Migrate ARM platforms to use the new GICv3 API
[project/bcm63xx/atf.git] / plat / arm / board / fvp / fvp_pm.c
1 /*
2 * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <assert.h>
8 #include <errno.h>
9
10 #include <arch_helpers.h>
11 #include <common/debug.h>
12 #include <drivers/arm/gicv3.h>
13 #include <drivers/arm/fvp/fvp_pwrc.h>
14 #include <lib/extensions/spe.h>
15 #include <lib/mmio.h>
16 #include <lib/psci/psci.h>
17 #include <plat/arm/common/arm_config.h>
18 #include <plat/arm/common/plat_arm.h>
19 #include <plat/common/platform.h>
20 #include <platform_def.h>
21
22 #include "fvp_private.h"
23 #include "../drivers/arm/gic/v3/gicv3_private.h"
24
25
26 #if ARM_RECOM_STATE_ID_ENC
27 /*
28 * The table storing the valid idle power states. Ensure that the
29 * array entries are populated in ascending order of state-id to
30 * enable us to use binary search during power state validation.
31 * The table must be terminated by a NULL entry.
32 */
33 const unsigned int arm_pm_idle_states[] = {
34 /* State-id - 0x01 */
35 arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_RUN, ARM_LOCAL_STATE_RET,
36 ARM_PWR_LVL0, PSTATE_TYPE_STANDBY),
37 /* State-id - 0x02 */
38 arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_RUN, ARM_LOCAL_STATE_OFF,
39 ARM_PWR_LVL0, PSTATE_TYPE_POWERDOWN),
40 /* State-id - 0x22 */
41 arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_OFF, ARM_LOCAL_STATE_OFF,
42 ARM_PWR_LVL1, PSTATE_TYPE_POWERDOWN),
43 /* State-id - 0x222 */
44 arm_make_pwrstate_lvl2(ARM_LOCAL_STATE_OFF, ARM_LOCAL_STATE_OFF,
45 ARM_LOCAL_STATE_OFF, ARM_PWR_LVL2, PSTATE_TYPE_POWERDOWN),
46 0,
47 };
48 #endif
49
50 /*******************************************************************************
51 * Function which implements the common FVP specific operations to power down a
52 * cluster in response to a CPU_OFF or CPU_SUSPEND request.
53 ******************************************************************************/
54 static void fvp_cluster_pwrdwn_common(void)
55 {
56 uint64_t mpidr = read_mpidr_el1();
57
58 #if ENABLE_SPE_FOR_LOWER_ELS
59 /*
60 * On power down we need to disable statistical profiling extensions
61 * before exiting coherency.
62 */
63 spe_disable();
64 #endif
65
66 /* Disable coherency if this cluster is to be turned off */
67 fvp_interconnect_disable();
68
69 /* Program the power controller to turn the cluster off */
70 fvp_pwrc_write_pcoffr(mpidr);
71 }
72
73 /*
74 * Empty implementation of these hooks avoid setting the GICR_WAKER.Sleep bit
75 * on ARM GICv3 implementations on FVP. This is required, because FVP does not
76 * support SYSTEM_SUSPEND and it is `faked` in firmware. Hence, for wake up
77 * from `fake` system suspend the GIC must not be powered off.
78 */
79 void arm_gicv3_distif_pre_save(unsigned int rdist_proc_num)
80 {}
81
82 void arm_gicv3_distif_post_restore(unsigned int rdist_proc_num)
83 {}
84
85 static void fvp_power_domain_on_finish_common(const psci_power_state_t *target_state)
86 {
87 unsigned long mpidr;
88
89 assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
90 ARM_LOCAL_STATE_OFF);
91
92 /* Get the mpidr for this cpu */
93 mpidr = read_mpidr_el1();
94
95 /* Perform the common cluster specific operations */
96 if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
97 ARM_LOCAL_STATE_OFF) {
98 /*
99 * This CPU might have woken up whilst the cluster was
100 * attempting to power down. In this case the FVP power
101 * controller will have a pending cluster power off request
102 * which needs to be cleared by writing to the PPONR register.
103 * This prevents the power controller from interpreting a
104 * subsequent entry of this cpu into a simple wfi as a power
105 * down request.
