a29be2c1e733830c787e7680ac3faeba2e25eb4f
[project/relayd.git] / main.c
1 /*
2 * Copyright (C) 2010 Felix Fietkau <nbd@openwrt.org>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License v2 as published by
6 * the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
16 *
17 */
18 #include <sys/ioctl.h>
19
20 #include <arpa/inet.h>
21 #include <net/if.h>
22 #include <net/ethernet.h>
23 #include <netinet/if_ether.h>
24 #include <netinet/ip.h>
25 #include <netinet/udp.h>
26
27 #include <linux/if_packet.h>
28 #include <linux/rtnetlink.h>
29 #include <linux/neighbour.h>
30
31 #include <stdio.h>
32 #include <unistd.h>
33 #include <fcntl.h>
34 #include <stddef.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <stdint.h>
38 #include <stdbool.h>
39 #include <errno.h>
40 #include <signal.h>
41
42 #include "uloop.h"
43 #include "list.h"
44
45 #define DEBUG
46 #ifdef DEBUG
47 #define DPRINTF(level, ...) if (debug >= level) fprintf(stderr, __VA_ARGS__);
48 #else
49 #define DPRINTF(...) do {} while(0)
50 #endif
51
52 #ifndef __packed
53 #define __packed __attribute__((packed))
54 #endif
55
56 #define __uc(c) ((unsigned char *)(c))
57
58 #define MAC_FMT "%02x:%02x:%02x:%02x:%02x:%02x"
59 #define MAC_BUF(_c) __uc(_c)[0], __uc(_c)[1], __uc(_c)[2], __uc(_c)[3], __uc(_c)[4], __uc(_c)[5]
60
61 #define IP_FMT "%d.%d.%d.%d"
62 #define IP_BUF(_c) __uc(_c)[0], __uc(_c)[1], __uc(_c)[2], __uc(_c)[3]
63
64 #define DUMMY_IP ((uint8_t *) "\x01\x01\x01\x01")
65
66 #define DHCP_FLAG_BROADCAST (1 << 15)
67
68 struct relayd_interface {
69 struct list_head list;
70 struct uloop_fd fd;
71 struct uloop_fd bcast_fd;
72 struct sockaddr_ll sll;
73 struct sockaddr_ll bcast_sll;
74 char ifname[IFNAMSIZ];
75 struct list_head hosts;
76 uint8_t src_ip[4];
77 bool managed;
78 };
79
80 struct relayd_host {
81 struct list_head list;
82 struct relayd_interface *rif;
83 uint8_t lladdr[ETH_ALEN];
84 uint8_t ipaddr[4];
85 struct uloop_timeout timeout;
86 int cleanup_pending;
87 };
88
89 struct arp_packet {
90 struct ether_header eth;
91 struct ether_arp arp;
92 } __packed;
93
94 struct ip_packet {
95 struct ether_header eth;
96 struct iphdr iph;
97 } __packed;
98
99 struct dhcp_header {
100 uint8_t op, htype, hlen, hops;
101 uint32_t xit;
102 uint16_t secs, flags;
103 struct in_addr ciaddr, yiaddr, siaddr, giaddr;
104 unsigned char chaddr[16];
105 unsigned char sname[64];
106 unsigned char file[128];
107 } __packed;
108
109 struct rtnl_req {
110 struct nlmsghdr nl;
111 struct rtmsg rt;
112 };
113
114 static int debug;
115 static LIST_HEAD(interfaces);
116 static int host_timeout;
117 static int inet_sock;
118 static int forward_bcast;
119 static int forward_dhcp;
120 static struct uloop_fd rtnl_sock;
121 static unsigned int rtnl_seq, rtnl_dump_seq;
122
123 static struct relayd_host *find_host_by_ipaddr(struct relayd_interface *rif, const uint8_t *ipaddr)
124 {
125 struct relayd_host *host;
126
127 if (!rif) {
128 list_for_each_entry(rif, &interfaces, list) {
129 host = find_host_by_ipaddr(rif, ipaddr);
130 if (!host)
131 continue;
132
133 return host;
134 }
135 return NULL;
136 }
137
138 list_for_each_entry(host, &rif->hosts, list) {
