bmips: fix Tx cleanup when NAPI poll budget is zero
[openwrt/staging/noltari.git] / target / linux / bmips / files / drivers / net / ethernet / broadcom / bcm6368-enetsw.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * BCM6368 Ethernet Switch Controller Driver
4 *
5 * Copyright (C) 2021 Álvaro Fernández Rojas <noltari@gmail.com>
6 * Copyright (C) 2015 Jonas Gorski <jonas.gorski@gmail.com>
7 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
8 */
9
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/ethtool.h>
15 #include <linux/if_vlan.h>
16 #include <linux/interrupt.h>
17 #include <linux/of_clk.h>
18 #include <linux/of_net.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_domain.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/reset.h>
23
24 /* MTU */
25 #define ENETSW_TAG_SIZE 6
26 #define ENETSW_MTU_OVERHEAD (VLAN_ETH_HLEN + VLAN_HLEN + \
27 ENETSW_TAG_SIZE)
28 #define ENETSW_FRAG_SIZE(x) (SKB_DATA_ALIGN(NET_SKB_PAD + x + \
29 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))))
30
31 /* default number of descriptor */
32 #define ENETSW_DEF_RX_DESC 64
33 #define ENETSW_DEF_TX_DESC 32
34 #define ENETSW_DEF_CPY_BREAK 128
35
36 /* maximum burst len for dma (4 bytes unit) */
37 #define ENETSW_DMA_MAXBURST 8
38
39 /* DMA channels */
40 #define DMA_CHAN_WIDTH 0x10
41
42 /* Controller Configuration Register */
43 #define DMA_CFG_REG 0x0
44 #define DMA_CFG_EN_SHIFT 0
45 #define DMA_CFG_EN_MASK (1 << DMA_CFG_EN_SHIFT)
46 #define DMA_CFG_FLOWCH_MASK(x) (1 << ((x >> 1) + 1))
47
48 /* Flow Control Descriptor Low Threshold register */
49 #define DMA_FLOWCL_REG(x) (0x4 + (x) * 6)
50
51 /* Flow Control Descriptor High Threshold register */
52 #define DMA_FLOWCH_REG(x) (0x8 + (x) * 6)
53
54 /* Flow Control Descriptor Buffer Alloca Threshold register */
55 #define DMA_BUFALLOC_REG(x) (0xc + (x) * 6)
56 #define DMA_BUFALLOC_FORCE_SHIFT 31
57 #define DMA_BUFALLOC_FORCE_MASK (1 << DMA_BUFALLOC_FORCE_SHIFT)
58
59 /* Channel Configuration register */
60 #define DMAC_CHANCFG_REG 0x0
61 #define DMAC_CHANCFG_EN_SHIFT 0
62 #define DMAC_CHANCFG_EN_MASK (1 << DMAC_CHANCFG_EN_SHIFT)
63 #define DMAC_CHANCFG_PKTHALT_SHIFT 1
64 #define DMAC_CHANCFG_PKTHALT_MASK (1 << DMAC_CHANCFG_PKTHALT_SHIFT)
65 #define DMAC_CHANCFG_BUFHALT_SHIFT 2
66 #define DMAC_CHANCFG_BUFHALT_MASK (1 << DMAC_CHANCFG_BUFHALT_SHIFT)
67 #define DMAC_CHANCFG_CHAINING_SHIFT 2
68 #define DMAC_CHANCFG_CHAINING_MASK (1 << DMAC_CHANCFG_CHAINING_SHIFT)
69 #define DMAC_CHANCFG_WRAP_EN_SHIFT 3
70 #define DMAC_CHANCFG_WRAP_EN_MASK (1 << DMAC_CHANCFG_WRAP_EN_SHIFT)
71 #define DMAC_CHANCFG_FLOWC_EN_SHIFT 4
72 #define DMAC_CHANCFG_FLOWC_EN_MASK (1 << DMAC_CHANCFG_FLOWC_EN_SHIFT)
73
74 /* Interrupt Control/Status register */
75 #define DMAC_IR_REG 0x4
76 #define DMAC_IR_BUFDONE_MASK (1 << 0)
77 #define DMAC_IR_PKTDONE_MASK (1 << 1)
78 #define DMAC_IR_NOTOWNER_MASK (1 << 2)
79
80 /* Interrupt Mask register */
81 #define DMAC_IRMASK_REG 0x8
82
83 /* Maximum Burst Length */
84 #define DMAC_MAXBURST_REG 0xc
85
86 /* Ring Start Address register */
87 #define DMAS_RSTART_REG 0x0
88
89 /* State Ram Word 2 */
90 #define DMAS_SRAM2_REG 0x4
91
92 /* State Ram Word 3 */
93 #define DMAS_SRAM3_REG 0x8
94
95 /* State Ram Word 4 */
96 #define DMAS_SRAM4_REG 0xc
97
98 struct bcm6368_enetsw_desc {
99 u32 len_stat;
100 u32 address;
101 };
102
103 /* control */
104 #define DMADESC_LENGTH_SHIFT 16
105 #define DMADESC_LENGTH_MASK (0xfff << DMADESC_LENGTH_SHIFT)
106 #define DMADESC_OWNER_MASK (1 << 15)
107 #define DMADESC_EOP_MASK (1 << 14)
108 #define DMADESC_SOP_MASK (1 << 13)
109 #define DMADESC_ESOP_MASK (DMADESC_EOP_MASK | DMADESC_SOP_MASK)
110 #define DMADESC_WRAP_MASK (1 << 12)
111 #define DMADESC_USB_NOZERO_MASK (1 << 1)
112 #define DMADESC_USB_ZERO_MASK (1 << 0)
113
114 /* status */
115 #define DMADESC_UNDER_MASK (1 << 9)
116 #define DMADESC_APPEND_CRC (1 << 8)
117 #define DMADESC_OVSIZE_MASK (1 << 4)
118 #define DMADESC_RXER_MASK (1 << 2)
