bmips: check NAPI context when refilling rx SKB
[openwrt/staging/noltari.git] / target / linux / bmips / files / drivers / net / ethernet / broadcom / bcm6368-enetsw.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * BCM6368 Ethernet Switch Controller Driver
4 *
5 * Copyright (C) 2021 Álvaro Fernández Rojas <noltari@gmail.com>
6 * Copyright (C) 2015 Jonas Gorski <jonas.gorski@gmail.com>
7 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
8 */
9
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/ethtool.h>
15 #include <linux/if_vlan.h>
16 #include <linux/interrupt.h>
17 #include <linux/of_clk.h>
18 #include <linux/of_net.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_domain.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/reset.h>
23
24 /* MTU */
25 #define ENETSW_TAG_SIZE 6
26 #define ENETSW_MTU_OVERHEAD (VLAN_ETH_HLEN + VLAN_HLEN + \
27 ENETSW_TAG_SIZE)
28 #define ENETSW_FRAG_SIZE(x) (SKB_DATA_ALIGN(NET_SKB_PAD + x + \
29 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))))
30
31 /* default number of descriptor */
32 #define ENETSW_DEF_RX_DESC 64
33 #define ENETSW_DEF_TX_DESC 32
34 #define ENETSW_DEF_CPY_BREAK 128
35
36 /* maximum burst len for dma (4 bytes unit) */
37 #define ENETSW_DMA_MAXBURST 8
38
39 /* DMA channels */
40 #define DMA_CHAN_WIDTH 0x10
41
42 /* Controller Configuration Register */
43 #define DMA_CFG_REG 0x0
44 #define DMA_CFG_EN_SHIFT 0
45 #define DMA_CFG_EN_MASK (1 << DMA_CFG_EN_SHIFT)
46 #define DMA_CFG_FLOWCH_MASK(x) (1 << ((x >> 1) + 1))
47
48 /* Flow Control Descriptor Low Threshold register */
49 #define DMA_FLOWCL_REG(x) (0x4 + (x) * 6)
50
51 /* Flow Control Descriptor High Threshold register */
52 #define DMA_FLOWCH_REG(x) (0x8 + (x) * 6)
53
54 /* Flow Control Descriptor Buffer Alloca Threshold register */
55 #define DMA_BUFALLOC_REG(x) (0xc + (x) * 6)
56 #define DMA_BUFALLOC_FORCE_SHIFT 31
57 #define DMA_BUFALLOC_FORCE_MASK (1 << DMA_BUFALLOC_FORCE_SHIFT)
58
59 /* Channel Configuration register */
60 #define DMAC_CHANCFG_REG 0x0
61 #define DMAC_CHANCFG_EN_SHIFT 0
62 #define DMAC_CHANCFG_EN_MASK (1 << DMAC_CHANCFG_EN_SHIFT)
63 #define DMAC_CHANCFG_PKTHALT_SHIFT 1
64 #define DMAC_CHANCFG_PKTHALT_MASK (1 << DMAC_CHANCFG_PKTHALT_SHIFT)
65 #define DMAC_CHANCFG_BUFHALT_SHIFT 2
66 #define DMAC_CHANCFG_BUFHALT_MASK (1 << DMAC_CHANCFG_BUFHALT_SHIFT)
67 #define DMAC_CHANCFG_CHAINING_SHIFT 2
68 #define DMAC_CHANCFG_CHAINING_MASK (1 << DMAC_CHANCFG_CHAINING_SHIFT)
69 #define DMAC_CHANCFG_WRAP_EN_SHIFT 3
70 #define DMAC_CHANCFG_WRAP_EN_MASK (1 << DMAC_CHANCFG_WRAP_EN_SHIFT)
71 #define DMAC_CHANCFG_FLOWC_EN_SHIFT 4
72 #define DMAC_CHANCFG_FLOWC_EN_MASK (1 << DMAC_CHANCFG_FLOWC_EN_SHIFT)
73
74 /* Interrupt Control/Status register */
75 #define DMAC_IR_REG 0x4
76 #define DMAC_IR_BUFDONE_MASK (1 << 0)
77 #define DMAC_IR_PKTDONE_MASK (1 << 1)
78 #define DMAC_IR_NOTOWNER_MASK (1 << 2)
79
80 /* Interrupt Mask register */
81 #define DMAC_IRMASK_REG 0x8
82
83 /* Maximum Burst Length */
84 #define DMAC_MAXBURST_REG 0xc
85
86 /* Ring Start Address register */
87 #define DMAS_RSTART_REG 0x0
88
89 /* State Ram Word 2 */
90 #define DMAS_SRAM2_REG 0x4
91
92 /* State Ram Word 3 */
93 #define DMAS_SRAM3_REG 0x8
94
95 /* State Ram Word 4 */
96 #define DMAS_SRAM4_REG 0xc
97
98 struct bcm6368_enetsw_desc {
99 u32 len_stat;
100 u32 address;
101 };
102
103 /* control */
104 #define DMADESC_LENGTH_SHIFT 16
105 #define DMADESC_LENGTH_MASK (0xfff << DMADESC_LENGTH_SHIFT)
106 #define DMADESC_OWNER_MASK (1 << 15)
107 #define DMADESC_EOP_MASK (1 << 14)
108 #define DMADESC_SOP_MASK (1 << 13)
109 #define DMADESC_ESOP_MASK (DMADESC_EOP_MASK | DMADESC_SOP_MASK)
110 #define DMADESC_WRAP_MASK (1 << 12)
111 #define DMADESC_USB_NOZERO_MASK (1 << 1)
112 #define DMADESC_USB_ZERO_MASK (1 << 0)
113
114 /* status */
115 #define DMADESC_UNDER_MASK (1 << 9)
116 #define DMADESC_APPEND_CRC (1 << 8)
117 #define DMADESC_OVSIZE_MASK (1 << 4)
