ee20d5b2dcb05df231aa6b2e231eaa847d5e7bbe
[project/bcm63xx/atf.git] / include / arch / aarch64 / el3_common_macros.S
1 /*
2 * Copyright (c) 2015-2019, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #ifndef EL3_COMMON_MACROS_S
8 #define EL3_COMMON_MACROS_S
9
10 #include <arch.h>
11 #include <asm_macros.S>
12
13 /*
14 * Helper macro to initialise EL3 registers we care about.
15 */
16 .macro el3_arch_init_common
17 /* ---------------------------------------------------------------------
18 * SCTLR_EL3 has already been initialised - read current value before
19 * modifying.
20 *
21 * SCTLR_EL3.I: Enable the instruction cache.
22 *
23 * SCTLR_EL3.SA: Enable Stack Alignment check. A SP alignment fault
24 * exception is generated if a load or store instruction executed at
25 * EL3 uses the SP as the base address and the SP is not aligned to a
26 * 16-byte boundary.
27 *
28 * SCTLR_EL3.A: Enable Alignment fault checking. All instructions that
29 * load or store one or more registers have an alignment check that the
30 * address being accessed is aligned to the size of the data element(s)
31 * being accessed.
32 * ---------------------------------------------------------------------
33 */
34 mov x1, #(SCTLR_I_BIT | SCTLR_A_BIT | SCTLR_SA_BIT)
35 mrs x0, sctlr_el3
36 orr x0, x0, x1
37 msr sctlr_el3, x0
38 isb
39
40 #ifdef IMAGE_BL31
41 /* ---------------------------------------------------------------------
42 * Initialise the per-cpu cache pointer to the CPU.
43 * This is done early to enable crash reporting to have access to crash
44 * stack. Since crash reporting depends on cpu_data to report the
45 * unhandled exception, not doing so can lead to recursive exceptions
46 * due to a NULL TPIDR_EL3.
47 * ---------------------------------------------------------------------
48 */
49 bl init_cpu_data_ptr
50 #endif /* IMAGE_BL31 */
51
52 /* ---------------------------------------------------------------------
53 * Initialise SCR_EL3, setting all fields rather than relying on hw.
54 * All fields are architecturally UNKNOWN on reset. The following fields
55 * do not change during the TF lifetime. The remaining fields are set to
56 * zero here but are updated ahead of transitioning to a lower EL in the
57 * function cm_init_context_common().
58 *
59 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
60 * EL2, EL1 and EL0 are not trapped to EL3.
61 *
62 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
63 * EL2, EL1 and EL0 are not trapped to EL3.
64 *
65 * SCR_EL3.SIF: Set to one to disable instruction fetches from
66 * Non-secure memory.
67 *
68 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
69 * both Security states and both Execution states.
70 *
71 * SCR_EL3.EA: Set to one to route External Aborts and SError Interrupts
72 * to EL3 when executing at any EL.
73 *
74 * SCR_EL3.{API,APK}: For Armv8.3 pointer authentication feature,
75 * disable traps to EL3 when accessing key registers or using pointer
76 * authentication instructions from lower ELs.
77 * ---------------------------------------------------------------------
78 */
79 mov_imm x0, ((SCR_RESET_VAL | SCR_EA_BIT | SCR_SIF_BIT) \
80 & ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT))
81 #if CTX_INCLUDE_PAUTH_REGS
82 /*
83 * If the pointer authentication registers are saved during world
84 * switches, enable pointer authentication everywhere, as it is safe to
85 * do so.
86 */
87 orr x0, x0, #(SCR_API_BIT | SCR_APK_BIT)
88 #endif
89 msr scr_el3, x0
90
91 /* ---------------------------------------------------------------------
92 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
93 * Some fields are architecturally UNKNOWN on reset.
94 *
95 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
96 * Debug exceptions, other than Breakpoint Instruction exceptions, are
97 * disabled from all ELs in Secure state.
98 *
99 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
100 * privileged debug from S-EL1.
101 *
102 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
103 * access to the powerdown debug registers do not trap to EL3.
104 *
105 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
106 * debug registers, other than those registers that are controlled by
107 * MDCR_EL3.TDOSA.
