bmips: batch process eth_type_trans() in rx path
[openwrt/staging/noltari.git] / target / linux / bmips / files / drivers / net / ethernet / broadcom / bcm6368-enetsw.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * BCM6368 Ethernet Switch Controller Driver
4 *
5 * Copyright (C) 2021 Álvaro Fernández Rojas <noltari@gmail.com>
6 * Copyright (C) 2015 Jonas Gorski <jonas.gorski@gmail.com>
7 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
8 */
9
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/ethtool.h>
15 #include <linux/if_vlan.h>
16 #include <linux/interrupt.h>
17 #include <linux/of_clk.h>
18 #include <linux/of_net.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_domain.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/reset.h>
23
24 /* MTU */
25 #define ENETSW_TAG_SIZE 6
26 #define ENETSW_MTU_OVERHEAD (VLAN_ETH_HLEN + VLAN_HLEN + \
27 ENETSW_TAG_SIZE)
28 #define ENETSW_FRAG_SIZE(x) (SKB_DATA_ALIGN(NET_SKB_PAD + x + \
29 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))))
30
31 /* default number of descriptor */
32 #define ENETSW_DEF_RX_DESC 64
33 #define ENETSW_DEF_TX_DESC 32
34 #define ENETSW_DEF_CPY_BREAK 128
35
36 /* maximum burst len for dma (4 bytes unit) */
37 #define ENETSW_DMA_MAXBURST 8
38
39 /* DMA channels */
40 #define DMA_CHAN_WIDTH 0x10
41
42 /* Controller Configuration Register */
43 #define DMA_CFG_REG 0x0
44 #define DMA_CFG_EN_SHIFT 0
45 #define DMA_CFG_EN_MASK (1 << DMA_CFG_EN_SHIFT)
46 #define DMA_CFG_FLOWCH_MASK(x) (1 << ((x >> 1) + 1))
47
48 /* Flow Control Descriptor Low Threshold register */
49 #define DMA_FLOWCL_REG(x) (0x4 + (x) * 6)
50
51 /* Flow Control Descriptor High Threshold register */
52 #define DMA_FLOWCH_REG(x) (0x8 + (x) * 6)
53
54 /* Flow Control Descriptor Buffer Alloca Threshold register */
55 #define DMA_BUFALLOC_REG(x) (0xc + (x) * 6)
56 #define DMA_BUFALLOC_FORCE_SHIFT 31
57 #define DMA_BUFALLOC_FORCE_MASK (1 << DMA_BUFALLOC_FORCE_SHIFT)
58
59 /* Channel Configuration register */
60 #define DMAC_CHANCFG_REG 0x0
61 #define DMAC_CHANCFG_EN_SHIFT 0
62 #define DMAC_CHANCFG_EN_MASK (1 << DMAC_CHANCFG_EN_SHIFT)
63 #define DMAC_CHANCFG_PKTHALT_SHIFT 1
64 #define DMAC_CHANCFG_PKTHALT_MASK (1 << DMAC_CHANCFG_PKTHALT_SHIFT)
65 #define DMAC_CHANCFG_BUFHALT_SHIFT 2
66 #define DMAC_CHANCFG_BUFHALT_MASK (1 << DMAC_CHANCFG_BUFHALT_SHIFT)
67 #define DMAC_CHANCFG_CHAINING_SHIFT 2
68 #define DMAC_CHANCFG_CHAINING_MASK (1 << DMAC_CHANCFG_CHAINING_SHIFT)
69 #define DMAC_CHANCFG_WRAP_EN_SHIFT 3
70 #define DMAC_CHANCFG_WRAP_EN_MASK (1 << DMAC_CHANCFG_WRAP_EN_SHIFT)
71 #define DMAC_CHANCFG_FLOWC_EN_SHIFT 4
72 #define DMAC_CHANCFG_FLOWC_EN_MASK (1 << DMAC_CHANCFG_FLOWC_EN_SHIFT)
73
74 /* Interrupt Control/Status register */
75 #define DMAC_IR_REG 0x4
76 #define DMAC_IR_BUFDONE_MASK (1 << 0)
77 #define DMAC_IR_PKTDONE_MASK (1 << 1)
78 #define DMAC_IR_NOTOWNER_MASK (1 << 2)
79
80 /* Interrupt Mask register */
81 #define DMAC_IRMASK_REG 0x8
82
83 /* Maximum Burst Length */
84 #define DMAC_MAXBURST_REG 0xc
85
86 /* Ring Start Address register */
87 #define DMAS_RSTART_REG 0x0
88
89 /* State Ram Word 2 */
90 #define DMAS_SRAM2_REG 0x4
91
92 /* State Ram Word 3 */
93 #define DMAS_SRAM3_REG 0x8
94
95 /* State Ram Word 4 */
96 #define DMAS_SRAM4_REG 0xc
97
98 struct bcm6368_enetsw_desc {
99 u32 len_stat;
100 u32 address;
101 };
102
103 /* control */
104 #define DMADESC_LENGTH_SHIFT 16
105 #define DMADESC_LENGTH_MASK (0xfff << DMADESC_LENGTH_SHIFT)
106 #define DMADESC_OWNER_MASK (1 << 15)
107 #define DMADESC_EOP_MASK (1 << 14)
108 #define DMADESC_SOP_MASK (1 << 13)
109 #define DMADESC_ESOP_MASK (DMADESC_EOP_MASK | DMADESC_SOP_MASK)
110 #define DMADESC_WRAP_MASK (1 << 12)
111 #define DMADESC_USB_NOZERO_MASK (1 << 1)
112 #define DMADESC_USB_ZERO_MASK (1 << 0)
113
114 /* status */
115 #define DMADESC_UNDER_MASK (1 << 9)
116 #define DMADESC_APPEND_CRC (1 << 8)
117 #define DMADESC_OVSIZE_MASK (1 << 4)
118 #define DMADESC_RXER_MASK (1 << 2)