139 if (memcmp(ipaddr, host->ipaddr, sizeof(host->ipaddr)) != 0)
140 continue;
141
142 return host;
143 }
144 return NULL;
145 }
146
147 static void add_arp(struct relayd_host *host)
148 {
149 struct sockaddr_in *sin;
150 struct arpreq arp;
151
152 strncpy(arp.arp_dev, host->rif->ifname, sizeof(arp.arp_dev));
153 arp.arp_flags = ATF_COM;
154
155 arp.arp_ha.sa_family = ARPHRD_ETHER;
156 memcpy(arp.arp_ha.sa_data, host->lladdr, ETH_ALEN);
157
158 sin = (struct sockaddr_in *) &arp.arp_pa;
159 sin->sin_family = AF_INET;
160 memcpy(&sin->sin_addr, host->ipaddr, sizeof(host->ipaddr));
161
162 ioctl(inet_sock, SIOCSARP, &arp);
163 }
164
165 static void rtnl_route_set(struct relayd_host *host, bool add)
166 {
167 static struct {
168 struct nlmsghdr nl;
169 struct rtmsg rt;
170 struct {
171 struct rtattr rta;
172 uint8_t ipaddr[4];
173 } __packed dst;
174 struct {
175 struct rtattr rta;
176 int ifindex;
177 } __packed dev;
178 } __packed req;
179
180 memset(&req, 0, sizeof(req));
181
182 req.nl.nlmsg_len = sizeof(req);
183 req.rt.rtm_family = AF_INET;
184 req.rt.rtm_dst_len = 32;
185
186 req.dst.rta.rta_type = RTA_DST;
187 req.dst.rta.rta_len = sizeof(req.dst);
188 memcpy(req.dst.ipaddr, host->ipaddr, sizeof(req.dst.ipaddr));
189
190 req.dev.rta.rta_type = RTA_OIF;
191 req.dev.rta.rta_len = sizeof(req.dev);
192 req.dev.ifindex = host->rif->sll.sll_ifindex;
193
194 req.nl.nlmsg_flags = NLM_F_REQUEST;
195 req.rt.rtm_table = RT_TABLE_MAIN;
196 if (add) {
197 req.nl.nlmsg_type = RTM_NEWROUTE;
198 req.nl.nlmsg_flags |= NLM_F_CREATE | NLM_F_REPLACE;
199
200 req.rt.rtm_protocol = RTPROT_BOOT;
201 req.rt.rtm_scope = RT_SCOPE_LINK;
202 req.rt.rtm_type = RTN_UNICAST;
203 } else {
204 req.nl.nlmsg_type = RTM_DELROUTE;
205 req.rt.rtm_scope = RT_SCOPE_NOWHERE;
206 }
207
208 send(rtnl_sock.fd, &req, sizeof(req), 0);
209 }
210
211 static void add_route(struct relayd_host *host)
212 {
213 rtnl_route_set(host, true);
214 }
215
216 static void del_route(struct relayd_host *host)
217 {
218 rtnl_route_set(host, false);
219 }
220
221 static void del_host(struct relayd_host *host)
222 {
223 DPRINTF(1, "%s: deleting host "IP_FMT" ("MAC_FMT")\n", host->rif->ifname,
224 IP_BUF(host->ipaddr), MAC_BUF(host->lladdr));
225
226 if (host->rif->managed)
227 del_route(host);
228 list_del(&host->list);
229 free(host);
230 }
231
232 static void fill_arp_request(struct arp_packet *pkt, struct relayd_interface *rif,
233 uint8_t spa[4], uint8_t tpa[4])
234 {
235 memset(pkt, 0, sizeof(*pkt));
236
237 pkt->eth.ether_type = htons(ETHERTYPE_ARP);
238 memcpy(pkt->eth.ether_shost, rif->sll.sll_addr, ETH_ALEN);
239
240 memcpy(pkt->arp.arp_sha, rif->sll.sll_addr, ETH_ALEN);
241 memcpy(pkt->arp.arp_spa, spa, 4);
242 memcpy(pkt->arp.arp_tpa, tpa, 4);
243
244 pkt->arp.arp_hrd = htons(ARPHRD_ETHER);
245 pkt->arp.arp_pro = htons(ETH_P_IP);
246 pkt->arp.arp_hln = ETH_ALEN;
247 pkt->arp.arp_pln = 4;
248 }
249
250 static void send_arp_request(struct relayd_host *host)
251 {
252 struct relayd_interface *rif = host->rif;
253 struct arp_packet pkt;
254
255 fill_arp_request(&pkt, host->rif, host->rif->src_ip, host->ipaddr);