118 #define DMADESC_RXER_MASK (1 << 2)
119 #define DMADESC_CRC_MASK (1 << 1)
120 #define DMADESC_OV_MASK (1 << 0)
121 #define DMADESC_ERR_MASK (DMADESC_UNDER_MASK | \
122 DMADESC_OVSIZE_MASK | \
123 DMADESC_RXER_MASK | \
124 DMADESC_CRC_MASK | \
125 DMADESC_OV_MASK)
126
127 struct bcm6368_enetsw {
128 void __iomem *dma_base;
129 void __iomem *dma_chan;
130 void __iomem *dma_sram;
131
132 struct device **pm;
133 struct device_link **link_pm;
134 int num_pms;
135
136 struct clk **clock;
137 unsigned int num_clocks;
138
139 struct reset_control **reset;
140 unsigned int num_resets;
141
142 int copybreak;
143
144 int irq_rx;
145 int irq_tx;
146
147 /* hw view of rx & tx dma ring */
148 dma_addr_t rx_desc_dma;
149 dma_addr_t tx_desc_dma;
150
151 /* allocated size (in bytes) for rx & tx dma ring */
152 unsigned int rx_desc_alloc_size;
153 unsigned int tx_desc_alloc_size;
154
155 struct napi_struct napi;
156
157 /* dma channel id for rx */
158 int rx_chan;
159
160 /* number of dma desc in rx ring */
161 int rx_ring_size;
162
163 /* cpu view of rx dma ring */
164 struct bcm6368_enetsw_desc *rx_desc_cpu;
165
166 /* current number of armed descriptor given to hardware for rx */
167 int rx_desc_count;
168
169 /* next rx descriptor to fetch from hardware */
170 int rx_curr_desc;
171
172 /* next dirty rx descriptor to refill */
173 int rx_dirty_desc;
174
175 /* size of allocated rx buffer */
176 unsigned int rx_buf_size;
177
178 /* size of allocated rx frag */
179 unsigned int rx_frag_size;
180
181 /* list of buffer given to hw for rx */
182 unsigned char **rx_buf;
183
184 /* used when rx buffer allocation failed, so we defer rx queue
185 * refill */
186 struct timer_list rx_timeout;
187
188 /* lock rx_timeout against rx normal operation */
189 spinlock_t rx_lock;
190
191 /* dma channel id for tx */
192 int tx_chan;
193
194 /* number of dma desc in tx ring */
195 int tx_ring_size;
196
197 /* maximum dma burst size */
198 int dma_maxburst;
199
200 /* cpu view of rx dma ring */
201 struct bcm6368_enetsw_desc *tx_desc_cpu;
202
203 /* number of available descriptor for tx */
204 int tx_desc_count;
205
206 /* next tx descriptor avaiable */
207 int tx_curr_desc;
208
209 /* next dirty tx descriptor to reclaim */
210 int tx_dirty_desc;
211
212 /* list of skb given to hw for tx */
213 struct sk_buff **tx_skb;
214
215 /* lock used by tx reclaim and xmit */
216 spinlock_t tx_lock;
217
218 /* network device reference */
219 struct net_device *net_dev;
220
221 /* platform device reference */
222 struct platform_device *pdev;
223
224 /* dma channel enable mask */
225 u32 dma_chan_en_mask;
226
227 /* dma channel interrupt mask */
228 u32 dma_chan_int_mask;
229
230 /* dma channel width */
231 unsigned int dma_chan_width;
232 };
233
234 static inline void dma_writel(struct bcm6368_enetsw *priv, u32 val, u32 off)
235 {
236 __raw_writel(val, priv->dma_base + off);
237 }
238
239 static inline u32 dma_readl(struct bcm6368_enetsw *priv, u32 off, int chan)
240 {
241 return __raw_readl(priv->dma_chan + off + chan * priv->dma_chan_width);
242 }
243
244 static inline void dmac_writel(struct bcm6368_enetsw *priv, u32 val,
245 u32 off, int chan)
246 {
247 __raw_writel(val, priv->dma_chan + off + chan * priv->dma_chan_width);
248 }
249
250 static inline void dmas_writel(struct bcm6368_enetsw *priv, u32 val,
251 u32 off, int chan)
252 {
253 __raw_writel(val, priv->dma_sram + off + chan * priv->dma_chan_width);
254 }
255
256 /*
257 * refill rx queue
258 */
259 static int bcm6368_enetsw_refill_rx(struct net_device *dev, bool napi_mode)
260 {
261 struct bcm6368_enetsw *priv = netdev_priv(dev);
262
263 while (priv->rx_desc_count < priv->rx_ring_size) {
264 struct bcm6368_enetsw_desc *desc;
265 int desc_idx;
266 u32 len_stat;
267
268 desc_idx = priv->rx_dirty_desc;
269 desc = &priv->rx_desc_cpu[desc_idx];
270
271 if (!priv->rx_buf[desc_idx]) {
272 unsigned char *buf;
273