119 #define DMADESC_CRC_MASK (1 << 1)
120 #define DMADESC_OV_MASK (1 << 0)
121 #define DMADESC_ERR_MASK (DMADESC_UNDER_MASK | \
122 DMADESC_OVSIZE_MASK | \
123 DMADESC_RXER_MASK | \
124 DMADESC_CRC_MASK | \
125 DMADESC_OV_MASK)
126
127 struct bcm6368_enetsw {
128 void __iomem *dma_base;
129 void __iomem *dma_chan;
130 void __iomem *dma_sram;
131
132 struct device **pm;
133 struct device_link **link_pm;
134 int num_pms;
135
136 struct clk **clock;
137 unsigned int num_clocks;
138
139 struct reset_control **reset;
140 unsigned int num_resets;
141
142 int copybreak;
143
144 int irq_rx;
145 int irq_tx;
146
147 /* hw view of rx & tx dma ring */
148 dma_addr_t rx_desc_dma;
149 dma_addr_t tx_desc_dma;
150
151 /* allocated size (in bytes) for rx & tx dma ring */
152 unsigned int rx_desc_alloc_size;
153 unsigned int tx_desc_alloc_size;
154
155 struct napi_struct napi;
156
157 /* dma channel id for rx */
158 int rx_chan;
159
160 /* number of dma desc in rx ring */
161 int rx_ring_size;
162
163 /* cpu view of rx dma ring */
164 struct bcm6368_enetsw_desc *rx_desc_cpu;
165
166 /* current number of armed descriptor given to hardware for rx */
167 int rx_desc_count;
168
169 /* next rx descriptor to fetch from hardware */
170 int rx_curr_desc;
171
172 /* next dirty rx descriptor to refill */
173 int rx_dirty_desc;
174
175 /* size of allocated rx buffer */
176 unsigned int rx_buf_size;
177
178 /* size of allocated rx frag */
179 unsigned int rx_frag_size;
180
181 /* list of buffer given to hw for rx */
182 unsigned char **rx_buf;
183
184 /* used when rx buffer allocation failed, so we defer rx queue
185 * refill */
186 struct timer_list rx_timeout;
187
188 /* lock rx_timeout against rx normal operation */
189 spinlock_t rx_lock;
190
191 /* dma channel id for tx */
192 int tx_chan;
193
194 /* number of dma desc in tx ring */
195 int tx_ring_size;
196
197 /* maximum dma burst size */
198 int dma_maxburst;
199
200 /* cpu view of rx dma ring */
201 struct bcm6368_enetsw_desc *tx_desc_cpu;
202
203 /* number of available descriptor for tx */
204 int tx_desc_count;
205
206 /* next tx descriptor avaiable */
207 int tx_curr_desc;
208
209 /* next dirty tx descriptor to reclaim */
210 int tx_dirty_desc;
211
212 /* list of skb given to hw for tx */
213 struct sk_buff **tx_skb;
214
215 /* lock used by tx reclaim and xmit */
216 spinlock_t tx_lock;
217
218 /* network device reference */
219 struct net_device *net_dev;
220
221 /* platform device reference */
222 struct platform_device *pdev;
223
224 /* dma channel enable mask */
225 u32 dma_chan_en_mask;
226
227 /* dma channel interrupt mask */
228 u32 dma_chan_int_mask;
229
230 /* dma channel width */
231 unsigned int dma_chan_width;
232 };
233
234 static inline void dma_writel(struct bcm6368_enetsw *priv, u32 val, u32 off)
235 {
236 __raw_writel(val, priv->dma_base + off);
237 }
238
239 static inline u32 dma_readl(struct bcm6368_enetsw *priv, u32 off, int chan)
240 {
241 return __raw_readl(priv->dma_chan + off + chan * priv->dma_chan_width);
242 }
243
244 static inline void dmac_writel(struct bcm6368_enetsw *priv, u32 val,
245 u32 off, int chan)
246 {
247 __raw_writel(val, priv->dma_chan + off + chan * priv->dma_chan_width);
248 }
249
250 static inline void dmas_writel(struct bcm6368_enetsw *priv, u32 val,
251 u32 off, int chan)
252 {
253 __raw_writel(val, priv->dma_sram + off + chan * priv->dma_chan_width);
254 }
255
256 /*
257 * refill rx queue
258 */
259 static int bcm6368_enetsw_refill_rx(struct net_device *dev, bool napi_mode)
260 {
261 struct bcm6368_enetsw *priv = netdev_priv(dev);
262
263 while (priv->rx_desc_count < priv->rx_ring_size) {
264 struct bcm6368_enetsw_desc *desc;
265 int desc_idx;
266 u32 len_stat;
267
268 desc_idx = priv->rx_dirty_desc;
269 desc = &priv->rx_desc_cpu[desc_idx];
270
271 if (!priv->rx_buf[desc_idx]) {
272 unsigned char *buf;
273
274 if (likely(napi_mode))
275 buf = napi_alloc_frag(priv->rx_frag_size);
276 else
277 buf = netdev_alloc_frag(priv->rx_frag_size);