119 #define DMADESC_CRC_MASK (1 << 1)
120 #define DMADESC_OV_MASK (1 << 0)
121 #define DMADESC_ERR_MASK (DMADESC_UNDER_MASK | \
122 DMADESC_OVSIZE_MASK | \
123 DMADESC_RXER_MASK | \
124 DMADESC_CRC_MASK | \
125 DMADESC_OV_MASK)
126
127 struct bcm6368_enetsw {
128 void __iomem *dma_base;
129 void __iomem *dma_chan;
130 void __iomem *dma_sram;
131
132 struct device **pm;
133 struct device_link **link_pm;
134 int num_pms;
135
136 struct clk **clock;
137 unsigned int num_clocks;
138
139 struct reset_control **reset;
140 unsigned int num_resets;
141
142 int copybreak;
143
144 int irq_rx;
145 int irq_tx;
146
147 /* hw view of rx & tx dma ring */
148 dma_addr_t rx_desc_dma;
149 dma_addr_t tx_desc_dma;
150
151 /* allocated size (in bytes) for rx & tx dma ring */
152 unsigned int rx_desc_alloc_size;
153 unsigned int tx_desc_alloc_size;
154
155 struct napi_struct napi;
156
157 /* dma channel id for rx */
158 int rx_chan;
159
160 /* number of dma desc in rx ring */
161 int rx_ring_size;
162
163 /* cpu view of rx dma ring */
164 struct bcm6368_enetsw_desc *rx_desc_cpu;
165
166 /* current number of armed descriptor given to hardware for rx */
167 int rx_desc_count;
168
169 /* next rx descriptor to fetch from hardware */
170 int rx_curr_desc;
171
172 /* next dirty rx descriptor to refill */
173 int rx_dirty_desc;
174
175 /* size of allocated rx buffer */
176 unsigned int rx_buf_size;
177
178 /* size of allocated rx frag */
179 unsigned int rx_frag_size;
180
181 /* list of buffer given to hw for rx */
182 unsigned char **rx_buf;
183
184 /* used when rx buffer allocation failed, so we defer rx queue
185 * refill */
186 struct timer_list rx_timeout;
187
188 /* lock rx_timeout against rx normal operation */
189 spinlock_t rx_lock;
190
191 /* dma channel id for tx */
192 int tx_chan;
193
194 /* number of dma desc in tx ring */
195 int tx_ring_size;
196
197 /* maximum dma burst size */
198 int dma_maxburst;
199
200 /* cpu view of rx dma ring */
201 struct bcm6368_enetsw_desc *tx_desc_cpu;
202
203 /* number of available descriptor for tx */
204 int tx_desc_count;
205
206 /* next tx descriptor avaiable */
207 int tx_curr_desc;
208
209 /* next dirty tx descriptor to reclaim */
210 int tx_dirty_desc;
211
212 /* list of skb given to hw for tx */
213 struct sk_buff **tx_skb;
214
215 /* lock used by tx reclaim and xmit */
216 spinlock_t tx_lock;
217
218 /* network device reference */
219 struct net_device *net_dev;
220
221 /* platform device reference */
222 struct platform_device *pdev;
223
224 /* dma channel enable mask */
225 u32 dma_chan_en_mask;
226
227 /* dma channel interrupt mask */
228 u32 dma_chan_int_mask;
229
230 /* dma channel width */
231 unsigned int dma_chan_width;
232 };
233
234 static inline void dma_writel(struct bcm6368_enetsw *priv, u32 val, u32 off)
235 {
236 __raw_writel(val, priv->dma_base + off);
237 }
238
239 static inline u32 dma_readl(struct bcm6368_enetsw *priv, u32 off, int chan)
240 {
241 return __raw_readl(priv->dma_chan + off + chan * priv->dma_chan_width);
242 }
243
244 static inline void dmac_writel(struct bcm6368_enetsw *priv, u32 val,
245 u32 off, int chan)
246 {
247 __raw_writel(val, priv->dma_chan + off + chan * priv->dma_chan_width);
248 }
249
250 static inline void dmas_writel(struct bcm6368_enetsw *priv, u32 val,
251 u32 off, int chan)
252 {
253 __raw_writel(val, priv->dma_sram + off + chan * priv->dma_chan_width);
254 }
255
256 /*
257 * refill rx queue
258 */
259 static int bcm6368_enetsw_refill_rx(struct net_device *dev, bool napi_mode)
260 {
261 struct bcm6368_enetsw *priv = netdev_priv(dev);
262
263 while (priv->rx_desc_count < priv->rx_ring_size) {
264 struct bcm6368_enetsw_desc *desc;
265 int desc_idx;
266 u32 len_stat;
267
268 desc_idx = priv->rx_dirty_desc;
269 desc = &priv->rx_desc_cpu[desc_idx];
270
271 if (!priv->rx_buf[desc_idx]) {
272 unsigned char *buf;
273
274 if (likely(napi_mode))
275 buf = napi_alloc_frag(priv->rx_frag_size);