274 if (likely(napi_mode))
275 buf = napi_alloc_frag(priv->rx_frag_size);
276 else
277 buf = netdev_alloc_frag(priv->rx_frag_size);
278
279 if (unlikely(!buf))
280 break;
281
282 priv->rx_buf[desc_idx] = buf;
283 desc->address = dma_map_single(&priv->pdev->dev,
284 buf + NET_SKB_PAD,
285 priv->rx_buf_size,
286 DMA_FROM_DEVICE);
287 }
288
289 len_stat = priv->rx_buf_size << DMADESC_LENGTH_SHIFT;
290 len_stat |= DMADESC_OWNER_MASK;
291 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
292 len_stat |= DMADESC_WRAP_MASK;
293 priv->rx_dirty_desc = 0;
294 } else {
295 priv->rx_dirty_desc++;
296 }
297 wmb();
298 desc->len_stat = len_stat;
299
300 priv->rx_desc_count++;
301
302 /* tell dma engine we allocated one buffer */
303 dma_writel(priv, 1, DMA_BUFALLOC_REG(priv->rx_chan));
304 }
305
306 /* If rx ring is still empty, set a timer to try allocating
307 * again at a later time. */
308 if (priv->rx_desc_count == 0 && netif_running(dev)) {
309 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
310 priv->rx_timeout.expires = jiffies + HZ;
311 add_timer(&priv->rx_timeout);
312 }
313
314 return 0;
315 }
316
317 /*
318 * timer callback to defer refill rx queue in case we're OOM
319 */
320 static void bcm6368_enetsw_refill_rx_timer(struct timer_list *t)
321 {
322 struct bcm6368_enetsw *priv = from_timer(priv, t, rx_timeout);
323 struct net_device *dev = priv->net_dev;
324
325 spin_lock(&priv->rx_lock);
326 bcm6368_enetsw_refill_rx(dev, false);
327 spin_unlock(&priv->rx_lock);
328 }
329
330 /*
331 * extract packet from rx queue
332 */
333 static int bcm6368_enetsw_receive_queue(struct net_device *dev, int budget)
334 {
335 struct bcm6368_enetsw *priv = netdev_priv(dev);
336 struct device *kdev = &priv->pdev->dev;
337 int processed = 0;
338
339 /* don't scan ring further than number of refilled
340 * descriptor */
341 if (budget > priv->rx_desc_count)
342 budget = priv->rx_desc_count;
343
344 do {
345 struct bcm6368_enetsw_desc *desc;
346 unsigned int frag_size;
347 struct sk_buff *skb;
348 unsigned char *buf;
349 int desc_idx;
350 u32 len_stat;
351 unsigned int len;
352
353 desc_idx = priv->rx_curr_desc;
354 desc = &priv->rx_desc_cpu[desc_idx];
355
356 /* make sure we actually read the descriptor status at
357 * each loop */
358 rmb();
359
360 len_stat = desc->len_stat;
361
362 /* break if dma ownership belongs to hw */
363 if (len_stat & DMADESC_OWNER_MASK)
364 break;
365
366 processed++;
367 priv->rx_curr_desc++;
368 if (priv->rx_curr_desc == priv->rx_ring_size)
369 priv->rx_curr_desc = 0;
370 priv->rx_desc_count--;
371
372 /* if the packet does not have start of packet _and_
373 * end of packet flag set, then just recycle it */
374 if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
375 dev->stats.rx_dropped++;
376 continue;
377 }
378
379 /* valid packet */
380 buf = priv->rx_buf[desc_idx];
381 len = (len_stat & DMADESC_LENGTH_MASK)
382 >> DMADESC_LENGTH_SHIFT;
383 /* don't include FCS */
384 len -= 4;
385
386 if (len < priv->copybreak) {
387 unsigned int nfrag_size = ENETSW_FRAG_SIZE(len);
388 unsigned char *nbuf = napi_alloc_frag(nfrag_size);
389
390 if (unlikely(!nbuf)) {
391 /* forget packet, just rearm desc */
392 dev->stats.rx_dropped++;
393 continue;
394 }
395
396 dma_sync_single_for_cpu(kdev, desc->address,
397 len, DMA_FROM_DEVICE);
398 memcpy(nbuf + NET_SKB_PAD, buf + NET_SKB_PAD, len);
399 dma_sync_single_for_device(kdev, desc->address,
400 len, DMA_FROM_DEVICE);
401 buf = nbuf;
402 frag_size = nfrag_size;
403 } else {
404 dma_unmap_single(kdev, desc->address,
405 priv->rx_buf_size, DMA_FROM_DEVICE);
406 priv->rx_buf[desc_idx] = NULL;
407 frag_size = priv->rx_frag_size;
408 }
409
410 skb = build_skb(buf, frag_size);
411 if (unlikely(!skb)) {
412 skb_free_frag(buf);
413 dev->stats.rx_dropped++;
414 continue;
415 }
416
417 skb_reserve(skb, NET_SKB_PAD);
418 skb_put(skb, len);
419 skb->protocol = eth_type_trans(skb, dev);
420 dev->stats.rx_packets++;