278
279 if (unlikely(!buf))
280 break;
281
282 priv->rx_buf[desc_idx] = buf;
283 desc->address = dma_map_single(&priv->pdev->dev,
284 buf + NET_SKB_PAD,
285 priv->rx_buf_size,
286 DMA_FROM_DEVICE);
287 }
288
289 len_stat = priv->rx_buf_size << DMADESC_LENGTH_SHIFT;
290 len_stat |= DMADESC_OWNER_MASK;
291 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
292 len_stat |= DMADESC_WRAP_MASK;
293 priv->rx_dirty_desc = 0;
294 } else {
295 priv->rx_dirty_desc++;
296 }
297 wmb();
298 desc->len_stat = len_stat;
299
300 priv->rx_desc_count++;
301
302 /* tell dma engine we allocated one buffer */
303 dma_writel(priv, 1, DMA_BUFALLOC_REG(priv->rx_chan));
304 }
305
306 /* If rx ring is still empty, set a timer to try allocating
307 * again at a later time. */
308 if (priv->rx_desc_count == 0 && netif_running(dev)) {
309 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
310 priv->rx_timeout.expires = jiffies + HZ;
311 add_timer(&priv->rx_timeout);
312 }
313
314 return 0;
315 }
316
317 /*
318 * timer callback to defer refill rx queue in case we're OOM
319 */
320 static void bcm6368_enetsw_refill_rx_timer(struct timer_list *t)
321 {
322 struct bcm6368_enetsw *priv = from_timer(priv, t, rx_timeout);
323 struct net_device *dev = priv->net_dev;
324
325 spin_lock(&priv->rx_lock);
326 bcm6368_enetsw_refill_rx(dev, false);
327 spin_unlock(&priv->rx_lock);
328 }
329
330 /*
331 * extract packet from rx queue
332 */
333 static int bcm6368_enetsw_receive_queue(struct net_device *dev, int budget)
334 {
335 struct bcm6368_enetsw *priv = netdev_priv(dev);
336 struct device *kdev = &priv->pdev->dev;
337 struct list_head rx_list;
338 struct sk_buff *skb;
339 int processed = 0;
340
341 INIT_LIST_HEAD(&rx_list);
342
343 /* don't scan ring further than number of refilled
344 * descriptor */
345 if (budget > priv->rx_desc_count)
346 budget = priv->rx_desc_count;
347
348 do {
349 struct bcm6368_enetsw_desc *desc;
350 unsigned int frag_size;
351 unsigned char *buf;
352 int desc_idx;
353 u32 len_stat;
354 unsigned int len;
355
356 desc_idx = priv->rx_curr_desc;
357 desc = &priv->rx_desc_cpu[desc_idx];
358
359 /* make sure we actually read the descriptor status at
360 * each loop */
361 rmb();
362
363 len_stat = desc->len_stat;
364
365 /* break if dma ownership belongs to hw */
366 if (len_stat & DMADESC_OWNER_MASK)
367 break;
368
369 processed++;
370 priv->rx_curr_desc++;
371 if (priv->rx_curr_desc == priv->rx_ring_size)
372 priv->rx_curr_desc = 0;
373
374 /* if the packet does not have start of packet _and_
375 * end of packet flag set, then just recycle it */
376 if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
377 dev->stats.rx_dropped++;
378 continue;
379 }
380
381 /* valid packet */
382 buf = priv->rx_buf[desc_idx];
383 len = (len_stat & DMADESC_LENGTH_MASK)
384 >> DMADESC_LENGTH_SHIFT;
385 /* don't include FCS */
386 len -= 4;
387
388 if (len < priv->copybreak) {
389 unsigned int nfrag_size = ENETSW_FRAG_SIZE(len);
390 unsigned char *nbuf = napi_alloc_frag(nfrag_size);
391
392 if (unlikely(!nbuf)) {
393 /* forget packet, just rearm desc */
394 dev->stats.rx_dropped++;
395 continue;
396 }
397
398 dma_sync_single_for_cpu(kdev, desc->address,
399 len, DMA_FROM_DEVICE);
400 memcpy(nbuf + NET_SKB_PAD, buf + NET_SKB_PAD, len);
401 dma_sync_single_for_device(kdev, desc->address,
402 len, DMA_FROM_DEVICE);
403 buf = nbuf;
404 frag_size = nfrag_size;
405 } else {
406 dma_unmap_single(kdev, desc->address,
407 priv->rx_buf_size, DMA_FROM_DEVICE);
408 priv->rx_buf[desc_idx] = NULL;
409 frag_size = priv->rx_frag_size;
410 }
411
412 skb = napi_build_skb(buf, frag_size);
413 if (unlikely(!skb)) {
414 skb_free_frag(buf);
415 dev->stats.rx_dropped++;
416 continue;
417 }
418
419 skb_reserve(skb, NET_SKB_PAD);
420 skb_put(skb, len);
421 dev->stats.rx_packets++;
422 dev->stats.rx_bytes += len;
423 list_add_tail(&skb->list, &rx_list);
424 } while (processed < budget);
425
426 list_for_each_entry(skb, &rx_list, list)