106 */
107 fvp_pwrc_write_pponr(mpidr);
108
109 /* Enable coherency if this cluster was off */
110 fvp_interconnect_enable();
111 }
112 /* Perform the common system specific operations */
113 if (target_state->pwr_domain_state[ARM_PWR_LVL2] ==
114 ARM_LOCAL_STATE_OFF)
115 arm_system_pwr_domain_resume();
116
117 /*
118 * Clear PWKUPR.WEN bit to ensure interrupts do not interfere
119 * with a cpu power down unless the bit is set again
120 */
121 fvp_pwrc_clr_wen(mpidr);
122 }
123
124
125 /*******************************************************************************
126 * FVP handler called when a CPU is about to enter standby.
127 ******************************************************************************/
128 static void fvp_cpu_standby(plat_local_state_t cpu_state)
129 {
130
131 assert(cpu_state == ARM_LOCAL_STATE_RET);
132
133 /*
134 * Enter standby state
135 * dsb is good practice before using wfi to enter low power states
136 */
137 dsb();
138 wfi();
139 }
140
141 /*******************************************************************************
142 * FVP handler called when a power domain is about to be turned on. The
143 * mpidr determines the CPU to be turned on.
144 ******************************************************************************/
145 static int fvp_pwr_domain_on(u_register_t mpidr)
146 {
147 int rc = PSCI_E_SUCCESS;
148 unsigned int psysr;
149
150 /*
151 * Ensure that we do not cancel an inflight power off request for the
152 * target cpu. That would leave it in a zombie wfi. Wait for it to power
153 * off and then program the power controller to turn that CPU on.
154 */
155 do {
156 psysr = fvp_pwrc_read_psysr(mpidr);
157 } while ((psysr & PSYSR_AFF_L0) != 0U);
158
159 fvp_pwrc_write_pponr(mpidr);
160 return rc;
161 }
162
163 /*******************************************************************************
164 * FVP handler called when a power domain is about to be turned off. The
165 * target_state encodes the power state that each level should transition to.
166 ******************************************************************************/
167 static void fvp_pwr_domain_off(const psci_power_state_t *target_state)
168 {
169 assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
170 ARM_LOCAL_STATE_OFF);
171
172 /*
173 * If execution reaches this stage then this power domain will be
174 * suspended. Perform at least the cpu specific actions followed
175 * by the cluster specific operations if applicable.
176 */
177
178 /* Prevent interrupts from spuriously waking up this cpu */
179 plat_arm_gic_cpuif_disable();
180
181 /* Turn redistributor off */
182 plat_arm_gic_redistif_off();
183
184 /* Program the power controller to power off this cpu. */
185 fvp_pwrc_write_ppoffr(read_mpidr_el1());
186
187 if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
188 ARM_LOCAL_STATE_OFF)
189 fvp_cluster_pwrdwn_common();
190
191 }
192
193 /*******************************************************************************
194 * FVP handler called when a power domain is about to be suspended. The
195 * target_state encodes the power state that each level should transition to.
196 ******************************************************************************/
197 static void fvp_pwr_domain_suspend(const psci_power_state_t *target_state)
198 {
199 unsigned long mpidr;
200
201 /*
202 * FVP has retention only at cpu level. Just return
203 * as nothing is to be done for retention.
204 */
205 if (target_state->pwr_domain_state[ARM_PWR_LVL0] ==
206 ARM_LOCAL_STATE_RET)
207 return;
208
209 assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
210 ARM_LOCAL_STATE_OFF);
211
212 /* Get the mpidr for this cpu */
213 mpidr = read_mpidr_el1();
214
215 /* Program the power controller to enable wakeup interrupts. */
216 fvp_pwrc_set_wen(mpidr);
217
218 /* Prevent interrupts from spuriously waking up this cpu */
219 plat_arm_gic_cpuif_disable();
220
221 /*
222 * The Redistributor is not powered off as it can potentially prevent
223 * wake up events reaching the CPUIF and/or might lead to losing
224 * register context.