421 dev->stats.rx_bytes += len;
422 netif_receive_skb(skb);
423 } while (--budget > 0);
424
425 if (processed || !priv->rx_desc_count) {
426 bcm6368_enetsw_refill_rx(dev, true);
427
428 /* kick rx dma */
429 dmac_writel(priv, priv->dma_chan_en_mask,
430 DMAC_CHANCFG_REG, priv->rx_chan);
431 }
432
433 return processed;
434 }
435
436 /*
437 * try to or force reclaim of transmitted buffers
438 */
439 static int bcm6368_enetsw_tx_reclaim(struct net_device *dev, int force)
440 {
441 struct bcm6368_enetsw *priv = netdev_priv(dev);
442 int released = 0;
443
444 while (priv->tx_desc_count < priv->tx_ring_size) {
445 struct bcm6368_enetsw_desc *desc;
446 struct sk_buff *skb;
447
448 /* We run in a bh and fight against start_xmit, which
449 * is called with bh disabled */
450 spin_lock(&priv->tx_lock);
451
452 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
453
454 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
455 spin_unlock(&priv->tx_lock);
456 break;
457 }
458
459 /* ensure other field of the descriptor were not read
460 * before we checked ownership */
461 rmb();
462
463 skb = priv->tx_skb[priv->tx_dirty_desc];
464 priv->tx_skb[priv->tx_dirty_desc] = NULL;
465 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
466 DMA_TO_DEVICE);
467
468 priv->tx_dirty_desc++;
469 if (priv->tx_dirty_desc == priv->tx_ring_size)
470 priv->tx_dirty_desc = 0;
471 priv->tx_desc_count++;
472
473 spin_unlock(&priv->tx_lock);
474
475 if (desc->len_stat & DMADESC_UNDER_MASK)
476 dev->stats.tx_errors++;
477
478 dev_kfree_skb(skb);
479 released++;
480 }
481
482 if (netif_queue_stopped(dev) && released)
483 netif_wake_queue(dev);
484
485 return released;
486 }
487
488 /*
489 * poll func, called by network core
490 */
491 static int bcm6368_enetsw_poll(struct napi_struct *napi, int budget)
492 {
493 struct bcm6368_enetsw *priv = container_of(napi, struct bcm6368_enetsw, napi);
494 struct net_device *dev = priv->net_dev;
495 int rx_work_done;
496
497 /* ack interrupts */
498 dmac_writel(priv, priv->dma_chan_int_mask,
499 DMAC_IR_REG, priv->rx_chan);
500 dmac_writel(priv, priv->dma_chan_int_mask,
501 DMAC_IR_REG, priv->tx_chan);
502
503 /* reclaim sent skb */
504 bcm6368_enetsw_tx_reclaim(dev, 0);
505
506 spin_lock(&priv->rx_lock);
507 rx_work_done = bcm6368_enetsw_receive_queue(dev, budget);
508 spin_unlock(&priv->rx_lock);
509
510 if (rx_work_done >= budget) {
511 /* rx queue is not yet empty/clean */
512 return rx_work_done;
513 }
514
515 /* no more packet in rx/tx queue, remove device from poll
516 * queue */
517 napi_complete_done(napi, rx_work_done);
518
519 /* restore rx/tx interrupt */
520 dmac_writel(priv, priv->dma_chan_int_mask,
521 DMAC_IRMASK_REG, priv->rx_chan);
522 dmac_writel(priv, priv->dma_chan_int_mask,
523 DMAC_IRMASK_REG, priv->tx_chan);
524
525 return rx_work_done;
526 }
527
528 /*
529 * rx/tx dma interrupt handler
530 */
531 static irqreturn_t bcm6368_enetsw_isr_dma(int irq, void *dev_id)
532 {
533 struct net_device *dev = dev_id;
534 struct bcm6368_enetsw *priv = netdev_priv(dev);
535
536 /* mask rx/tx interrupts */
537 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
538 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
539
540 napi_schedule(&priv->napi);
541
542 return IRQ_HANDLED;
543 }
544
545 /*
546 * tx request callback
547 */
548 static netdev_tx_t
549 bcm6368_enetsw_start_xmit(struct sk_buff *skb, struct net_device *dev)
550 {
551 struct bcm6368_enetsw *priv = netdev_priv(dev);
552 struct bcm6368_enetsw_desc *desc;
553 u32 len_stat;
554 netdev_tx_t ret;
555
556 /* lock against tx reclaim */
557 spin_lock(&priv->tx_lock);
558
559 /* make sure the tx hw queue is not full, should not happen
560 * since we stop queue before it's the case */
561 if (unlikely(!priv->tx_desc_count)) {
562 netif_stop_queue(dev);
563 dev_err(&priv->pdev->dev, "xmit called with no tx desc "
564 "available?\n");
565 ret = NETDEV_TX_BUSY;