276 else
277 buf = netdev_alloc_frag(priv->rx_frag_size);
278
279 if (unlikely(!buf))
280 break;
281
282 priv->rx_buf[desc_idx] = buf;
283 desc->address = dma_map_single(&priv->pdev->dev,
284 buf + NET_SKB_PAD,
285 priv->rx_buf_size,
286 DMA_FROM_DEVICE);
287 }
288
289 len_stat = priv->rx_buf_size << DMADESC_LENGTH_SHIFT;
290 len_stat |= DMADESC_OWNER_MASK;
291 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
292 len_stat |= DMADESC_WRAP_MASK;
293 priv->rx_dirty_desc = 0;
294 } else {
295 priv->rx_dirty_desc++;
296 }
297 wmb();
298 desc->len_stat = len_stat;
299
300 priv->rx_desc_count++;
301
302 /* tell dma engine we allocated one buffer */
303 dma_writel(priv, 1, DMA_BUFALLOC_REG(priv->rx_chan));
304 }
305
306 /* If rx ring is still empty, set a timer to try allocating
307 * again at a later time. */
308 if (priv->rx_desc_count == 0 && netif_running(dev)) {
309 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
310 priv->rx_timeout.expires = jiffies + HZ;
311 add_timer(&priv->rx_timeout);
312 }
313
314 return 0;
315 }
316
317 /*
318 * timer callback to defer refill rx queue in case we're OOM
319 */
320 static void bcm6368_enetsw_refill_rx_timer(struct timer_list *t)
321 {
322 struct bcm6368_enetsw *priv = from_timer(priv, t, rx_timeout);
323 struct net_device *dev = priv->net_dev;
324
325 spin_lock(&priv->rx_lock);
326 bcm6368_enetsw_refill_rx(dev, false);
327 spin_unlock(&priv->rx_lock);
328 }
329
330 /*
331 * extract packet from rx queue
332 */
333 static int bcm6368_enetsw_receive_queue(struct net_device *dev, int budget)
334 {
335 struct bcm6368_enetsw *priv = netdev_priv(dev);
336 struct device *kdev = &priv->pdev->dev;
337 struct list_head rx_list;
338 struct sk_buff *skb;
339 int processed = 0;
340
341 INIT_LIST_HEAD(&rx_list);
342
343 /* don't scan ring further than number of refilled
344 * descriptor */
345 if (budget > priv->rx_desc_count)
346 budget = priv->rx_desc_count;
347
348 do {
349 struct bcm6368_enetsw_desc *desc;
350 unsigned int frag_size;
351 unsigned char *buf;
352 int desc_idx;
353 u32 len_stat;
354 unsigned int len;
355
356 desc_idx = priv->rx_curr_desc;
357 desc = &priv->rx_desc_cpu[desc_idx];
358
359 /* make sure we actually read the descriptor status at
360 * each loop */
361 rmb();
362
363 len_stat = desc->len_stat;
364
365 /* break if dma ownership belongs to hw */
366 if (len_stat & DMADESC_OWNER_MASK)
367 break;
368
369 processed++;
370 priv->rx_curr_desc++;
371 if (priv->rx_curr_desc == priv->rx_ring_size)
372 priv->rx_curr_desc = 0;
373
374 /* if the packet does not have start of packet _and_
375 * end of packet flag set, then just recycle it */
376 if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
377 dev->stats.rx_dropped++;
378 continue;
379 }
380
381 /* valid packet */
382 buf = priv->rx_buf[desc_idx];
383 len = (len_stat & DMADESC_LENGTH_MASK)
384 >> DMADESC_LENGTH_SHIFT;
385 /* don't include FCS */
386 len -= 4;
387
388 if (len < priv->copybreak) {
389 unsigned int nfrag_size = ENETSW_FRAG_SIZE(len);
390 unsigned char *nbuf = napi_alloc_frag(nfrag_size);
391
392 if (unlikely(!nbuf)) {
393 /* forget packet, just rearm desc */
394 dev->stats.rx_dropped++;
395 continue;
396 }
397
398 dma_sync_single_for_cpu(kdev, desc->address,
399 len, DMA_FROM_DEVICE);
400 memcpy(nbuf + NET_SKB_PAD, buf + NET_SKB_PAD, len);
401 dma_sync_single_for_device(kdev, desc->address,
402 len, DMA_FROM_DEVICE);
403 buf = nbuf;
404 frag_size = nfrag_size;
405 } else {
406 dma_unmap_single(kdev, desc->address,
407 priv->rx_buf_size, DMA_FROM_DEVICE);
408 priv->rx_buf[desc_idx] = NULL;
409 frag_size = priv->rx_frag_size;
410 }
411
412 skb = napi_build_skb(buf, frag_size);
413 if (unlikely(!skb)) {
414 skb_free_frag(buf);
415 dev->stats.rx_dropped++;
416 continue;
417 }
418
419 skb_reserve(skb, NET_SKB_PAD);
420 skb_put(skb, len);
421 dev->stats.rx_packets++;
422 dev->stats.rx_bytes += len;
423 list_add_tail(&skb->list, &rx_list);