225 */
226
227 /* Perform the common cluster specific operations */
228 if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
229 ARM_LOCAL_STATE_OFF)
230 fvp_cluster_pwrdwn_common();
231
232 /* Perform the common system specific operations */
233 if (target_state->pwr_domain_state[ARM_PWR_LVL2] ==
234 ARM_LOCAL_STATE_OFF)
235 arm_system_pwr_domain_save();
236
237 /* Program the power controller to power off this cpu. */
238 fvp_pwrc_write_ppoffr(read_mpidr_el1());
239 }
240
241 /*******************************************************************************
242 * FVP handler called when a power domain has just been powered on after
243 * being turned off earlier. The target_state encodes the low power state that
244 * each level has woken up from.
245 ******************************************************************************/
246 static void fvp_pwr_domain_on_finish(const psci_power_state_t *target_state)
247 {
248 fvp_power_domain_on_finish_common(target_state);
249
250 }
251
252 /*******************************************************************************
253 * FVP handler called when a power domain has just been powered on and the cpu
254 * and its cluster are fully participating in coherent transaction on the
255 * interconnect. Data cache must be enabled for CPU at this point.
256 ******************************************************************************/
257 static void fvp_pwr_domain_on_finish_late(const psci_power_state_t *target_state)
258 {
259 /* Program GIC per-cpu distributor or re-distributor interface */
260 plat_arm_gic_pcpu_init();
261
262 /* Enable GIC CPU interface */
263 plat_arm_gic_cpuif_enable();
264 }
265
266 /*******************************************************************************
267 * FVP handler called when a power domain has just been powered on after
268 * having been suspended earlier. The target_state encodes the low power state
269 * that each level has woken up from.
270 * TODO: At the moment we reuse the on finisher and reinitialize the secure
271 * context. Need to implement a separate suspend finisher.
272 ******************************************************************************/
273 static void fvp_pwr_domain_suspend_finish(const psci_power_state_t *target_state)
274 {
275 /*
276 * Nothing to be done on waking up from retention from CPU level.
277 */
278 if (target_state->pwr_domain_state[ARM_PWR_LVL0] ==
279 ARM_LOCAL_STATE_RET)
280 return;
281
282 fvp_power_domain_on_finish_common(target_state);
283
284 /* Enable GIC CPU interface */
285 plat_arm_gic_cpuif_enable();
286 }
287
288 /*******************************************************************************
289 * FVP handlers to shutdown/reboot the system
290 ******************************************************************************/
291 static void __dead2 fvp_system_off(void)
292 {
293 /* Write the System Configuration Control Register */
294 mmio_write_32(V2M_SYSREGS_BASE + V2M_SYS_CFGCTRL,
295 V2M_CFGCTRL_START |
296 V2M_CFGCTRL_RW |
297 V2M_CFGCTRL_FUNC(V2M_FUNC_SHUTDOWN));
298 wfi();
299 ERROR("FVP System Off: operation not handled.\n");
300 panic();
301 }
302
303 static void __dead2 fvp_system_reset(void)
304 {
305 /* Write the System Configuration Control Register */
306 mmio_write_32(V2M_SYSREGS_BASE + V2M_SYS_CFGCTRL,
307 V2M_CFGCTRL_START |
308 V2M_CFGCTRL_RW |
309 V2M_CFGCTRL_FUNC(V2M_FUNC_REBOOT));
310 wfi();
311 ERROR("FVP System Reset: operation not handled.\n");
312 panic();
313 }
314
315 static int fvp_node_hw_state(u_register_t target_cpu,
316 unsigned int power_level)
317 {
318 unsigned int psysr;
319 int ret;
320
321 /*
322 * The format of 'power_level' is implementation-defined, but 0 must
323 * mean a CPU. We also allow 1 to denote the cluster
324 */
325 if ((power_level != ARM_PWR_LVL0) && (power_level != ARM_PWR_LVL1))
326 return PSCI_E_INVALID_PARAMS;
327
328 /*
329 * Read the status of the given MPDIR from FVP power controller. The
330 * power controller only gives us on/off status, so map that to expected
331 * return values of the PSCI call
332 */
333 psysr = fvp_pwrc_read_psysr(target_cpu);
334 if (psysr == PSYSR_INVALID)
335 return PSCI_E_INVALID_PARAMS;
336
337 if (power_level == ARM_PWR_LVL0) {
338 ret = ((psysr & PSYSR_AFF_L0) != 0U) ? HW_ON : HW_OFF;
339 } else {
340 /* power_level == ARM_PWR_LVL1 */
341 ret = ((psysr & PSYSR_AFF_L1) != 0U) ? HW_ON : HW_OFF;
342 }
343
344 return ret;
345 }
346
347 /*
348 * The FVP doesn't truly support power management at SYSTEM power domain. The
349 * SYSTEM_SUSPEND will be down-graded to the cluster level within the platform
350 * layer. The `fake` SYSTEM_SUSPEND allows us to validate some of the driver
351 * save and restore sequences on FVP.
