : "?")
20
21 /* Size of "nvram" MTD partition */
22 size_t nvram_part_size = 0;
23
24
25 /*
26 * -- Helper functions --
27 */
28
29 /* String hash */
30 static uint32_t hash(const char *s)
31 {
32 uint32_t hash = 0;
33
34 while (*s)
35 hash = 31 * hash + *s++;
36
37 return hash;
38 }
39
40 /* Free all tuples. */
41 static void _nvram_free(nvram_handle_t *h)
42 {
43 uint32_t i;
44 nvram_tuple_t *t, *next;
45
46 /* Free hash table */
47 for (i = 0; i < NVRAM_ARRAYSIZE(h->nvram_hash); i++) {
48 for (t = h->nvram_hash[i]; t; t = next) {
49 next = t->next;
50 if (t->value)
51 free(t->value);
52 free(t);
53 }
54 h->nvram_hash[i] = NULL;
55 }
56
57 /* Free dead table */
58 for (t = h->nvram_dead; t; t = next) {
59 next = t->next;
60 if (t->value)
61 free(t->value);
62 free(t);
63 }
64
65 h->nvram_dead = NULL;
66 }
67
68 /* (Re)allocate NVRAM tuples. */
69 static nvram_tuple_t * _nvram_realloc( nvram_handle_t *h, nvram_tuple_t *t,
70 const char *name, const char *value )
71 {
72 if ((strlen(value) + 1) > h->length - h->offset)
73 return NULL;
74
75 if (!t) {
76 if (!(t = malloc(sizeof(nvram_tuple_t) + strlen(name) + 1)))
77 return NULL;
78
79 /* Copy name */
80 t->name = (char *) &t[1];
81 strcpy(t->name, name);
82
83 t->value = NULL;
84 }
85
86 /* Copy value */
87 if (!t->value || strcmp(t->value, value))
88 {
89 if(!(t->value = (char *) realloc(t->value, strlen(value)+1)))
90 return NULL;
91
92 strcpy(t->value, value);
93 t->value[strlen(value)] = '\0';
94 }
95
96 return t;
97 }
98
99 /* (Re)initialize the hash table. */
100 static int _nvram_rehash(nvram_handle_t *h)
101 {
102 nvram_header_t *header = nvram_header(h);
103 char buf[] = "0xXXXXXXXX", *name, *value, *eq;
104
105 /* (Re)initialize hash table */
106 _nvram_free(h);
107
108 /* Parse and set "name=value\0 ... \0\0" */
109 name = (char *) &header[1];
110
111 for (; *name; name = value + strlen(value) + 1) {
112 if (!(eq = strchr(name, '=')))
113 break;
114 *eq = '\0';
115 value = eq + 1;
116 nvram_set(h, name, value);
117 *eq = '=';
118 }
119
120 /* Set special SDRAM parameters */
121 if (!nvram_get(h, "sdram_init")) {
122 sprintf(buf, "0x%04X", (uint16_t)(header->crc_ver_init >> 16));
123 nvram_set(h, "sdram_init", buf);
124 }
125 if (!nvram_get(h, "sdram_config")) {
126 sprintf(buf, "0x%04X", (uint16_t)(header->config_refresh & 0xffff));
127 nvram_set(h, "sdram_config", buf);
128 }
129 if (!nvram_get(h, "sdram_refresh")) {
130 sprintf(buf, "0x%04X",
131 (uint16_t)((header->config_refresh >> 16) & 0xffff));
132 nvram_set(h, "sdram_refresh", buf);
133 }
134 if (!nvram_get(h, "sdram_ncdl")) {
135 sprintf(buf, "0x%08X", header->config_ncdl);
136 nvram_set(h, "sdram_ncdl", buf);
137 }
138
139 return 0;
140 }
141
142
143 /*
144 * -- Public functions --
145 */
146
147 /* Get nvram header. */
148 nvram_header_t * nvram_header(nvram_handle_t *h)
149 {
150 return (nvram_header_t *) &h->mmap[h->offset];
151 }
152
153 /* Get the value of an NVRAM variable. */