424 } while (processed < budget);
425
426 list_for_each_entry(skb, &rx_list, list)
427 skb->protocol = eth_type_trans(skb, dev);
428 netif_receive_skb_list(&rx_list);
429 priv->rx_desc_count -= processed;
430
431 if (processed || !priv->rx_desc_count) {
432 bcm6368_enetsw_refill_rx(dev, true);
433
434 /* kick rx dma */
435 dmac_writel(priv, priv->dma_chan_en_mask,
436 DMAC_CHANCFG_REG, priv->rx_chan);
437 }
438
439 return processed;
440 }
441
442 /*
443 * try to or force reclaim of transmitted buffers
444 */
445 static int bcm6368_enetsw_tx_reclaim(struct net_device *dev, int force)
446 {
447 struct bcm6368_enetsw *priv = netdev_priv(dev);
448 int released = 0;
449
450 while (priv->tx_desc_count < priv->tx_ring_size) {
451 struct bcm6368_enetsw_desc *desc;
452 struct sk_buff *skb;
453
454 /* We run in a bh and fight against start_xmit, which
455 * is called with bh disabled */
456 spin_lock(&priv->tx_lock);
457
458 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
459
460 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
461 spin_unlock(&priv->tx_lock);
462 break;
463 }
464
465 /* ensure other field of the descriptor were not read
466 * before we checked ownership */
467 rmb();
468
469 skb = priv->tx_skb[priv->tx_dirty_desc];
470 priv->tx_skb[priv->tx_dirty_desc] = NULL;
471 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
472 DMA_TO_DEVICE);
473
474 priv->tx_dirty_desc++;
475 if (priv->tx_dirty_desc == priv->tx_ring_size)
476 priv->tx_dirty_desc = 0;
477 priv->tx_desc_count++;
478
479 spin_unlock(&priv->tx_lock);
480
481 if (desc->len_stat & DMADESC_UNDER_MASK)
482 dev->stats.tx_errors++;
483
484 napi_consume_skb(skb, !force);
485 released++;
486 }
487
488 if (netif_queue_stopped(dev) && released)
489 netif_wake_queue(dev);
490
491 return released;
492 }
493
494 /*
495 * poll func, called by network core
496 */
497 static int bcm6368_enetsw_poll(struct napi_struct *napi, int budget)
498 {
499 struct bcm6368_enetsw *priv = container_of(napi, struct bcm6368_enetsw, napi);
500 struct net_device *dev = priv->net_dev;
501 int rx_work_done;
502
503 /* ack interrupts */
504 dmac_writel(priv, priv->dma_chan_int_mask,
505 DMAC_IR_REG, priv->rx_chan);
506 dmac_writel(priv, priv->dma_chan_int_mask,
507 DMAC_IR_REG, priv->tx_chan);
508
509 /* reclaim sent skb */
510 bcm6368_enetsw_tx_reclaim(dev, 0);
511
512 spin_lock(&priv->rx_lock);
513 rx_work_done = bcm6368_enetsw_receive_queue(dev, budget);
514 spin_unlock(&priv->rx_lock);
515
516 if (rx_work_done >= budget) {
517 /* rx queue is not yet empty/clean */
518 return rx_work_done;
519 }
520
521 /* no more packet in rx/tx queue, remove device from poll
522 * queue */
523 napi_complete_done(napi, rx_work_done);
524
525 /* restore rx/tx interrupt */
526 dmac_writel(priv, priv->dma_chan_int_mask,
527 DMAC_IRMASK_REG, priv->rx_chan);
528 dmac_writel(priv, priv->dma_chan_int_mask,
529 DMAC_IRMASK_REG, priv->tx_chan);
530
531 return rx_work_done;
532 }
533
534 /*
535 * rx/tx dma interrupt handler
536 */
537 static irqreturn_t bcm6368_enetsw_isr_dma(int irq, void *dev_id)
538 {
539 struct net_device *dev = dev_id;
540 struct bcm6368_enetsw *priv = netdev_priv(dev);
541
542 /* mask rx/tx interrupts */
543 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
544 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
545
546 napi_schedule(&priv->napi);
547
548 return IRQ_HANDLED;
549 }
550
551 /*
552 * tx request callback
553 */
554 static netdev_tx_t
555 bcm6368_enetsw_start_xmit(struct sk_buff *skb, struct net_device *dev)
556 {
557 struct bcm6368_enetsw *priv = netdev_priv(dev);
558 struct bcm6368_enetsw_desc *desc;
559 u32 len_stat;
560 netdev_tx_t ret;
561
562 /* lock against tx reclaim */
563 spin_lock(&priv->tx_lock);
564
565 /* make sure the tx hw queue is not full, should not happen
566 * since we stop queue before it's the case */
567 if (unlikely(!priv->tx_desc_count)) {
568 netif_stop_queue(dev);
