Add Broadcom's code for bcm63xx support
[project/bcm63xx/atf.git] / bl32 / sp_min / aarch32 / entrypoint.S
1 /*
2 * Copyright (c) 2016-2019, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <arch.h>
8 #include <asm_macros.S>
9 #include <common/bl_common.h>
10 #include <common/runtime_svc.h>
11 #include <context.h>
12 #include <el3_common_macros.S>
13 #include <lib/xlat_tables/xlat_tables_defs.h>
14 #include <smccc_helpers.h>
15 #include <smccc_macros.S>
16
17 .globl sp_min_vector_table
18 .globl sp_min_entrypoint
19 .globl sp_min_warm_entrypoint
20 .globl sp_min_handle_smc
21 .globl sp_min_handle_fiq
22
23 .macro route_fiq_to_sp_min reg
24 /* -----------------------------------------------------
25 * FIQs are secure interrupts trapped by Monitor and non
26 * secure is not allowed to mask the FIQs.
27 * -----------------------------------------------------
28 */
29 ldcopr \reg, SCR
30 orr \reg, \reg, #SCR_FIQ_BIT
31 bic \reg, \reg, #SCR_FW_BIT
32 stcopr \reg, SCR
33 .endm
34
35 .macro clrex_on_monitor_entry
36 #if (ARM_ARCH_MAJOR == 7)
37 /*
38 * ARMv7 architectures need to clear the exclusive access when
39 * entering Monitor mode.
40 */
41 clrex
42 #endif
43 .endm
44
45 vector_base sp_min_vector_table
46 b sp_min_entrypoint
47 b plat_panic_handler /* Undef */
48 b sp_min_handle_smc /* Syscall */
49 b plat_panic_handler /* Prefetch abort */
50 b plat_panic_handler /* Data abort */
51 b plat_panic_handler /* Reserved */
52 b plat_panic_handler /* IRQ */
53 b sp_min_handle_fiq /* FIQ */
54
55
56 /*
57 * The Cold boot/Reset entrypoint for SP_MIN
58 */
59 func sp_min_entrypoint
60 #if !RESET_TO_SP_MIN
61 /* ---------------------------------------------------------------
62 * Preceding bootloader has populated r0 with a pointer to a
63 * 'bl_params_t' structure & r1 with a pointer to platform
64 * specific structure
65 * ---------------------------------------------------------------
66 */
67 mov r9, r0
68 mov r10, r1
69 mov r11, r2
70 mov r12, r3
71
72 /* ---------------------------------------------------------------------
73 * For !RESET_TO_SP_MIN systems, only the primary CPU ever reaches
74 * sp_min_entrypoint() during the cold boot flow, so the cold/warm boot
75 * and primary/secondary CPU logic should not be executed in this case.
76 *
77 * Also, assume that the previous bootloader has already initialised the
78 * SCTLR, including the CPU endianness, and has initialised the memory.
79 * ---------------------------------------------------------------------
80 */
81 el3_entrypoint_common \
82 _init_sctlr=0 \
83 _warm_boot_mailbox=0 \
84 _secondary_cold_boot=0 \
85 _init_memory=0 \
86 _init_c_runtime=1 \
87 _exception_vectors=sp_min_vector_table
88
89 /* ---------------------------------------------------------------------
90 * Relay the previous bootloader's arguments to the platform layer
91 * ---------------------------------------------------------------------
92 */
93 #else
94 /* ---------------------------------------------------------------------
95 * For RESET_TO_SP_MIN systems which have a programmable reset address,
96 * sp_min_entrypoint() is executed only on the cold boot path so we can
97 * skip the warm boot mailbox mechanism.
98 * ---------------------------------------------------------------------
99 */
100 el3_entrypoint_common \
101 _init_sctlr=1 \
102 _warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS \
103 _secondary_cold_boot=!COLD_BOOT_SINGLE_CPU \
104 _init_memory=1 \
105 _init_c_runtime=1 \
106 _exception_vectors=sp_min_vector_table
107
108 /* ---------------------------------------------------------------------
109 * For RESET_TO_SP_MIN systems, BL32 (SP_MIN) is the first bootloader
110 * to run so there's no argument to relay from a previous bootloader.