154 char * nvram_get(nvram_handle_t *h, const char *name)
155 {
156 uint32_t i;
157 nvram_tuple_t *t;
158 char *value;
159
160 if (!name)
161 return NULL;
162
163 /* Hash the name */
164 i = hash(name) % NVRAM_ARRAYSIZE(h->nvram_hash);
165
166 /* Find the associated tuple in the hash table */
167 for (t = h->nvram_hash[i]; t && strcmp(t->name, name); t = t->next);
168
169 value = t ? t->value : NULL;
170
171 return value;
172 }
173
174 /* Set the value of an NVRAM variable. */
175 int nvram_set(nvram_handle_t *h, const char *name, const char *value)
176 {
177 uint32_t i;
178 nvram_tuple_t *t, *u, **prev;
179
180 /* Hash the name */
181 i = hash(name) % NVRAM_ARRAYSIZE(h->nvram_hash);
182
183 /* Find the associated tuple in the hash table */
184 for (prev = &h->nvram_hash[i], t = *prev;
185 t && strcmp(t->name, name); prev = &t->next, t = *prev);
186
187 /* (Re)allocate tuple */
188 if (!(u = _nvram_realloc(h, t, name, value)))
189 return -12; /* -ENOMEM */
190
191 /* Value reallocated */
192 if (t && t == u)
193 return 0;
194
195 /* Move old tuple to the dead table */
196 if (t) {
197 *prev = t->next;
198 t->next = h->nvram_dead;
199 h->nvram_dead = t;
200 }
201
202 /* Add new tuple to the hash table */
203 u->next = h->nvram_hash[i];
204 h->nvram_hash[i] = u;
205
206 return 0;
207 }
208
209 /* Unset the value of an NVRAM variable. */
210 int nvram_unset(nvram_handle_t *h, const char *name)
211 {
212 uint32_t i;
213 nvram_tuple_t *t, **prev;
214
215 if (!name)
216 return 0;
217
218 /* Hash the name */
219 i = hash(name) % NVRAM_ARRAYSIZE(h->nvram_hash);
220
221 /* Find the associated tuple in the hash table */
222 for (prev = &h->nvram_hash[i], t = *prev;
223 t && strcmp(t->name, name); prev = &t->next, t = *prev);
224
225 /* Move it to the dead table */
226 if (t) {
227 *prev = t->next;
228 t->next = h->nvram_dead;
229 h->nvram_dead = t;
230 }
231
232 return 0;
233 }
234
235 /* Get all NVRAM variables. */
236 nvram_tuple_t * nvram_getall(nvram_handle_t *h)
237 {
238 int i;
239 nvram_tuple_t *t, *l, *x;
240
241 l = NULL;
242
243 for (i = 0; i < NVRAM_ARRAYSIZE(h->nvram_hash); i++) {
244 for (t = h->nvram_hash[i]; t; t = t->next) {
245 if( (x = (nvram_tuple_t *) malloc(sizeof(nvram_tuple_t))) != NULL )
246 {
247 x->name = t->name;
248 x->value = t->value;
249 x->next = l;
250 l = x;
251 }
252 else
253 {
254 break;
255 }
256 }
257 }
258
259 return l;
260 }
261
262 /* Regenerate NVRAM. */
263 int nvram_commit(nvram_handle_t *h)
264 {
265 nvram_header_t *header = nvram_header(h);
266 char *init, *config, *refresh, *ncdl;
267 char *ptr, *end;
268 int i;
269 nvram_tuple_t *t;
270 nvram_header_t tmp;
271 uint8_t crc;
272
273 /* Regenerate header */
274 header->magic = NVRAM_MAGIC;
275 header->crc_ver_init = (NVRAM_VERSION << 8);
276 if (!(init = nvram_get(h, "sdram_init")) ||
277 !(config = nvram_get(h, "sdram_config")) ||
278 !(refresh = nvram_get(h, "sdram_refresh")) ||
279 !(ncdl = nvram_get(h, "sdram_ncdl"))) {
280 header->crc_ver_init |= SDRAM_INIT << 16;