569 dev_err(&priv->pdev->dev, "xmit called with no tx desc "
570 "available?\n");
571 ret = NETDEV_TX_BUSY;
572 goto out_unlock;
573 }
574
575 /* pad small packets */
576 if (skb->len < (ETH_ZLEN + ETH_FCS_LEN)) {
577 int needed = (ETH_ZLEN + ETH_FCS_LEN) - skb->len;
578 char *data;
579
580 if (unlikely(skb_tailroom(skb) < needed)) {
581 struct sk_buff *nskb;
582
583 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
584 if (!nskb) {
585 ret = NETDEV_TX_BUSY;
586 goto out_unlock;
587 }
588
589 dev_kfree_skb(skb);
590 skb = nskb;
591 }
592 data = skb_put_zero(skb, needed);
593 }
594
595 /* point to the next available desc */
596 desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
597 priv->tx_skb[priv->tx_curr_desc] = skb;
598
599 /* fill descriptor */
600 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
601 DMA_TO_DEVICE);
602
603 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
604 len_stat |= DMADESC_ESOP_MASK | DMADESC_APPEND_CRC |
605 DMADESC_OWNER_MASK;
606
607 priv->tx_curr_desc++;
608 if (priv->tx_curr_desc == priv->tx_ring_size) {
609 priv->tx_curr_desc = 0;
610 len_stat |= DMADESC_WRAP_MASK;
611 }
612 priv->tx_desc_count--;
613
614 /* dma might be already polling, make sure we update desc
615 * fields in correct order */
616 wmb();
617 desc->len_stat = len_stat;
618 wmb();
619
620 /* kick tx dma */
621 dmac_writel(priv, priv->dma_chan_en_mask, DMAC_CHANCFG_REG,
622 priv->tx_chan);
623
624 /* stop queue if no more desc available */
625 if (!priv->tx_desc_count)
626 netif_stop_queue(dev);
627
628 dev->stats.tx_bytes += skb->len;
629 dev->stats.tx_packets++;
630 ret = NETDEV_TX_OK;
631
632 out_unlock:
633 spin_unlock(&priv->tx_lock);
634 return ret;
635 }
636
637 /*
638 * disable dma in given channel
639 */
640 static void bcm6368_enetsw_disable_dma(struct bcm6368_enetsw *priv, int chan)
641 {
642 int limit = 1000;
643
644 dmac_writel(priv, 0, DMAC_CHANCFG_REG, chan);
645
646 do {
647 u32 val;
648
649 val = dma_readl(priv, DMAC_CHANCFG_REG, chan);
650 if (!(val & DMAC_CHANCFG_EN_MASK))
651 break;
652
653 udelay(1);
654 } while (limit--);
655 }
656
657 static int bcm6368_enetsw_open(struct net_device *dev)
658 {
659 struct bcm6368_enetsw *priv = netdev_priv(dev);
660 struct device *kdev = &priv->pdev->dev;
661 int i, ret;
662 unsigned int size;
663 void *p;
664 u32 val;
665
666 /* mask all interrupts and request them */
667 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
668 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
669
670 ret = request_irq(priv->irq_rx, bcm6368_enetsw_isr_dma,
671 0, dev->name, dev);
672 if (ret)
673 goto out_freeirq;
674
675 if (priv->irq_tx != -1) {
676 ret = request_irq(priv->irq_tx, bcm6368_enetsw_isr_dma,
677 0, dev->name, dev);
678 if (ret)
679 goto out_freeirq_rx;
680 }
681
682 /* allocate rx dma ring */
683 size = priv->rx_ring_size * sizeof(struct bcm6368_enetsw_desc);
684 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
685 if (!p) {
686 dev_err(kdev, "cannot allocate rx ring %u\n", size);
687 ret = -ENOMEM;
688 goto out_freeirq_tx;
689 }
690
691 memset(p, 0, size);
692 priv->rx_desc_alloc_size = size;
693 priv->rx_desc_cpu = p;
694
695 /* allocate tx dma ring */
696 size = priv->tx_ring_size * sizeof(struct bcm6368_enetsw_desc);
697 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
698 if (!p) {
699 dev_err(kdev, "cannot allocate tx ring\n");
700 ret = -ENOMEM;
701 goto out_free_rx_ring;
702 }
703
704 memset(p, 0, size);
705 priv->tx_desc_alloc_size = size;
706 priv->tx_desc_cpu = p;
707
708 priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
709 GFP_KERNEL);
710 if (!priv->tx_skb) {
711 dev_err(kdev, "cannot allocate tx skb queue\n");
712 ret = -ENOMEM;
713 goto out_free_tx_ring;
714 }
715
716 priv->tx_desc_count = priv->tx_ring_size;
717 priv->tx_dirty_desc = 0;
718 priv->tx_curr_desc = 0;
719 spin_lock_init(&priv->tx_lock);
720
721 /* init & fill rx ring with buffers */