427 skb->protocol = eth_type_trans(skb, dev);
428 netif_receive_skb_list(&rx_list);
429 priv->rx_desc_count -= processed;
430
431 if (processed || !priv->rx_desc_count) {
432 bcm6368_enetsw_refill_rx(dev, true);
433
434 /* kick rx dma */
435 dmac_writel(priv, priv->dma_chan_en_mask,
436 DMAC_CHANCFG_REG, priv->rx_chan);
437 }
438
439 return processed;
440 }
441
442 /*
443 * try to or force reclaim of transmitted buffers
444 */
445 static int bcm6368_enetsw_tx_reclaim(struct net_device *dev, int force,
446 int budget)
447 {
448 struct bcm6368_enetsw *priv = netdev_priv(dev);
449 unsigned int bytes = 0;
450 int released = 0;
451
452 while (priv->tx_desc_count < priv->tx_ring_size) {
453 struct bcm6368_enetsw_desc *desc;
454 struct sk_buff *skb;
455
456 /* We run in a bh and fight against start_xmit, which
457 * is called with bh disabled */
458 spin_lock(&priv->tx_lock);
459
460 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
461
462 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
463 spin_unlock(&priv->tx_lock);
464 break;
465 }
466
467 /* ensure other field of the descriptor were not read
468 * before we checked ownership */
469 rmb();
470
471 skb = priv->tx_skb[priv->tx_dirty_desc];
472 priv->tx_skb[priv->tx_dirty_desc] = NULL;
473 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
474 DMA_TO_DEVICE);
475
476 priv->tx_dirty_desc++;
477 if (priv->tx_dirty_desc == priv->tx_ring_size)
478 priv->tx_dirty_desc = 0;
479 priv->tx_desc_count++;
480
481 spin_unlock(&priv->tx_lock);
482
483 if (desc->len_stat & DMADESC_UNDER_MASK)
484 dev->stats.tx_errors++;
485
486 bytes += skb->len;
487 napi_consume_skb(skb, budget);
488 released++;
489 }
490
491 netdev_completed_queue(dev, released, bytes);
492
493 if (netif_queue_stopped(dev) && released)
494 netif_wake_queue(dev);
495
496 return released;
497 }
498
499 /*
500 * poll func, called by network core
501 */
502 static int bcm6368_enetsw_poll(struct napi_struct *napi, int budget)
503 {
504 struct bcm6368_enetsw *priv = container_of(napi, struct bcm6368_enetsw, napi);
505 struct net_device *dev = priv->net_dev;
506 int rx_work_done;
507
508 /* ack interrupts */
509 dmac_writel(priv, priv->dma_chan_int_mask,
510 DMAC_IR_REG, priv->rx_chan);
511 dmac_writel(priv, priv->dma_chan_int_mask,
512 DMAC_IR_REG, priv->tx_chan);
513
514 /* reclaim sent skb */
515 bcm6368_enetsw_tx_reclaim(dev, 0, budget);
516
517 spin_lock(&priv->rx_lock);
518 rx_work_done = bcm6368_enetsw_receive_queue(dev, budget);
519 spin_unlock(&priv->rx_lock);
520
521 if (rx_work_done >= budget) {
522 /* rx queue is not yet empty/clean */
523 return rx_work_done;
524 }
525
526 /* no more packet in rx/tx queue, remove device from poll
527 * queue */
528 napi_complete_done(napi, rx_work_done);
529
530 /* restore rx/tx interrupt */
531 dmac_writel(priv, priv->dma_chan_int_mask,
532 DMAC_IRMASK_REG, priv->rx_chan);
533 dmac_writel(priv, priv->dma_chan_int_mask,
534 DMAC_IRMASK_REG, priv->tx_chan);
535
536 return rx_work_done;
537 }
538
539 /*
540 * rx/tx dma interrupt handler
541 */
542 static irqreturn_t bcm6368_enetsw_isr_dma(int irq, void *dev_id)
543 {
544 struct net_device *dev = dev_id;
545 struct bcm6368_enetsw *priv = netdev_priv(dev);
546
547 /* mask rx/tx interrupts */
548 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
549 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
550
551 napi_schedule(&priv->napi);
552
553 return IRQ_HANDLED;
554 }
555
556 /*
557 * tx request callback
558 */
559 static netdev_tx_t
560 bcm6368_enetsw_start_xmit(struct sk_buff *skb, struct net_device *dev)
561 {
562 struct bcm6368_enetsw *priv = netdev_priv(dev);
563 struct bcm6368_enetsw_desc *desc;
564 u32 len_stat;
565 netdev_tx_t ret;
566
567 /* lock against tx reclaim */
568 spin_lock(&priv->tx_lock);
569
570 /* make sure the tx hw queue is not full, should not happen
571 * since we stop queue before it's the case */
572 if (unlikely(!priv->tx_desc_count)) {