111 * Zero the arguments passed to the platform layer to reflect that.
112 * ---------------------------------------------------------------------
113 */
114 mov r9, #0
115 mov r10, #0
116 mov r11, #0
117 mov r12, #0
118
119 #endif /* RESET_TO_SP_MIN */
120
121 #if SP_MIN_WITH_SECURE_FIQ
122 route_fiq_to_sp_min r4
123 #endif
124
125 mov r0, r9
126 mov r1, r10
127 mov r2, r11
128 mov r3, r12
129 bl sp_min_early_platform_setup2
130 bl sp_min_plat_arch_setup
131
132 /* Jump to the main function */
133 bl sp_min_main
134
135 /* -------------------------------------------------------------
136 * Clean the .data & .bss sections to main memory. This ensures
137 * that any global data which was initialised by the primary CPU
138 * is visible to secondary CPUs before they enable their data
139 * caches and participate in coherency.
140 * -------------------------------------------------------------
141 */
142 ldr r0, =__DATA_START__
143 ldr r1, =__DATA_END__
144 sub r1, r1, r0
145 bl clean_dcache_range
146
147 ldr r0, =__BSS_START__
148 ldr r1, =__BSS_END__
149 sub r1, r1, r0
150 bl clean_dcache_range
151
152 bl smc_get_next_ctx
153
154 /* r0 points to `smc_ctx_t` */
155 /* The PSCI cpu_context registers have been copied to `smc_ctx_t` */
156 /* BRCM_PATCH: PMCR passed from boot loader needs to be saved to initial ATF context.
157 * Othewise, PMCR setting will be lost, when ATF returns to next stage boot loader.
158 */
159 push {r1}
160 ldcopr r1, PMCR
161 str r1, [r0, #SMC_CTX_PMCR]
162 pop {r1}
163 b sp_min_exit
164 endfunc sp_min_entrypoint
165
166
167 /*
168 * SMC handling function for SP_MIN.
169 */
170 func sp_min_handle_smc
171 /* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */
172 str lr, [sp, #SMC_CTX_LR_MON]
173
174 smccc_save_gp_mode_regs
175
176 clrex_on_monitor_entry
177
178 /*
179 * `sp` still points to `smc_ctx_t`. Save it to a register
180 * and restore the C runtime stack pointer to `sp`.
181 */
182 mov r2, sp /* handle */
183 ldr sp, [r2, #SMC_CTX_SP_MON]
184
185 ldr r0, [r2, #SMC_CTX_SCR]
186 and r3, r0, #SCR_NS_BIT /* flags */
187
188 /* Switch to Secure Mode*/
189 bic r0, #SCR_NS_BIT
190 stcopr r0, SCR
191 isb
192
193 ldr r0, [r2, #SMC_CTX_GPREG_R0] /* smc_fid */
194 /* Check whether an SMC64 is issued */
195 tst r0, #(FUNCID_CC_MASK << FUNCID_CC_SHIFT)
196 beq 1f
197 /* SMC32 is not detected. Return error back to caller */
198 mov r0, #SMC_UNK
199 str r0, [r2, #SMC_CTX_GPREG_R0]
200 mov r0, r2
201 b sp_min_exit
202 1:
203 /* SMC32 is detected */
204 mov r1, #0 /* cookie */
205 bl handle_runtime_svc
206
207 /* `r0` points to `smc_ctx_t` */
208 b sp_min_exit
209 endfunc sp_min_handle_smc
210
211 /*
212 * Secure Interrupts handling function for SP_MIN.