722 priv->rx_buf = kzalloc(sizeof(unsigned char *) * priv->rx_ring_size,
723 GFP_KERNEL);
724 if (!priv->rx_buf) {
725 dev_err(kdev, "cannot allocate rx buffer queue\n");
726 ret = -ENOMEM;
727 goto out_free_tx_skb;
728 }
729
730 priv->rx_desc_count = 0;
731 priv->rx_dirty_desc = 0;
732 priv->rx_curr_desc = 0;
733
734 /* initialize flow control buffer allocation */
735 dma_writel(priv, DMA_BUFALLOC_FORCE_MASK | 0,
736 DMA_BUFALLOC_REG(priv->rx_chan));
737
738 if (bcm6368_enetsw_refill_rx(dev, false)) {
739 dev_err(kdev, "cannot allocate rx buffer queue\n");
740 ret = -ENOMEM;
741 goto out;
742 }
743
744 /* write rx & tx ring addresses */
745 dmas_writel(priv, priv->rx_desc_dma,
746 DMAS_RSTART_REG, priv->rx_chan);
747 dmas_writel(priv, priv->tx_desc_dma,
748 DMAS_RSTART_REG, priv->tx_chan);
749
750 /* clear remaining state ram for rx & tx channel */
751 dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->rx_chan);
752 dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->tx_chan);
753 dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->rx_chan);
754 dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->tx_chan);
755 dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->rx_chan);
756 dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->tx_chan);
757
758 /* set dma maximum burst len */
759 dmac_writel(priv, priv->dma_maxburst,
760 DMAC_MAXBURST_REG, priv->rx_chan);
761 dmac_writel(priv, priv->dma_maxburst,
762 DMAC_MAXBURST_REG, priv->tx_chan);
763
764 /* set flow control low/high threshold to 1/3 / 2/3 */
765 val = priv->rx_ring_size / 3;
766 dma_writel(priv, val, DMA_FLOWCL_REG(priv->rx_chan));
767 val = (priv->rx_ring_size * 2) / 3;
768 dma_writel(priv, val, DMA_FLOWCH_REG(priv->rx_chan));
769
770 /* all set, enable mac and interrupts, start dma engine and
771 * kick rx dma channel
772 */
773 wmb();
774 dma_writel(priv, DMA_CFG_EN_MASK, DMA_CFG_REG);
775 dmac_writel(priv, DMAC_CHANCFG_EN_MASK,
776 DMAC_CHANCFG_REG, priv->rx_chan);
777
778 /* watch "packet transferred" interrupt in rx and tx */
779 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
780 DMAC_IR_REG, priv->rx_chan);
781 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
782 DMAC_IR_REG, priv->tx_chan);
783
784 /* make sure we enable napi before rx interrupt */
785 napi_enable(&priv->napi);
786
787 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
788 DMAC_IRMASK_REG, priv->rx_chan);
789 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
790 DMAC_IRMASK_REG, priv->tx_chan);
791
792 netif_carrier_on(dev);
793 netif_start_queue(dev);
794
795 return 0;
796
797 out:
798 for (i = 0; i < priv->rx_ring_size; i++) {
799 struct bcm6368_enetsw_desc *desc;
800
801 if (!priv->rx_buf[i])
802 continue;
803
804 desc = &priv->rx_desc_cpu[i];
805 dma_unmap_single(kdev, desc->address, priv->rx_buf_size,
806 DMA_FROM_DEVICE);
807 skb_free_frag(priv->rx_buf[i]);
808 }
809 kfree(priv->rx_buf);
810
811 out_free_tx_skb:
812 kfree(priv->tx_skb);
813
814 out_free_tx_ring:
815 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
816 priv->tx_desc_cpu, priv->tx_desc_dma);
817
818 out_free_rx_ring:
819 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
820 priv->rx_desc_cpu, priv->rx_desc_dma);
821
822 out_freeirq_tx:
823 if (priv->irq_tx != -1)
824 free_irq(priv->irq_tx, dev);
825
826 out_freeirq_rx:
827 free_irq(priv->irq_rx, dev);
828
829 out_freeirq:
830 return ret;
831 }
832
833 static int bcm6368_enetsw_stop(struct net_device *dev)
834 {
835 struct bcm6368_enetsw *priv = netdev_priv(dev);
836 struct device *kdev = &priv->pdev->dev;
837 int i;
838
839 netif_stop_queue(dev);
840 napi_disable(&priv->napi);
841 del_timer_sync(&priv->rx_timeout);
842
843 /* mask all interrupts */
844 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
845 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
846
847 /* disable dma & mac */
848 bcm6368_enetsw_disable_dma(priv, priv->tx_chan);