108 *
109 * MDCR_EL3.TPM: Set to zero so that EL0, EL1, and EL2 System register
110 * accesses to all Performance Monitors registers do not trap to EL3.
111 *
112 * MDCR_EL3.SCCD: Set to one so that cycle counting by PMCCNTR_EL0 is
113 * prohibited in Secure state. This bit is RES0 in versions of the
114 * architecture earlier than ARMv8.5, setting it to 1 doesn't have any
115 * effect on them.
116 * ---------------------------------------------------------------------
117 */
118 mov_imm x0, ((MDCR_EL3_RESET_VAL | MDCR_SDD_BIT | \
119 MDCR_SPD32(MDCR_SPD32_DISABLE) | MDCR_SCCD_BIT) & \
120 ~(MDCR_TDOSA_BIT | MDCR_TDA_BIT | MDCR_TPM_BIT))
121
122 msr mdcr_el3, x0
123
124 /* ---------------------------------------------------------------------
125 * Initialise PMCR_EL0 setting all fields rather than relying
126 * on hw. Some fields are architecturally UNKNOWN on reset.
127 *
128 * PMCR_EL0.LP: Set to one so that event counter overflow, that
129 * is recorded in PMOVSCLR_EL0[0-30], occurs on the increment
130 * that changes PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU
131 * is implemented. This bit is RES0 in versions of the architecture
132 * earlier than ARMv8.5, setting it to 1 doesn't have any effect
133 * on them.
134 *
135 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
136 * is recorded in PMOVSCLR_EL0[31], occurs on the increment
137 * that changes PMCCNTR_EL0[63] from 1 to 0.
138 *
139 * PMCR_EL0.DP: Set to one so that the cycle counter,
140 * PMCCNTR_EL0 does not count when event counting is prohibited.
141 *
142 * PMCR_EL0.X: Set to zero to disable export of events.
143 *
144 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
145 * counts on every clock cycle.
146 * ---------------------------------------------------------------------
147 */
148 mov_imm x0, ((PMCR_EL0_RESET_VAL | PMCR_EL0_LP_BIT | \
149 PMCR_EL0_LC_BIT | PMCR_EL0_DP_BIT) & \
150 ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT))
151
152 msr pmcr_el0, x0
153
154 /* ---------------------------------------------------------------------
155 * Enable External Aborts and SError Interrupts now that the exception
156 * vectors have been setup.
157 * ---------------------------------------------------------------------
158 */
159 msr daifclr, #DAIF_ABT_BIT
160
161 /* ---------------------------------------------------------------------
162 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
163 * All fields are architecturally UNKNOWN on reset.
164 *
165 * CPTR_EL3.TCPAC: Set to zero so that any accesses to CPACR_EL1,
166 * CPTR_EL2, CPACR, or HCPTR do not trap to EL3.
167 *
168 * CPTR_EL3.TTA: Set to zero so that System register accesses to the
169 * trace registers do not trap to EL3.
170 *
171 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
172 * by Advanced SIMD, floating-point or SVE instructions (if implemented)
173 * do not trap to EL3.
174 */
175 mov_imm x0, (CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TTA_BIT | TFP_BIT))
176 msr cptr_el3, x0
177
178 /*
179 * If Data Independent Timing (DIT) functionality is implemented,
180 * always enable DIT in EL3
181 */
182 mrs x0, id_aa64pfr0_el1
183 ubfx x0, x0, #ID_AA64PFR0_DIT_SHIFT, #ID_AA64PFR0_DIT_LENGTH
184 cmp x0, #ID_AA64PFR0_DIT_SUPPORTED
185 bne 1f
186 mov x0, #DIT_BIT
187 msr DIT, x0
188 1:
189 .endm
190
191 /* -----------------------------------------------------------------------------
192 * This is the super set of actions that need to be performed during a cold boot
193 * or a warm boot in EL3. This code is shared by BL1 and BL31.
194 *
195 * This macro will always perform reset handling, architectural initialisations
196 * and stack setup. The rest of the actions are optional because they might not
197 * be needed, depending on the context in which this macro is called. This is
198 * why this macro is parameterised ; each parameter allows to enable/disable
199 * some actions.