352 */
353 #if !ARM_BL31_IN_DRAM
354 static void fvp_get_sys_suspend_power_state(psci_power_state_t *req_state)
355 {
356 unsigned int i;
357
358 for (i = ARM_PWR_LVL0; i <= PLAT_MAX_PWR_LVL; i++)
359 req_state->pwr_domain_state[i] = ARM_LOCAL_STATE_OFF;
360 }
361 #endif
362
363 /*******************************************************************************
364 * Handler to filter PSCI requests.
365 ******************************************************************************/
366 /*
367 * The system power domain suspend is only supported only via
368 * PSCI SYSTEM_SUSPEND API. PSCI CPU_SUSPEND request to system power domain
369 * will be downgraded to the lower level.
370 */
371 static int fvp_validate_power_state(unsigned int power_state,
372 psci_power_state_t *req_state)
373 {
374 int rc;
375 rc = arm_validate_power_state(power_state, req_state);
376
377 /*
378 * Ensure that the system power domain level is never suspended
379 * via PSCI CPU SUSPEND API. Currently system suspend is only
380 * supported via PSCI SYSTEM SUSPEND API.
381 */
382 req_state->pwr_domain_state[ARM_PWR_LVL2] = ARM_LOCAL_STATE_RUN;
383 return rc;
384 }
385
386 /*
387 * Custom `translate_power_state_by_mpidr` handler for FVP. Unlike in the
388 * `fvp_validate_power_state`, we do not downgrade the system power
389 * domain level request in `power_state` as it will be used to query the
390 * PSCI_STAT_COUNT/RESIDENCY at the system power domain level.
391 */
392 static int fvp_translate_power_state_by_mpidr(u_register_t mpidr,
393 unsigned int power_state,
394 psci_power_state_t *output_state)
395 {
396 return arm_validate_power_state(power_state, output_state);
397 }
398
399 /*******************************************************************************
400 * Export the platform handlers via plat_arm_psci_pm_ops. The ARM Standard
401 * platform layer will take care of registering the handlers with PSCI.
402 ******************************************************************************/
403 plat_psci_ops_t plat_arm_psci_pm_ops = {
404 .cpu_standby = fvp_cpu_standby,
405 .pwr_domain_on = fvp_pwr_domain_on,
406 .pwr_domain_off = fvp_pwr_domain_off,
407 .pwr_domain_suspend = fvp_pwr_domain_suspend,
408 .pwr_domain_on_finish = fvp_pwr_domain_on_finish,
409 .pwr_domain_on_finish_late = fvp_pwr_domain_on_finish_late,
410 .pwr_domain_suspend_finish = fvp_pwr_domain_suspend_finish,
411 .system_off = fvp_system_off,
412 .system_reset = fvp_system_reset,
413 .validate_power_state = fvp_validate_power_state,
414 .validate_ns_entrypoint = arm_validate_psci_entrypoint,
415 .translate_power_state_by_mpidr = fvp_translate_power_state_by_mpidr,
416 .get_node_hw_state = fvp_node_hw_state,
417 #if !ARM_BL31_IN_DRAM
418 /*
419 * The TrustZone Controller is set up during the warmboot sequence after
420 * resuming the CPU from a SYSTEM_SUSPEND. If BL31 is located in SRAM
421 * this is not a problem but, if it is in TZC-secured DRAM, it tries to
422 * reconfigure the same memory it is running on, causing an exception.
423 */
424 .get_sys_suspend_power_state = fvp_get_sys_suspend_power_state,
425 #endif
426 .mem_protect_chk = arm_psci_mem_protect_chk,
427 .read_mem_protect = arm_psci_read_mem_protect,
428 .write_mem_protect = arm_nor_psci_write_mem_protect,
429 };
430
431 const plat_psci_ops_t *plat_arm_psci_override_pm_ops(plat_psci_ops_t *ops)
432 {
433 return ops;
434 }