849 bcm6368_enetsw_disable_dma(priv, priv->rx_chan);
850
851 /* force reclaim of all tx buffers */
852 bcm6368_enetsw_tx_reclaim(dev, 1);
853
854 /* free the rx buffer ring */
855 for (i = 0; i < priv->rx_ring_size; i++) {
856 struct bcm6368_enetsw_desc *desc;
857
858 if (!priv->rx_buf[i])
859 continue;
860
861 desc = &priv->rx_desc_cpu[i];
862 dma_unmap_single_attrs(kdev, desc->address, priv->rx_buf_size,
863 DMA_FROM_DEVICE,
864 DMA_ATTR_SKIP_CPU_SYNC);
865 skb_free_frag(priv->rx_buf[i]);
866 }
867
868 /* free remaining allocated memory */
869 kfree(priv->rx_buf);
870 kfree(priv->tx_skb);
871 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
872 priv->rx_desc_cpu, priv->rx_desc_dma);
873 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
874 priv->tx_desc_cpu, priv->tx_desc_dma);
875 if (priv->irq_tx != -1)
876 free_irq(priv->irq_tx, dev);
877 free_irq(priv->irq_rx, dev);
878
879 return 0;
880 }
881
882 static const struct net_device_ops bcm6368_enetsw_ops = {
883 .ndo_open = bcm6368_enetsw_open,
884 .ndo_stop = bcm6368_enetsw_stop,
885 .ndo_start_xmit = bcm6368_enetsw_start_xmit,
886 };
887
888 static int bcm6368_enetsw_probe(struct platform_device *pdev)
889 {
890 struct bcm6368_enetsw *priv;
891 struct device *dev = &pdev->dev;
892 struct device_node *node = dev->of_node;
893 struct net_device *ndev;
894 struct resource *res;
895 unsigned i;
896 int ret;
897
898 ndev = alloc_etherdev(sizeof(*priv));
899 if (!ndev)
900 return -ENOMEM;
901
902 priv = netdev_priv(ndev);
903
904 priv->num_pms = of_count_phandle_with_args(node, "power-domains",
905 "#power-domain-cells");
906 if (priv->num_pms > 1) {
907 priv->pm = devm_kcalloc(dev, priv->num_pms,
908 sizeof(struct device *), GFP_KERNEL);
909 if (!priv->pm)
910 return -ENOMEM;
911
912 priv->link_pm = devm_kcalloc(dev, priv->num_pms,
913 sizeof(struct device_link *),
914 GFP_KERNEL);
915 if (!priv->link_pm)
916 return -ENOMEM;
917
918 for (i = 0; i < priv->num_pms; i++) {
919 priv->pm[i] = genpd_dev_pm_attach_by_id(dev, i);
920 if (IS_ERR(priv->pm[i])) {
921 dev_err(dev, "error getting pm %d\n", i);
922 return -EINVAL;
923 }
924
925 priv->link_pm[i] = device_link_add(dev, priv->pm[i],
926 DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME |
927 DL_FLAG_RPM_ACTIVE);
928 }
929 }
930
931 pm_runtime_enable(dev);
932 pm_runtime_no_callbacks(dev);
933 ret = pm_runtime_get_sync(dev);
934 if (ret < 0) {
935 pm_runtime_disable(dev);
936 dev_info(dev, "PM prober defer: ret=%d\n", ret);
937 return -EPROBE_DEFER;
938 }
939
940 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
941 priv->dma_base = devm_ioremap_resource(dev, res);
942 if (IS_ERR(priv->dma_base))
943 return PTR_ERR(priv->dma_base);
944
945 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
946 "dma-channels");
947 priv->dma_chan = devm_ioremap_resource(dev, res);
948 if (IS_ERR(priv->dma_chan))
949 return PTR_ERR(priv->dma_chan);
950
951 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma-sram");
952 priv->dma_sram = devm_ioremap_resource(dev, res);
953 if (IS_ERR(priv->dma_sram))
954 return PTR_ERR(priv->dma_sram);
955
956 priv->irq_rx = platform_get_irq_byname(pdev, "rx");
957 if (!priv->irq_rx)
958 return -ENODEV;
959
960 priv->irq_tx = platform_get_irq_byname(pdev, "tx");
961 if (!priv->irq_tx)
962 return -ENODEV;
963 else if (priv->irq_tx < 0)
964 priv->irq_tx = -1;
965
966 if (device_property_read_u32(dev, "dma-rx", &priv->rx_chan))
967 return -ENODEV;
968
969 if (device_property_read_u32(dev, "dma-tx", &priv->tx_chan))
970 return -ENODEV;
971
972 priv->rx_ring_size = ENETSW_DEF_RX_DESC;
973 priv->tx_ring_size = ENETSW_DEF_TX_DESC;
974
975 priv->dma_maxburst = ENETSW_DMA_MAXBURST;
976
977 priv->copybreak = ENETSW_DEF_CPY_BREAK;
978
979 priv->dma_chan_en_mask = DMAC_CHANCFG_EN_MASK;
980 priv->dma_chan_int_mask = DMAC_IR_PKTDONE_MASK;
981 priv->dma_chan_width = DMA_CHAN_WIDTH;
982
983 of_get_mac_address(node, ndev->dev_addr);
984 if (is_valid_ether_addr(ndev->dev_addr)) {