213 */
214 func sp_min_handle_fiq
215 #if !SP_MIN_WITH_SECURE_FIQ
216 b plat_panic_handler
217 #else
218 /* FIQ has a +4 offset for lr compared to preferred return address */
219 sub lr, lr, #4
220 /* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */
221 str lr, [sp, #SMC_CTX_LR_MON]
222
223 smccc_save_gp_mode_regs
224
225 clrex_on_monitor_entry
226
227 /* load run-time stack */
228 mov r2, sp
229 ldr sp, [r2, #SMC_CTX_SP_MON]
230
231 /* Switch to Secure Mode */
232 ldr r0, [r2, #SMC_CTX_SCR]
233 bic r0, #SCR_NS_BIT
234 stcopr r0, SCR
235 isb
236
237 push {r2, r3}
238 bl sp_min_fiq
239 pop {r0, r3}
240
241 b sp_min_exit
242 #endif
243 endfunc sp_min_handle_fiq
244
245 /*
246 * The Warm boot entrypoint for SP_MIN.
247 */
248 func sp_min_warm_entrypoint
249 /*
250 * On the warm boot path, most of the EL3 initialisations performed by
251 * 'el3_entrypoint_common' must be skipped:
252 *
253 * - Only when the platform bypasses the BL1/BL32 (SP_MIN) entrypoint by
254 * programming the reset address do we need to initialied the SCTLR.
255 * In other cases, we assume this has been taken care by the
256 * entrypoint code.
257 *
258 * - No need to determine the type of boot, we know it is a warm boot.
259 *
260 * - Do not try to distinguish between primary and secondary CPUs, this
261 * notion only exists for a cold boot.
262 *
263 * - No need to initialise the memory or the C runtime environment,
264 * it has been done once and for all on the cold boot path.
265 */
266 el3_entrypoint_common \
267 _init_sctlr=PROGRAMMABLE_RESET_ADDRESS \
268 _warm_boot_mailbox=0 \
269 _secondary_cold_boot=0 \
270 _init_memory=0 \
271 _init_c_runtime=0 \
272 _exception_vectors=sp_min_vector_table
273
274 /*
275 * We're about to enable MMU and participate in PSCI state coordination.
276 *
277 * The PSCI implementation invokes platform routines that enable CPUs to
278 * participate in coherency. On a system where CPUs are not
279 * cache-coherent without appropriate platform specific programming,
280 * having caches enabled until such time might lead to coherency issues
281 * (resulting from stale data getting speculatively fetched, among
282 * others). Therefore we keep data caches disabled even after enabling
283 * the MMU for such platforms.
284 *
285 * On systems with hardware-assisted coherency, or on single cluster
286 * platforms, such platform specific programming is not required to
287 * enter coherency (as CPUs already are); and there's no reason to have
288 * caches disabled either.
289 */
290 #if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY
291 mov r0, #0
292 #else
293 mov r0, #DISABLE_DCACHE
294 #endif
295 /* BRCM_PATCH: BCM63138 (Cortex-A9) does not support long MMU descriptor.
296 * Need to use A9 specific short MMU descriptor.
297 */
298 #if defined(PLATFORM_FLAVOR_63138)
299 bl a9_l1cache_inval_d
300 bl a9_bl32_plat_enable_mmu
301 #else
302 bl bl32_plat_enable_mmu
303 #endif
304
305 #if SP_MIN_WITH_SECURE_FIQ
306 route_fiq_to_sp_min r0
307 #endif
308
309 #if defined(SPD_opteed)
310 bl opteed_setup
311 #endif
312
313 bl sp_min_warm_boot
314 bl smc_get_next_ctx
315 /* r0 points to `smc_ctx_t` */
316 /* The PSCI cpu_context registers have been copied to `smc_ctx_t` */
317 b sp_min_exit
318 endfunc sp_min_warm_entrypoint
319
320 /*
321 * The function to restore the registers from SMC context and return
322 * to the mode restored to SPSR.
323 *
324 * Arguments : r0 must point to the SMC context to restore from.
325 */
326 func sp_min_exit
327 monitor_exit
328 endfunc sp_min_exit