573 netif_stop_queue(dev);
574 dev_err(&priv->pdev->dev, "xmit called with no tx desc "
575 "available?\n");
576 ret = NETDEV_TX_BUSY;
577 goto out_unlock;
578 }
579
580 /* pad small packets */
581 if (skb->len < (ETH_ZLEN + ETH_FCS_LEN)) {
582 int needed = (ETH_ZLEN + ETH_FCS_LEN) - skb->len;
583 char *data;
584
585 if (unlikely(skb_tailroom(skb) < needed)) {
586 struct sk_buff *nskb;
587
588 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
589 if (!nskb) {
590 ret = NETDEV_TX_BUSY;
591 goto out_unlock;
592 }
593
594 dev_kfree_skb(skb);
595 skb = nskb;
596 }
597 data = skb_put_zero(skb, needed);
598 }
599
600 /* point to the next available desc */
601 desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
602 priv->tx_skb[priv->tx_curr_desc] = skb;
603
604 /* fill descriptor */
605 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
606 DMA_TO_DEVICE);
607
608 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
609 len_stat |= DMADESC_ESOP_MASK | DMADESC_APPEND_CRC |
610 DMADESC_OWNER_MASK;
611
612 priv->tx_curr_desc++;
613 if (priv->tx_curr_desc == priv->tx_ring_size) {
614 priv->tx_curr_desc = 0;
615 len_stat |= DMADESC_WRAP_MASK;
616 }
617 priv->tx_desc_count--;
618
619 /* dma might be already polling, make sure we update desc
620 * fields in correct order */
621 wmb();
622 desc->len_stat = len_stat;
623 wmb();
624
625 netdev_sent_queue(dev, skb->len);
626
627 /* kick tx dma */
628 dmac_writel(priv, priv->dma_chan_en_mask, DMAC_CHANCFG_REG,
629 priv->tx_chan);
630
631 /* stop queue if no more desc available */
632 if (!priv->tx_desc_count)
633 netif_stop_queue(dev);
634
635 dev->stats.tx_bytes += skb->len;
636 dev->stats.tx_packets++;
637 ret = NETDEV_TX_OK;
638
639 out_unlock:
640 spin_unlock(&priv->tx_lock);
641 return ret;
642 }
643
644 /*
645 * disable dma in given channel
646 */
647 static void bcm6368_enetsw_disable_dma(struct bcm6368_enetsw *priv, int chan)
648 {
649 int limit = 1000;
650
651 dmac_writel(priv, 0, DMAC_CHANCFG_REG, chan);
652
653 do {
654 u32 val;
655
656 val = dma_readl(priv, DMAC_CHANCFG_REG, chan);
657 if (!(val & DMAC_CHANCFG_EN_MASK))
658 break;
659
660 udelay(1);
661 } while (limit--);
662 }
663
664 static int bcm6368_enetsw_open(struct net_device *dev)
665 {
666 struct bcm6368_enetsw *priv = netdev_priv(dev);
667 struct device *kdev = &priv->pdev->dev;
668 int i, ret;
669 unsigned int size;
670 void *p;
671 u32 val;
672
673 /* mask all interrupts and request them */
674 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
675 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
676
677 ret = request_irq(priv->irq_rx, bcm6368_enetsw_isr_dma,
678 0, dev->name, dev);
679 if (ret)
680 goto out_freeirq;
681
682 if (priv->irq_tx != -1) {
683 ret = request_irq(priv->irq_tx, bcm6368_enetsw_isr_dma,
684 0, dev->name, dev);
685 if (ret)
686 goto out_freeirq_rx;
687 }
688
689 /* allocate rx dma ring */
690 size = priv->rx_ring_size * sizeof(struct bcm6368_enetsw_desc);
691 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
692 if (!p) {
693 dev_err(kdev, "cannot allocate rx ring %u\n", size);
694 ret = -ENOMEM;
695 goto out_freeirq_tx;
696 }
697
698 memset(p, 0, size);
699 priv->rx_desc_alloc_size = size;
700 priv->rx_desc_cpu = p;
701
702 /* allocate tx dma ring */
703 size = priv->tx_ring_size * sizeof(struct bcm6368_enetsw_desc);
704 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
705 if (!p) {
706 dev_err(kdev, "cannot allocate tx ring\n");
707 ret = -ENOMEM;
708 goto out_free_rx_ring;
709 }
710
711 memset(p, 0, size);
712 priv->tx_desc_alloc_size = size;
713 priv->tx_desc_cpu = p;
714
715 priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
716 GFP_KERNEL);
717 if (!priv->tx_skb) {
718 dev_err(kdev, "cannot allocate tx skb queue\n");
719 ret = -ENOMEM;
720 goto out_free_tx_ring;
721 }
722
723 priv->tx_desc_count = priv->tx_ring_size;
724 priv->tx_dirty_desc = 0;
725 priv->tx_curr_desc = 0;
726 spin_lock_init(&priv->tx_lock);
727