985 dev_info(dev, "mtd mac %pM\n", ndev->dev_addr);
986 } else {
987 random_ether_addr(ndev->dev_addr);
988 dev_info(dev, "random mac %pM\n", ndev->dev_addr);
989 }
990
991 priv->rx_buf_size = ALIGN(ndev->mtu + ENETSW_MTU_OVERHEAD,
992 priv->dma_maxburst * 4);
993
994 priv->rx_frag_size = ENETSW_FRAG_SIZE(priv->rx_buf_size);
995
996 priv->num_clocks = of_clk_get_parent_count(node);
997 if (priv->num_clocks) {
998 priv->clock = devm_kcalloc(dev, priv->num_clocks,
999 sizeof(struct clk *), GFP_KERNEL);
1000 if (!priv->clock)
1001 return -ENOMEM;
1002 }
1003 for (i = 0; i < priv->num_clocks; i++) {
1004 priv->clock[i] = of_clk_get(node, i);
1005 if (IS_ERR(priv->clock[i])) {
1006 dev_err(dev, "error getting clock %d\n", i);
1007 return -EINVAL;
1008 }
1009
1010 ret = clk_prepare_enable(priv->clock[i]);
1011 if (ret) {
1012 dev_err(dev, "error enabling clock %d\n", i);
1013 return ret;
1014 }
1015 }
1016
1017 priv->num_resets = of_count_phandle_with_args(node, "resets",
1018 "#reset-cells");
1019 if (priv->num_resets) {
1020 priv->reset = devm_kcalloc(dev, priv->num_resets,
1021 sizeof(struct reset_control *),
1022 GFP_KERNEL);
1023 if (!priv->reset)
1024 return -ENOMEM;
1025 }
1026 for (i = 0; i < priv->num_resets; i++) {
1027 priv->reset[i] = devm_reset_control_get_by_index(dev, i);
1028 if (IS_ERR(priv->reset[i])) {
1029 dev_err(dev, "error getting reset %d\n", i);
1030 return -EINVAL;
1031 }
1032
1033 ret = reset_control_reset(priv->reset[i]);
1034 if (ret) {
1035 dev_err(dev, "error performing reset %d\n", i);
1036 return ret;
1037 }
1038 }
1039
1040 spin_lock_init(&priv->rx_lock);
1041
1042 timer_setup(&priv->rx_timeout, bcm6368_enetsw_refill_rx_timer, 0);
1043
1044 /* register netdevice */
1045 ndev->netdev_ops = &bcm6368_enetsw_ops;
1046 ndev->min_mtu = ETH_ZLEN;
1047 ndev->mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
1048 ndev->max_mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
1049 netif_napi_add(ndev, &priv->napi, bcm6368_enetsw_poll, 16);
1050 SET_NETDEV_DEV(ndev, dev);
1051
1052 ret = register_netdev(ndev);
1053 if (ret)
1054 goto out_disable_clk;
1055
1056 netif_carrier_off(ndev);
1057 platform_set_drvdata(pdev, ndev);
1058 priv->pdev = pdev;
1059 priv->net_dev = ndev;
1060
1061 return 0;
1062
1063 out_disable_clk:
1064 for (i = 0; i < priv->num_resets; i++)
1065 reset_control_assert(priv->reset[i]);
1066
1067 for (i = 0; i < priv->num_clocks; i++)
1068 clk_disable_unprepare(priv->clock[i]);
1069
1070 return ret;
1071 }
1072
1073 static int bcm6368_enetsw_remove(struct platform_device *pdev)
1074 {
1075 struct device *dev = &pdev->dev;
1076 struct net_device *ndev = platform_get_drvdata(pdev);
1077 struct bcm6368_enetsw *priv = netdev_priv(ndev);
1078 unsigned int i;
1079
1080 unregister_netdev(ndev);
1081
1082 pm_runtime_put_sync(dev);
1083 for (i = 0; priv->pm && i < priv->num_pms; i++) {
1084 dev_pm_domain_detach(priv->pm[i], true);
1085 device_link_del(priv->link_pm[i]);
1086 }
1087
1088 for (i = 0; i < priv->num_resets; i++)
1089 reset_control_assert(priv->reset[i]);
1090
1091 for (i = 0; i < priv->num_clocks; i++)
1092 clk_disable_unprepare(priv->clock[i]);
1093
1094 free_netdev(ndev);
1095
1096 return 0;
1097 }
1098
1099 static const struct of_device_id bcm6368_enetsw_of_match[] = {
1100 { .compatible = "brcm,bcm6318-enetsw", },
1101 { .compatible = "brcm,bcm6328-enetsw", },
1102 { .compatible = "brcm,bcm6362-enetsw", },
1103 { .compatible = "brcm,bcm6368-enetsw", },
1104 { .compatible = "brcm,bcm63268-enetsw", },
1105 { /* sentinel */ }
1106 };
1107 MODULE_DEVICE_TABLE(of, bcm6368_enetsw_of_match);
1108
1109 static struct platform_driver bcm6368_enetsw_driver = {
1110 .driver = {
1111 .name = "bcm6368-enetsw",
1112 .of_match_table = of_match_ptr(bcm6368_enetsw_of_match),
1113 },
1114 .probe = bcm6368_enetsw_probe,
1115 .remove = bcm6368_enetsw_remove,
1116 };
1117 module_platform_driver(bcm6368_enetsw_driver);