281 header->config_refresh = SDRAM_CONFIG;
282 header->config_refresh |= SDRAM_REFRESH << 16;
283 header->config_ncdl = 0;
284 } else {
285 header->crc_ver_init |= (strtoul(init, NULL, 0) & 0xffff) << 16;
286 header->config_refresh = strtoul(config, NULL, 0) & 0xffff;
287 header->config_refresh |= (strtoul(refresh, NULL, 0) & 0xffff) << 16;
288 header->config_ncdl = strtoul(ncdl, NULL, 0);
289 }
290
291 /* Clear data area */
292 ptr = (char *) header + sizeof(nvram_header_t);
293 memset(ptr, 0xFF, nvram_part_size - h->offset - sizeof(nvram_header_t));
294 memset(&tmp, 0, sizeof(nvram_header_t));
295
296 /* Leave space for a double NUL at the end */
297 end = (char *) header + nvram_part_size - h->offset - 2;
298
299 /* Write out all tuples */
300 for (i = 0; i < NVRAM_ARRAYSIZE(h->nvram_hash); i++) {
301 for (t = h->nvram_hash[i]; t; t = t->next) {
302 if ((ptr + strlen(t->name) + 1 + strlen(t->value) + 1) > end)
303 break;
304 ptr += sprintf(ptr, "%s=%s", t->name, t->value) + 1;
305 }
306 }
307
308 /* End with a double NULL and pad to 4 bytes */
309 *ptr = '\0';
310 ptr++;
311
312 if( (int)ptr % 4 )
313 memset(ptr, 0, 4 - ((int)ptr % 4));
314
315 ptr++;
316
317 /* Set new length */
318 header->len = NVRAM_ROUNDUP(ptr - (char *) header, 4);
319
320 /* Little-endian CRC8 over the last 11 bytes of the header */
321 tmp.crc_ver_init = header->crc_ver_init;
322 tmp.config_refresh = header->config_refresh;
323 tmp.config_ncdl = header->config_ncdl;
324 crc = hndcrc8((unsigned char *) &tmp + NVRAM_CRC_START_POSITION,
325 sizeof(nvram_header_t) - NVRAM_CRC_START_POSITION, 0xff);
326
327 /* Continue CRC8 over data bytes */
328 crc = hndcrc8((unsigned char *) &header[0] + sizeof(nvram_header_t),
329 header->len - sizeof(nvram_header_t), crc);
330
331 /* Set new CRC8 */
332 header->crc_ver_init |= crc;
333
334 /* Write out */
335 msync(h->mmap, h->length, MS_SYNC);
336 fsync(h->fd);
337
338 /* Reinitialize hash table */
339 return _nvram_rehash(h);
340 }
341
342 /* Open NVRAM and obtain a handle. */
343 nvram_handle_t * nvram_open(const char *file, int rdonly)
344 {
345 int i;
346 int fd;
347 char *mtd = NULL;
348 nvram_handle_t *h;
349 nvram_header_t *header;
350 int offset = -1;
351
352 /* If erase size or file are undefined then try to define them */
353 if( (nvram_part_size == 0) || (file == NULL) )
354 {
355 /* Finding the mtd will set the appropriate erase size */
356 if( (mtd = nvram_find_mtd()) == NULL || nvram_part_size == 0 )
357 {
358 free(mtd);
359 return NULL;
360 }
361 }
362
363 if( (fd = open(file ? file : mtd, O_RDWR)) > -1 )
364 {
365 char *mmap_area = (char *) mmap(
366 NULL, nvram_part_size, PROT_READ | PROT_WRITE,
367 (( rdonly == NVRAM_RO ) ? MAP_PRIVATE : MAP_SHARED) | MAP_LOCKED, fd, 0);
368
369 if( mmap_area != MAP_FAILED )
370 {
371 /*
372 * Start looking for NVRAM_MAGIC at beginning of MTD
373 * partition. Stop if there is less than NVRAM_MIN_SPACE
374 * to check, that was the lowest used size.