728 /* init & fill rx ring with buffers */
729 priv->rx_buf = kzalloc(sizeof(unsigned char *) * priv->rx_ring_size,
730 GFP_KERNEL);
731 if (!priv->rx_buf) {
732 dev_err(kdev, "cannot allocate rx buffer queue\n");
733 ret = -ENOMEM;
734 goto out_free_tx_skb;
735 }
736
737 priv->rx_desc_count = 0;
738 priv->rx_dirty_desc = 0;
739 priv->rx_curr_desc = 0;
740
741 /* initialize flow control buffer allocation */
742 dma_writel(priv, DMA_BUFALLOC_FORCE_MASK | 0,
743 DMA_BUFALLOC_REG(priv->rx_chan));
744
745 if (bcm6368_enetsw_refill_rx(dev, false)) {
746 dev_err(kdev, "cannot allocate rx buffer queue\n");
747 ret = -ENOMEM;
748 goto out;
749 }
750
751 /* write rx & tx ring addresses */
752 dmas_writel(priv, priv->rx_desc_dma,
753 DMAS_RSTART_REG, priv->rx_chan);
754 dmas_writel(priv, priv->tx_desc_dma,
755 DMAS_RSTART_REG, priv->tx_chan);
756
757 /* clear remaining state ram for rx & tx channel */
758 dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->rx_chan);
759 dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->tx_chan);
760 dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->rx_chan);
761 dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->tx_chan);
762 dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->rx_chan);
763 dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->tx_chan);
764
765 /* set dma maximum burst len */
766 dmac_writel(priv, priv->dma_maxburst,
767 DMAC_MAXBURST_REG, priv->rx_chan);
768 dmac_writel(priv, priv->dma_maxburst,
769 DMAC_MAXBURST_REG, priv->tx_chan);
770
771 /* set flow control low/high threshold to 1/3 / 2/3 */
772 val = priv->rx_ring_size / 3;
773 dma_writel(priv, val, DMA_FLOWCL_REG(priv->rx_chan));
774 val = (priv->rx_ring_size * 2) / 3;
775 dma_writel(priv, val, DMA_FLOWCH_REG(priv->rx_chan));
776
777 /* all set, enable mac and interrupts, start dma engine and
778 * kick rx dma channel
779 */
780 wmb();
781 dma_writel(priv, DMA_CFG_EN_MASK, DMA_CFG_REG);
782 dmac_writel(priv, DMAC_CHANCFG_EN_MASK,
783 DMAC_CHANCFG_REG, priv->rx_chan);
784
785 /* watch "packet transferred" interrupt in rx and tx */
786 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
787 DMAC_IR_REG, priv->rx_chan);
788 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
789 DMAC_IR_REG, priv->tx_chan);
790
791 /* make sure we enable napi before rx interrupt */
792 napi_enable(&priv->napi);
793
794 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
795 DMAC_IRMASK_REG, priv->rx_chan);
796 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
797 DMAC_IRMASK_REG, priv->tx_chan);
798
799 netif_carrier_on(dev);
800 netif_start_queue(dev);
801
802 return 0;
803
804 out:
805 for (i = 0; i < priv->rx_ring_size; i++) {
806 struct bcm6368_enetsw_desc *desc;
807
808 if (!priv->rx_buf[i])
809 continue;
810
811 desc = &priv->rx_desc_cpu[i];
812 dma_unmap_single(kdev, desc->address, priv->rx_buf_size,
813 DMA_FROM_DEVICE);
814 skb_free_frag(priv->rx_buf[i]);
815 }
816 kfree(priv->rx_buf);
817
818 out_free_tx_skb:
819 kfree(priv->tx_skb);
820
821 out_free_tx_ring:
822 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
823 priv->tx_desc_cpu, priv->tx_desc_dma);
824
825 out_free_rx_ring:
826 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
827 priv->rx_desc_cpu, priv->rx_desc_dma);
828
829 out_freeirq_tx:
830 if (priv->irq_tx != -1)
831 free_irq(priv->irq_tx, dev);
832
833 out_freeirq_rx:
834 free_irq(priv->irq_rx, dev);
835
836 out_freeirq:
837 return ret;
838 }
839
840 static int bcm6368_enetsw_stop(struct net_device *dev)
841 {
842 struct bcm6368_enetsw *priv = netdev_priv(dev);
843 struct device *kdev = &priv->pdev->dev;
844 int i;
845
846 netif_stop_queue(dev);
847 napi_disable(&priv->napi);
848 del_timer_sync(&priv->rx_timeout);
849
850 /* mask all interrupts */
851 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
852 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
853
854 /* disable dma & mac */
855 bcm6368_enetsw_disable_dma(priv, priv->tx_chan);