200 *
201 * _init_sctlr:
202 * Whether the macro needs to initialise SCTLR_EL3, including configuring
203 * the endianness of data accesses.
204 *
205 * _warm_boot_mailbox:
206 * Whether the macro needs to detect the type of boot (cold/warm). The
207 * detection is based on the platform entrypoint address : if it is zero
208 * then it is a cold boot, otherwise it is a warm boot. In the latter case,
209 * this macro jumps on the platform entrypoint address.
210 *
211 * _secondary_cold_boot:
212 * Whether the macro needs to identify the CPU that is calling it: primary
213 * CPU or secondary CPU. The primary CPU will be allowed to carry on with
214 * the platform initialisations, while the secondaries will be put in a
215 * platform-specific state in the meantime.
216 *
217 * If the caller knows this macro will only be called by the primary CPU
218 * then this parameter can be defined to 0 to skip this step.
219 *
220 * _init_memory:
221 * Whether the macro needs to initialise the memory.
222 *
223 * _init_c_runtime:
224 * Whether the macro needs to initialise the C runtime environment.
225 *
226 * _exception_vectors:
227 * Address of the exception vectors to program in the VBAR_EL3 register.
228 * -----------------------------------------------------------------------------
229 */
230 .macro el3_entrypoint_common \
231 _init_sctlr, _warm_boot_mailbox, _secondary_cold_boot, \
232 _init_memory, _init_c_runtime, _exception_vectors
233
234 .if \_init_sctlr
235 /* -------------------------------------------------------------
236 * This is the initialisation of SCTLR_EL3 and so must ensure
237 * that all fields are explicitly set rather than relying on hw.
238 * Some fields reset to an IMPLEMENTATION DEFINED value and
239 * others are architecturally UNKNOWN on reset.
240 *
241 * SCTLR.EE: Set the CPU endianness before doing anything that
242 * might involve memory reads or writes. Set to zero to select
243 * Little Endian.
244 *
245 * SCTLR_EL3.WXN: For the EL3 translation regime, this field can
246 * force all memory regions that are writeable to be treated as
247 * XN (Execute-never). Set to zero so that this control has no
248 * effect on memory access permissions.
249 *
250 * SCTLR_EL3.SA: Set to zero to disable Stack Alignment check.
251 *
252 * SCTLR_EL3.A: Set to zero to disable Alignment fault checking.
253 *
254 * SCTLR.DSSBS: Set to zero to disable speculation store bypass
255 * safe behaviour upon exception entry to EL3.
256 * -------------------------------------------------------------
257 */
258 mov_imm x0, (SCTLR_RESET_VAL & ~(SCTLR_EE_BIT | SCTLR_WXN_BIT \
259 | SCTLR_SA_BIT | SCTLR_A_BIT | SCTLR_DSSBS_BIT))
260 msr sctlr_el3, x0
261 isb
262 .endif /* _init_sctlr */
263
264 .if \_warm_boot_mailbox
265 /* -------------------------------------------------------------
266 * This code will be executed for both warm and cold resets.
267 * Now is the time to distinguish between the two.
268 * Query the platform entrypoint address and if it is not zero
269 * then it means it is a warm boot so jump to this address.
270 * -------------------------------------------------------------
271 */
272 bl plat_get_my_entrypoint
273 cbz x0, do_cold_boot
274 br x0
275
276 do_cold_boot:
277 .endif /* _warm_boot_mailbox */
278
279 /* ---------------------------------------------------------------------
280 * Set the exception vectors.
281 * ---------------------------------------------------------------------
282 */
283 adr x0, \_exception_vectors
284 msr vbar_el3, x0
285 isb
286
287 /* ---------------------------------------------------------------------
288 * It is a cold boot.
289 * Perform any processor specific actions upon reset e.g. cache, TLB
290 * invalidations etc.
291 * ---------------------------------------------------------------------
292 */
293 bl reset_handler
294
295 el3_arch_init_common
296
297 .if \_secondary_cold_boot
298 /* -------------------------------------------------------------
299 * Check if this is a primary or secondary CPU cold boot.