375 */
376 for( i = 0; i <= ((nvram_part_size - NVRAM_MIN_SPACE) / sizeof(uint32_t)); i++ )
377 {
378 if( ((uint32_t *)mmap_area)[i] == NVRAM_MAGIC )
379 {
380 offset = i * sizeof(uint32_t);
381 break;
382 }
383 }
384
385 if( offset < 0 )
386 {
387 munmap(mmap_area, nvram_part_size);
388 free(mtd);
389 close(fd);
390 return NULL;
391 }
392 else if( (h = malloc(sizeof(nvram_handle_t))) != NULL )
393 {
394 memset(h, 0, sizeof(nvram_handle_t));
395
396 h->fd = fd;
397 h->mmap = mmap_area;
398 h->length = nvram_part_size;
399 h->offset = offset;
400
401 header = nvram_header(h);
402
403 if (header->magic == NVRAM_MAGIC &&
404 (rdonly || header->len < h->length - h->offset)) {
405 _nvram_rehash(h);
406 free(mtd);
407 return h;
408 }
409 else
410 {
411 munmap(h->mmap, h->length);
412 free(h);
413 }
414 }
415 }
416 }
417
418 free(mtd);
419 close(fd);
420 return NULL;
421 }
422
423 /* Close NVRAM and free memory. */
424 int nvram_close(nvram_handle_t *h)
425 {
426 _nvram_free(h);
427 munmap(h->mmap, h->length);
428 close(h->fd);
429 free(h);
430
431 return 0;
432 }
433
434 /* Determine NVRAM device node. */
435 char * nvram_find_mtd(void)
436 {
437 FILE *fp;
438 int i, part_size;
439 char dev[PATH_MAX];
440 char *path = NULL;
441 struct stat s;
442
443 if ((fp = fopen("/proc/mtd", "r")))
444 {
445 while( fgets(dev, sizeof(dev), fp) )
446 {
447 if( strstr(dev, "nvram") && sscanf(dev, "mtd%d: %08x", &i, &part_size) )
448 {
449 nvram_part_size = part_size;
450
451 sprintf(dev, "/dev/mtdblock%d", i);
452 if( stat(dev, &s) > -1 && (s.st_mode & S_IFBLK) )
453 {
454 if( (path = (char *) malloc(strlen(dev)+1)) != NULL )
455 {
456 strncpy(path, dev, strlen(dev)+1);
457 break;
458 }
459 }
460 }
461 }
462 fclose(fp);
463 }
464
465 return path;
466 }
467
468 /* Check NVRAM staging file. */
469 char * nvram_find_staging(void)
470 {
471 struct stat s;
472
473 if( (stat(NVRAM_STAGING, &s) > -1) && (s.st_mode & S_IFREG) )
474 {
475 return NVRAM_STAGING;
476 }
477
478 return NULL;
479 }
480
481 /* Copy NVRAM contents to staging file. */
482 int nvram_to_staging(void)
483 {
484 int fdmtd, fdstg, stat;
485 char *mtd = nvram_find_mtd();
486 char buf[nvram_part_size];
487
488 stat = -1;
489
490 if( (mtd != NULL) && (nvram_part_size > 0) )
491 {
492 if( (fdmtd = open(mtd, O_RDONLY)) > -1 )
493 {
494 if( read(fdmtd, buf, sizeof(buf)) == sizeof(buf) )
495 {
496 if((fdstg = open(NVRAM_STAGING, O_WRONLY | O_CREAT, 0600)) > -1)
497 {
498 write(fdstg, buf, sizeof(buf));
499 fsync(fdstg);
500 close(fdstg);
501
502 stat = 0;
503 }
504 }
505
506 close(fdmtd);
507 }
508 }
509
510 free(mtd);
511 return stat;
512 }
513
514 /* Copy staging file to NVRAM device. */
515 int staging_to_nvram(void)
516 {
517 int fdmtd, fdstg, stat;
518 char *mtd = nvram_find_mtd();
519 char buf[nvram_part_size];
520
521 stat = -1;
522
523 if( (mtd != NULL) && (nvram_part_size > 0) )
524 {
525 if( (fdstg = open(NVRAM_STAGING, O_RDONLY)) > -1 )
526 {
527 if( read(fdstg, buf, sizeof(buf)) == sizeof(buf) )
528 {
529 if( (fdmtd = open(mtd, O_WRONLY | O_SYNC)) > -1 )
530 {
531 write(fdmtd, buf, sizeof(buf));
532 fsync(fdmtd);
533 close(fdmtd);
534 stat = 0;
535 }
536 }
537
538 close(fdstg);
539
540 if( !stat )
541 stat = unlink(NVRAM_STAGING) ? 1 : 0;
542 }
543 }
544
545 free(mtd);
546 return stat;
547 }