856 bcm6368_enetsw_disable_dma(priv, priv->rx_chan);
857
858 /* force reclaim of all tx buffers */
859 bcm6368_enetsw_tx_reclaim(dev, 1, 0);
860
861 /* free the rx buffer ring */
862 for (i = 0; i < priv->rx_ring_size; i++) {
863 struct bcm6368_enetsw_desc *desc;
864
865 if (!priv->rx_buf[i])
866 continue;
867
868 desc = &priv->rx_desc_cpu[i];
869 dma_unmap_single_attrs(kdev, desc->address, priv->rx_buf_size,
870 DMA_FROM_DEVICE,
871 DMA_ATTR_SKIP_CPU_SYNC);
872 skb_free_frag(priv->rx_buf[i]);
873 }
874
875 /* free remaining allocated memory */
876 kfree(priv->rx_buf);
877 kfree(priv->tx_skb);
878 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
879 priv->rx_desc_cpu, priv->rx_desc_dma);
880 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
881 priv->tx_desc_cpu, priv->tx_desc_dma);
882 if (priv->irq_tx != -1)
883 free_irq(priv->irq_tx, dev);
884 free_irq(priv->irq_rx, dev);
885
886 netdev_reset_queue(dev);
887
888 return 0;
889 }
890
891 static const struct net_device_ops bcm6368_enetsw_ops = {
892 .ndo_open = bcm6368_enetsw_open,
893 .ndo_stop = bcm6368_enetsw_stop,
894 .ndo_start_xmit = bcm6368_enetsw_start_xmit,
895 };
896
897 static int bcm6368_enetsw_probe(struct platform_device *pdev)
898 {
899 struct bcm6368_enetsw *priv;
900 struct device *dev = &pdev->dev;
901 struct device_node *node = dev->of_node;
902 struct net_device *ndev;
903 struct resource *res;
904 unsigned i;
905 int ret;
906
907 ndev = alloc_etherdev(sizeof(*priv));
908 if (!ndev)
909 return -ENOMEM;
910
911 priv = netdev_priv(ndev);
912
913 priv->num_pms = of_count_phandle_with_args(node, "power-domains",
914 "#power-domain-cells");
915 if (priv->num_pms > 1) {
916 priv->pm = devm_kcalloc(dev, priv->num_pms,
917 sizeof(struct device *), GFP_KERNEL);
918 if (!priv->pm)
919 return -ENOMEM;
920
921 priv->link_pm = devm_kcalloc(dev, priv->num_pms,
922 sizeof(struct device_link *),
923 GFP_KERNEL);
924 if (!priv->link_pm)
925 return -ENOMEM;
926
927 for (i = 0; i < priv->num_pms; i++) {
928 priv->pm[i] = genpd_dev_pm_attach_by_id(dev, i);
929 if (IS_ERR(priv->pm[i])) {
930 dev_err(dev, "error getting pm %d\n", i);
931 return -EINVAL;
932 }
933
934 priv->link_pm[i] = device_link_add(dev, priv->pm[i],
935 DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME |
936 DL_FLAG_RPM_ACTIVE);
937 }
938 }
939
940 pm_runtime_enable(dev);
941 pm_runtime_no_callbacks(dev);
942 ret = pm_runtime_get_sync(dev);
943 if (ret < 0) {
944 pm_runtime_disable(dev);
945 dev_info(dev, "PM prober defer: ret=%d\n", ret);
946 return -EPROBE_DEFER;
947 }
948
949 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
950 priv->dma_base = devm_ioremap_resource(dev, res);
951 if (IS_ERR(priv->dma_base))
952 return PTR_ERR(priv->dma_base);
953
954 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
955 "dma-channels");
956 priv->dma_chan = devm_ioremap_resource(dev, res);
957 if (IS_ERR(priv->dma_chan))
958 return PTR_ERR(priv->dma_chan);
959
960 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma-sram");
961 priv->dma_sram = devm_ioremap_resource(dev, res);
962 if (IS_ERR(priv->dma_sram))
963 return PTR_ERR(priv->dma_sram);
964
965 priv->irq_rx = platform_get_irq_byname(pdev, "rx");
966 if (!priv->irq_rx)
967 return -ENODEV;
968
969 priv->irq_tx = platform_get_irq_byname(pdev, "tx");
970 if (!priv->irq_tx)
971 return -ENODEV;
972 else if (priv->irq_tx < 0)
973 priv->irq_tx = -1;
974
975 if (device_property_read_u32(dev, "dma-rx", &priv->rx_chan))
976 return -ENODEV;
977
978 if (device_property_read_u32(dev, "dma-tx", &priv->tx_chan))
979 return -ENODEV;
980
981 priv->rx_ring_size = ENETSW_DEF_RX_DESC;
982 priv->tx_ring_size = ENETSW_DEF_TX_DESC;
983
984 priv->dma_maxburst = ENETSW_DMA_MAXBURST;
985
986 priv->copybreak = ENETSW_DEF_CPY_BREAK;
987
988 priv->dma_chan_en_mask = DMAC_CHANCFG_EN_MASK;
989 priv->dma_chan_int_mask = DMAC_IR_PKTDONE_MASK;
990 priv->dma_chan_width = DMA_CHAN_WIDTH;
991
992 of_get_mac_address(node, ndev->dev_addr);