300 * The primary CPU will set up the platform while the
301 * secondaries are placed in a platform-specific state until the
302 * primary CPU performs the necessary actions to bring them out
303 * of that state and allows entry into the OS.
304 * -------------------------------------------------------------
305 */
306 bl plat_is_my_cpu_primary
307 cbnz w0, do_primary_cold_boot
308
309 /* This is a cold boot on a secondary CPU */
310 bl plat_secondary_cold_boot_setup
311 /* plat_secondary_cold_boot_setup() is not supposed to return */
312 bl el3_panic
313
314 do_primary_cold_boot:
315 .endif /* _secondary_cold_boot */
316
317 /* ---------------------------------------------------------------------
318 * Initialize memory now. Secondary CPU initialization won't get to this
319 * point.
320 * ---------------------------------------------------------------------
321 */
322
323 .if \_init_memory
324 bl platform_mem_init
325 .endif /* _init_memory */
326
327 /* ---------------------------------------------------------------------
328 * Init C runtime environment:
329 * - Zero-initialise the NOBITS sections. There are 2 of them:
330 * - the .bss section;
331 * - the coherent memory section (if any).
332 * - Relocate the data section from ROM to RAM, if required.
333 * ---------------------------------------------------------------------
334 */
335 .if \_init_c_runtime
336 #if defined(IMAGE_BL31) || (defined(IMAGE_BL2) && BL2_AT_EL3 && BL2_INV_DCACHE)
337 /* -------------------------------------------------------------
338 * Invalidate the RW memory used by the BL31 image. This
339 * includes the data and NOBITS sections. This is done to
340 * safeguard against possible corruption of this memory by
341 * dirty cache lines in a system cache as a result of use by
342 * an earlier boot loader stage.
343 * -------------------------------------------------------------
344 */
345 adrp x0, __RW_START__
346 add x0, x0, :lo12:__RW_START__
347 adrp x1, __RW_END__
348 add x1, x1, :lo12:__RW_END__
349 sub x1, x1, x0
350 bl inv_dcache_range
351 #endif
352 adrp x0, __BSS_START__
353 add x0, x0, :lo12:__BSS_START__
354
355 adrp x1, __BSS_END__
356 add x1, x1, :lo12:__BSS_END__
357 sub x1, x1, x0
358 bl zeromem
359
360 #if USE_COHERENT_MEM
361 adrp x0, __COHERENT_RAM_START__
362 add x0, x0, :lo12:__COHERENT_RAM_START__
363 adrp x1, __COHERENT_RAM_END_UNALIGNED__
364 add x1, x1, :lo12: __COHERENT_RAM_END_UNALIGNED__
365 sub x1, x1, x0
366 bl zeromem
367 #endif
368
369 #if defined(IMAGE_BL1) || (defined(IMAGE_BL2) && BL2_AT_EL3 && BL2_IN_XIP_MEM)
370 adrp x0, __DATA_RAM_START__
371 add x0, x0, :lo12:__DATA_RAM_START__
372 adrp x1, __DATA_ROM_START__
373 add x1, x1, :lo12:__DATA_ROM_START__
374 adrp x2, __DATA_RAM_END__
375 add x2, x2, :lo12:__DATA_RAM_END__
376 sub x2, x2, x0
377 bl memcpy16
378 #endif
379 .endif /* _init_c_runtime */
380
381 /* ---------------------------------------------------------------------
382 * Use SP_EL0 for the C runtime stack.
383 * ---------------------------------------------------------------------
384 */
385 msr spsel, #0
386
387 /* ---------------------------------------------------------------------
388 * Allocate a stack whose memory will be marked as Normal-IS-WBWA when
389 * the MMU is enabled. There is no risk of reading stale stack memory
390 * after enabling the MMU as only the primary CPU is running at the
391 * moment.
392 * ---------------------------------------------------------------------
393 */
394 bl plat_set_my_stack
395
396 #if STACK_PROTECTOR_ENABLED
397 .if \_init_c_runtime
398 bl update_stack_protector_canary
399 .endif /* _init_c_runtime */
400 #endif
401 .endm
402
403 #endif /* EL3_COMMON_MACROS_S */