566 goto out_unlock;
567 }
568
569 /* pad small packets */
570 if (skb->len < (ETH_ZLEN + ETH_FCS_LEN)) {
571 int needed = (ETH_ZLEN + ETH_FCS_LEN) - skb->len;
572 char *data;
573
574 if (unlikely(skb_tailroom(skb) < needed)) {
575 struct sk_buff *nskb;
576
577 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
578 if (!nskb) {
579 ret = NETDEV_TX_BUSY;
580 goto out_unlock;
581 }
582
583 dev_kfree_skb(skb);
584 skb = nskb;
585 }
586 data = skb_put_zero(skb, needed);
587 }
588
589 /* point to the next available desc */
590 desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
591 priv->tx_skb[priv->tx_curr_desc] = skb;
592
593 /* fill descriptor */
594 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
595 DMA_TO_DEVICE);
596
597 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
598 len_stat |= DMADESC_ESOP_MASK | DMADESC_APPEND_CRC |
599 DMADESC_OWNER_MASK;
600
601 priv->tx_curr_desc++;
602 if (priv->tx_curr_desc == priv->tx_ring_size) {
603 priv->tx_curr_desc = 0;
604 len_stat |= DMADESC_WRAP_MASK;
605 }
606 priv->tx_desc_count--;
607
608 /* dma might be already polling, make sure we update desc
609 * fields in correct order */
610 wmb();
611 desc->len_stat = len_stat;
612 wmb();
613
614 /* kick tx dma */
615 dmac_writel(priv, priv->dma_chan_en_mask, DMAC_CHANCFG_REG,
616 priv->tx_chan);
617
618 /* stop queue if no more desc available */
619 if (!priv->tx_desc_count)
620 netif_stop_queue(dev);
621
622 dev->stats.tx_bytes += skb->len;
623 dev->stats.tx_packets++;
624 ret = NETDEV_TX_OK;
625
626 out_unlock:
627 spin_unlock(&priv->tx_lock);
628 return ret;
629 }
630
631 /*
632 * disable dma in given channel
633 */
634 static void bcm6368_enetsw_disable_dma(struct bcm6368_enetsw *priv, int chan)
635 {
636 int limit = 1000;
637
638 dmac_writel(priv, 0, DMAC_CHANCFG_REG, chan);
639
640 do {
641 u32 val;
642
643 val = dma_readl(priv, DMAC_CHANCFG_REG, chan);
644 if (!(val & DMAC_CHANCFG_EN_MASK))
645 break;
646
647 udelay(1);
648 } while (limit--);
649 }
650
651 static int bcm6368_enetsw_open(struct net_device *dev)
652 {
653 struct bcm6368_enetsw *priv = netdev_priv(dev);
654 struct device *kdev = &priv->pdev->dev;
655 int i, ret;
656 unsigned int size;
657 void *p;
658 u32 val;
659
660 /* mask all interrupts and request them */
661 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
662 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
663
664 ret = request_irq(priv->irq_rx, bcm6368_enetsw_isr_dma,
665 0, dev->name, dev);
666 if (ret)
667 goto out_freeirq;
668
669 if (priv->irq_tx != -1) {
670 ret = request_irq(priv->irq_tx, bcm6368_enetsw_isr_dma,
671 0, dev->name, dev);
672 if (ret)
673 goto out_freeirq_rx;
674 }
675
676 /* allocate rx dma ring */
677 size = priv->rx_ring_size * sizeof(struct bcm6368_enetsw_desc);
678 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
679 if (!p) {
680 dev_err(kdev, "cannot allocate rx ring %u\n", size);
681 ret = -ENOMEM;
682 goto out_freeirq_tx;
683 }
684
685 memset(p, 0, size);
686 priv->rx_desc_alloc_size = size;
687 priv->rx_desc_cpu = p;
688
689 /* allocate tx dma ring */
690 size = priv->tx_ring_size * sizeof(struct bcm6368_enetsw_desc);
691 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
692 if (!p) {
693 dev_err(kdev, "cannot allocate tx ring\n");
694 ret = -ENOMEM;
695 goto out_free_rx_ring;
696 }
697
698 memset(p, 0, size);
699 priv->tx_desc_alloc_size = size;
700 priv->tx_desc_cpu = p;
701
702 priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
703 GFP_KERNEL);
704 if (!priv->tx_skb) {
705 dev_err(kdev, "cannot allocate tx skb queue\n");
706 ret = -ENOMEM;
707 goto out_free_tx_ring;
708 }
709
710 priv->tx_desc_count = priv->tx_ring_size;
711 priv->tx_dirty_desc = 0;
712 priv->tx_curr_desc = 0;
713 spin_lock_init(&priv->tx_lock);
714
715 /* init & fill rx ring with buffers */
716 priv->rx_buf = kzalloc(sizeof(unsigned char *) * priv->rx_ring_size,