993 if (is_valid_ether_addr(ndev->dev_addr)) {
994 dev_info(dev, "mtd mac %pM\n", ndev->dev_addr);
995 } else {
996 random_ether_addr(ndev->dev_addr);
997 dev_info(dev, "random mac %pM\n", ndev->dev_addr);
998 }
999
1000 priv->rx_buf_size = ALIGN(ndev->mtu + ENETSW_MTU_OVERHEAD,
1001 priv->dma_maxburst * 4);
1002
1003 priv->rx_frag_size = ENETSW_FRAG_SIZE(priv->rx_buf_size);
1004
1005 priv->num_clocks = of_clk_get_parent_count(node);
1006 if (priv->num_clocks) {
1007 priv->clock = devm_kcalloc(dev, priv->num_clocks,
1008 sizeof(struct clk *), GFP_KERNEL);
1009 if (!priv->clock)
1010 return -ENOMEM;
1011 }
1012 for (i = 0; i < priv->num_clocks; i++) {
1013 priv->clock[i] = of_clk_get(node, i);
1014 if (IS_ERR(priv->clock[i])) {
1015 dev_err(dev, "error getting clock %d\n", i);
1016 return -EINVAL;
1017 }
1018
1019 ret = clk_prepare_enable(priv->clock[i]);
1020 if (ret) {
1021 dev_err(dev, "error enabling clock %d\n", i);
1022 return ret;
1023 }
1024 }
1025
1026 priv->num_resets = of_count_phandle_with_args(node, "resets",
1027 "#reset-cells");
1028 if (priv->num_resets) {
1029 priv->reset = devm_kcalloc(dev, priv->num_resets,
1030 sizeof(struct reset_control *),
1031 GFP_KERNEL);
1032 if (!priv->reset)
1033 return -ENOMEM;
1034 }
1035 for (i = 0; i < priv->num_resets; i++) {
1036 priv->reset[i] = devm_reset_control_get_by_index(dev, i);
1037 if (IS_ERR(priv->reset[i])) {
1038 dev_err(dev, "error getting reset %d\n", i);
1039 return -EINVAL;
1040 }
1041
1042 ret = reset_control_reset(priv->reset[i]);
1043 if (ret) {
1044 dev_err(dev, "error performing reset %d\n", i);
1045 return ret;
1046 }
1047 }
1048
1049 spin_lock_init(&priv->rx_lock);
1050
1051 timer_setup(&priv->rx_timeout, bcm6368_enetsw_refill_rx_timer, 0);
1052
1053 /* register netdevice */
1054 ndev->netdev_ops = &bcm6368_enetsw_ops;
1055 ndev->min_mtu = ETH_ZLEN;
1056 ndev->mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
1057 ndev->max_mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
1058 netif_napi_add(ndev, &priv->napi, bcm6368_enetsw_poll, 16);
1059 SET_NETDEV_DEV(ndev, dev);
1060
1061 ret = register_netdev(ndev);
1062 if (ret)
1063 goto out_disable_clk;
1064
1065 netif_carrier_off(ndev);
1066 platform_set_drvdata(pdev, ndev);
1067 priv->pdev = pdev;
1068 priv->net_dev = ndev;
1069
1070 return 0;
1071
1072 out_disable_clk:
1073 for (i = 0; i < priv->num_resets; i++)
1074 reset_control_assert(priv->reset[i]);
1075
1076 for (i = 0; i < priv->num_clocks; i++)
1077 clk_disable_unprepare(priv->clock[i]);
1078
1079 return ret;
1080 }
1081
1082 static int bcm6368_enetsw_remove(struct platform_device *pdev)
1083 {
1084 struct device *dev = &pdev->dev;
1085 struct net_device *ndev = platform_get_drvdata(pdev);
1086 struct bcm6368_enetsw *priv = netdev_priv(ndev);
1087 unsigned int i;
1088
1089 unregister_netdev(ndev);
1090
1091 pm_runtime_put_sync(dev);
1092 for (i = 0; priv->pm && i < priv->num_pms; i++) {
1093 dev_pm_domain_detach(priv->pm[i], true);
1094 device_link_del(priv->link_pm[i]);
1095 }
1096
1097 for (i = 0; i < priv->num_resets; i++)
1098 reset_control_assert(priv->reset[i]);
1099
1100 for (i = 0; i < priv->num_clocks; i++)
1101 clk_disable_unprepare(priv->clock[i]);
1102
1103 free_netdev(ndev);
1104
1105 return 0;
1106 }
1107
1108 static const struct of_device_id bcm6368_enetsw_of_match[] = {
1109 { .compatible = "brcm,bcm6318-enetsw", },
1110 { .compatible = "brcm,bcm6328-enetsw", },
1111 { .compatible = "brcm,bcm6362-enetsw", },
1112 { .compatible = "brcm,bcm6368-enetsw", },
1113 { .compatible = "brcm,bcm63268-enetsw", },
1114 { /* sentinel */ }
1115 };
1116 MODULE_DEVICE_TABLE(of, bcm6368_enetsw_of_match);
1117
1118 static struct platform_driver bcm6368_enetsw_driver = {
1119 .driver = {
1120 .name = "bcm6368-enetsw",
1121 .of_match_table = of_match_ptr(bcm6368_enetsw_of_match),
1122 },
1123 .probe = bcm6368_enetsw_probe,
1124 .remove = bcm6368_enetsw_remove,
1125 };
1126 module_platform_driver(bcm6368_enetsw_driver);