717 GFP_KERNEL);
718 if (!priv->rx_buf) {
719 dev_err(kdev, "cannot allocate rx buffer queue\n");
720 ret = -ENOMEM;
721 goto out_free_tx_skb;
722 }
723
724 priv->rx_desc_count = 0;
725 priv->rx_dirty_desc = 0;
726 priv->rx_curr_desc = 0;
727
728 /* initialize flow control buffer allocation */
729 dma_writel(priv, DMA_BUFALLOC_FORCE_MASK | 0,
730 DMA_BUFALLOC_REG(priv->rx_chan));
731
732 if (bcm6368_enetsw_refill_rx(dev, false)) {
733 dev_err(kdev, "cannot allocate rx buffer queue\n");
734 ret = -ENOMEM;
735 goto out;
736 }
737
738 /* write rx & tx ring addresses */
739 dmas_writel(priv, priv->rx_desc_dma,
740 DMAS_RSTART_REG, priv->rx_chan);
741 dmas_writel(priv, priv->tx_desc_dma,
742 DMAS_RSTART_REG, priv->tx_chan);
743
744 /* clear remaining state ram for rx & tx channel */
745 dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->rx_chan);
746 dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->tx_chan);
747 dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->rx_chan);
748 dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->tx_chan);
749 dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->rx_chan);
750 dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->tx_chan);
751
752 /* set dma maximum burst len */
753 dmac_writel(priv, priv->dma_maxburst,
754 DMAC_MAXBURST_REG, priv->rx_chan);
755 dmac_writel(priv, priv->dma_maxburst,
756 DMAC_MAXBURST_REG, priv->tx_chan);
757
758 /* set flow control low/high threshold to 1/3 / 2/3 */
759 val = priv->rx_ring_size / 3;
760 dma_writel(priv, val, DMA_FLOWCL_REG(priv->rx_chan));
761 val = (priv->rx_ring_size * 2) / 3;
762 dma_writel(priv, val, DMA_FLOWCH_REG(priv->rx_chan));
763
764 /* all set, enable mac and interrupts, start dma engine and
765 * kick rx dma channel
766 */
767 wmb();
768 dma_writel(priv, DMA_CFG_EN_MASK, DMA_CFG_REG);
769 dmac_writel(priv, DMAC_CHANCFG_EN_MASK,
770 DMAC_CHANCFG_REG, priv->rx_chan);
771
772 /* watch "packet transferred" interrupt in rx and tx */
773 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
774 DMAC_IR_REG, priv->rx_chan);
775 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
776 DMAC_IR_REG, priv->tx_chan);
777
778 /* make sure we enable napi before rx interrupt */
779 napi_enable(&priv->napi);
780
781 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
782 DMAC_IRMASK_REG, priv->rx_chan);
783 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
784 DMAC_IRMASK_REG, priv->tx_chan);
785
786 netif_carrier_on(dev);
787 netif_start_queue(dev);
788
789 return 0;
790
791 out:
792 for (i = 0; i < priv->rx_ring_size; i++) {
793 struct bcm6368_enetsw_desc *desc;
794
795 if (!priv->rx_buf[i])
796 continue;
797
798 desc = &priv->rx_desc_cpu[i];
799 dma_unmap_single(kdev, desc->address, priv->rx_buf_size,
800 DMA_FROM_DEVICE);
801 skb_free_frag(priv->rx_buf[i]);
802 }
803 kfree(priv->rx_buf);
804
805 out_free_tx_skb:
806 kfree(priv->tx_skb);
807
808 out_free_tx_ring:
809 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
810 priv->tx_desc_cpu, priv->tx_desc_dma);
811
812 out_free_rx_ring:
813 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
814 priv->rx_desc_cpu, priv->rx_desc_dma);
815
816 out_freeirq_tx:
817 if (priv->irq_tx != -1)
818 free_irq(priv->irq_tx, dev);
819
820 out_freeirq_rx:
821 free_irq(priv->irq_rx, dev);
822
823 out_freeirq:
824 return ret;
825 }
826
827 static int bcm6368_enetsw_stop(struct net_device *dev)
828 {
829 struct bcm6368_enetsw *priv = netdev_priv(dev);
830 struct device *kdev = &priv->pdev->dev;
831 int i;
832
833 netif_stop_queue(dev);
834 napi_disable(&priv->napi);
835 del_timer_sync(&priv->rx_timeout);
836
837 /* mask all interrupts */
838 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
839 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
840
841 /* disable dma & mac */
842 bcm6368_enetsw_disable_dma(priv, priv->tx_chan);
843 bcm6368_enetsw_disable_dma(priv, priv->rx_chan);
844
845 /* force reclaim of all tx buffers */
846 bcm6368_enetsw_tx_reclaim(dev, 1);
847
848 /* free the rx buffer ring */
849 for (i = 0; i < priv->rx_ring_size; i++) {
850 struct bcm6368_enetsw_desc *desc;
851
852 if (!priv->rx_buf[i])
853 continue;
854
855 desc = &priv->rx_desc_cpu[i];
856 dma_unmap_single_attrs(kdev, desc->address, priv->rx_buf_size,
857 DMA_FROM_DEVICE,
858 DMA_ATTR_SKIP_CPU_SYNC);
859 skb_free_frag(priv->rx_buf[i]);
860 }
861
862 /* free remaining allocated memory */
863 kfree(priv->rx_buf);
864 kfree(priv->tx_skb);
865 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
866 priv->rx_desc_cpu, priv->rx_desc_dma);
867 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
868 priv->tx_desc_cpu, priv->tx_desc_dma);
869 if (priv->irq_tx != -1)
870 free_irq(priv->irq_tx, dev);
871 free_irq(priv->irq_rx, dev);
872
873 return 0;
874 }
875
876 static const struct net_device_ops bcm6368_enetsw_ops = {
877 .ndo_open = bcm6368_enetsw_open,
878 .ndo_stop = bcm6368_enetsw_stop,
879 .ndo_start_xmit = bcm6368_enetsw_start_xmit,
880 };
881
882 static int bcm6368_enetsw_probe(struct platform_device *pdev)
883 {
884 struct bcm6368_enetsw *priv;
885 struct device *dev = &pdev->dev;
886 struct device_node *node = dev->of_node;
887 struct net_device *ndev;
888 struct resource *res;
889 unsigned i;
890 int ret;
891
892 ndev = alloc_etherdev(sizeof(*priv));
893 if (!ndev)
894 return -ENOMEM;
895
896 priv = netdev_priv(ndev);
897
898 priv->num_pms = of_count_phandle_with_args(node, "power-domains",
899 "#power-domain-cells");
900 if (priv->num_pms > 1) {
901 priv->pm = devm_kcalloc(dev, priv->num_pms,
902 sizeof(struct device *), GFP_KERNEL);
903 if (!priv->pm)
904 return -ENOMEM;
905
906 priv->link_pm = devm_kcalloc(dev, priv->num_pms,
907 sizeof(struct device_link *),
908 GFP_KERNEL);
909 if (!priv->link_pm)
910 return -ENOMEM;
911
912 for (i = 0; i < priv->num_pms; i++) {
913 priv->pm[i] = genpd_dev_pm_attach_by_id(dev, i);
914 if (IS_ERR(priv->pm[i])) {
915 dev_err(dev, "error getting pm %d\n", i);
916 return -EINVAL;
917 }
918
919 priv->link_pm[i] = device_link_add(dev, priv->pm[i],
920 DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME |
921 DL_FLAG_RPM_ACTIVE);
922 }
923 }
924
925 pm_runtime_enable(dev);
926 pm_runtime_no_callbacks(dev);
927 ret = pm_runtime_get_sync(dev);
928 if (ret < 0) {
929 pm_runtime_disable(dev);
930 dev_info(dev, "PM prober defer: ret=%d\n", ret);
931 return -EPROBE_DEFER;
932 }
933
934 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
935 priv->dma_base = devm_ioremap_resource(dev, res);
936 if (IS_ERR(priv->dma_base))
937 return PTR_ERR(priv->dma_base);
938
939 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
940 "dma-channels");
941 priv->dma_chan = devm_ioremap_resource(dev, res);
942 if (IS_ERR(priv->dma_chan))
943 return PTR_ERR(priv->dma_chan);
944
945 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma-sram");
946 priv->dma_sram = devm_ioremap_resource(dev, res);
947 if (IS_ERR(priv->dma_sram))
948 return PTR_ERR(priv->dma_sram);
949
950 priv->irq_rx = platform_get_irq_byname(pdev, "rx");
951 if (!priv->irq_rx)
952 return -ENODEV;
953
954 priv->irq_tx = platform_get_irq_byname(pdev, "tx");
955 if (!priv->irq_tx)
956 return -ENODEV;
957 else if (priv->irq_tx < 0)
958 priv->irq_tx = -1;
959
960 if (device_property_read_u32(dev, "dma-rx", &priv->rx_chan))
961 return -ENODEV;
962
963 if (device_property_read_u32(dev, "dma-tx", &priv->tx_chan))
964 return -ENODEV;
965
966 priv->rx_ring_size = ENETSW_DEF_RX_DESC;
967 priv->tx_ring_size = ENETSW_DEF_TX_DESC;
968
969 priv->dma_maxburst = ENETSW_DMA_MAXBURST;
970
971 priv->copybreak = ENETSW_DEF_CPY_BREAK;
972
973 priv->dma_chan_en_mask = DMAC_CHANCFG_EN_MASK;
974 priv->dma_chan_int_mask = DMAC_IR_PKTDONE_MASK;
975 priv->dma_chan_width = DMA_CHAN_WIDTH;
976
977 of_get_mac_address(node, ndev->dev_addr);
978 if (is_valid_ether_addr(ndev->dev_addr)) {
979 dev_info(dev, "mtd mac %pM\n", ndev->dev_addr);
980 } else {
981 random_ether_addr(ndev->dev_addr);
982 dev_info(dev, "random mac %pM\n", ndev->dev_addr);
983 }
984
985 priv->rx_buf_size = ALIGN(ndev->mtu + ENETSW_MTU_OVERHEAD,
986 priv->dma_maxburst * 4);
987
988 priv->rx_frag_size = ENETSW_FRAG_SIZE(priv->rx_buf_size);
989
990 priv->num_clocks = of_clk_get_parent_count(node);
991 if (priv->num_clocks) {
992 priv->clock = devm_kcalloc(dev, priv->num_clocks,
993 sizeof(struct clk *), GFP_KERNEL);
994 if (!priv->clock)
995 return -ENOMEM;
996 }
997 for (i = 0; i < priv->num_clocks; i++) {
998 priv->clock[i] = of_clk_get(node, i);
999 if (IS_ERR(priv->clock[i])) {
1000 dev_err(dev, "error getting clock %d\n", i);
1001 return -EINVAL;
1002 }
1003
1004 ret = clk_prepare_enable(priv->clock[i]);
1005 if (ret) {
1006 dev_err(dev, "error enabling clock %d\n", i);
1007 return ret;
1008 }
1009 }
1010
1011 priv->num_resets = of_count_phandle_with_args(node, "resets",
1012 "#reset-cells");
1013 if (priv->num_resets) {
1014 priv->reset = devm_kcalloc(dev, priv->num_resets,
1015 sizeof(struct reset_control *),
1016 GFP_KERNEL);
1017 if (!priv->reset)
1018 return -ENOMEM;
1019 }
1020 for (i = 0; i < priv->num_resets; i++) {
1021 priv->reset[i] = devm_reset_control_get_by_index(dev, i);
1022 if (IS_ERR(priv->reset[i])) {
1023 dev_err(dev, "error getting reset %d\n", i);
1024 return -EINVAL;
1025 }
1026
1027 ret = reset_control_reset(priv->reset[i]);
1028 if (ret) {
1029 dev_err(dev, "error performing reset %d\n", i);
1030 return ret;
1031 }
1032 }
1033
1034 spin_lock_init(&priv->rx_lock);
1035
1036 timer_setup(&priv->rx_timeout, bcm6368_enetsw_refill_rx_timer, 0);
1037
1038 /* register netdevice */
1039 ndev->netdev_ops = &bcm6368_enetsw_ops;
1040 ndev->min_mtu = ETH_ZLEN;
1041 ndev->mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
1042 ndev->max_mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
1043 netif_napi_add(ndev, &priv->napi, bcm6368_enetsw_poll, 16);
1044 SET_NETDEV_DEV(ndev, dev);
1045
1046 ret = register_netdev(ndev);
1047 if (ret)
1048 goto out_disable_clk;
1049
1050 netif_carrier_off(ndev);
1051 platform_set_drvdata(pdev, ndev);
1052 priv->pdev = pdev;
1053 priv->net_dev = ndev;
1054
1055 return 0;
1056
1057 out_disable_clk:
1058 for (i = 0; i < priv->num_resets; i++)
1059 reset_control_assert(priv->reset[i]);
1060
1061 for (i = 0; i < priv->num_clocks; i++)
1062 clk_disable_unprepare(priv->clock[i]);
1063
1064 return ret;
1065 }
1066
1067 static int bcm6368_enetsw_remove(struct platform_device *pdev)
1068 {
1069 struct device *dev = &pdev->dev;
1070 struct net_device *ndev = platform_get_drvdata(pdev);
1071 struct bcm6368_enetsw *priv = netdev_priv(ndev);
1072 unsigned int i;
1073
1074 unregister_netdev(ndev);
1075
1076 pm_runtime_put_sync(dev);
1077 for (i = 0; priv->pm && i < priv->num_pms; i++) {
1078 dev_pm_domain_detach(priv->pm[i], true);
1079 device_link_del(priv->link_pm[i]);
1080 }
1081
1082 for (i = 0; i < priv->num_resets; i++)
1083 reset_control_assert(priv->reset[i]);
1084
1085 for (i = 0; i < priv->num_clocks; i++)
1086 clk_disable_unprepare(priv->clock[i]);
1087
1088 free_netdev(ndev);
1089
1090 return 0;
1091 }
1092
1093 static const struct of_device_id bcm6368_enetsw_of_match[] = {
1094 { .compatible = "brcm,bcm6318-enetsw", },
1095 { .compatible = "brcm,bcm6328-enetsw", },
1096 { .compatible = "brcm,bcm6362-enetsw", },
1097 { .compatible = "brcm,bcm6368-enetsw", },
1098 { .compatible = "brcm,bcm63268-enetsw", },
1099 { /* sentinel */ }
1100 };
1101 MODULE_DEVICE_TABLE(of, bcm6368_enetsw_of_match);
1102
1103 static struct platform_driver bcm6368_enetsw_driver = {
1104 .driver = {
1105 .name = "bcm6368-enetsw",
1106 .of_match_table = of_match_ptr(bcm6368_enetsw_of_match),
1107 },
1108 .probe = bcm6368_enetsw_probe,
1109 .remove = bcm6368_enetsw_remove,
1110 };
1111 module_platform_driver(bcm6368_enetsw_driver);