256
257 pkt.arp.arp_op = htons(ARPOP_REQUEST);
258 memcpy(pkt.arp.arp_spa, rif->src_ip, ETH_ALEN);
259 memset(pkt.arp.arp_tha, 0, ETH_ALEN);
260 memset(pkt.eth.ether_dhost, 0xff, ETH_ALEN);
261
262 DPRINTF(2, "%s: sending ARP who-has "IP_FMT", tell "IP_FMT" ("MAC_FMT")\n",
263 rif->ifname, IP_BUF(pkt.arp.arp_tpa),
264 IP_BUF(pkt.arp.arp_spa), MAC_BUF(pkt.eth.ether_shost));
265
266 sendto(rif->fd.fd, &pkt, sizeof(pkt), 0,
267 (struct sockaddr *) &rif->sll, sizeof(rif->sll));
268 }
269
270 static void send_arp_reply(struct relayd_interface *rif, uint8_t spa[4],
271 uint8_t tha[ETH_ALEN], uint8_t tpa[4])
272 {
273 struct arp_packet pkt;
274
275 fill_arp_request(&pkt, rif, spa, tpa);
276
277 pkt.arp.arp_op = htons(ARPOP_REPLY);
278 memcpy(pkt.eth.ether_dhost, tha, ETH_ALEN);
279 memcpy(pkt.arp.arp_tha, tha, ETH_ALEN);
280
281 DPRINTF(2, "%s: sending ARP reply to "IP_FMT", "IP_FMT" is at ("MAC_FMT")\n",
282 rif->ifname, IP_BUF(pkt.arp.arp_tpa),
283 IP_BUF(pkt.arp.arp_spa), MAC_BUF(pkt.eth.ether_shost));
284
285 sendto(rif->fd.fd, &pkt, sizeof(pkt), 0,
286 (struct sockaddr *) &rif->sll, sizeof(rif->sll));
287 }
288
289 static void host_entry_timeout(struct uloop_timeout *timeout)
290 {
291 struct relayd_host *host = container_of(timeout, struct relayd_host, timeout);
292
293 /*
294 * When a host is behind a managed interface, we must not expire its host
295 * entry prematurely, as this will cause routes to the node to expire,
296 * leading to loss of connectivity from the other side.
297 * When the timeout is reached, try pinging the host a few times before
298 * giving up on it.
299 */
300 if (host->rif->managed && host->cleanup_pending < 2) {
301 send_arp_request(host);
302 host->cleanup_pending++;
303 uloop_timeout_set(&host->timeout, 1000);
304 return;
305 }
306 del_host(host);
307 }
308
309 static struct relayd_host *add_host(struct relayd_interface *rif, const uint8_t *lladdr, const uint8_t *ipaddr)
310 {
311 struct relayd_host *host;
312
313 DPRINTF(1, "%s: adding host "IP_FMT" ("MAC_FMT")\n", rif->ifname,
314 IP_BUF(ipaddr), MAC_BUF(lladdr));
315
316 host = calloc(1, sizeof(*host));
317 host->rif = rif;
318 memcpy(host->ipaddr, ipaddr, sizeof(host->ipaddr));
319 memcpy(host->lladdr, lladdr, sizeof(host->lladdr));
320 list_add(&host->list, &rif->hosts);
321 host->timeout.cb = host_entry_timeout;
322 uloop_timeout_set(&host->timeout, host_timeout * 1000);
323
324 add_arp(host);
325 if (rif->managed)
326 add_route(host);
327
328 return host;
329 }
330
331 static struct relayd_host *refresh_host(struct relayd_interface *rif, const uint8_t *lladdr, const uint8_t *ipaddr)
332 {
333 struct relayd_host *host;
334
335 host = find_host_by_ipaddr(rif, ipaddr);
336 if (!host) {
337 host = find_host_by_ipaddr(NULL, ipaddr);
338
339 /*
340 * When we suddenly see the host appearing on a different interface,
341 * reduce the timeout to make the old entry expire faster, in case the
342 * host has moved.
343 * If the old entry is behind a managed interface, it will be pinged
344 * before we expire it
345 */
346 if (host && !host->cleanup_pending)
347 uloop_timeout_set(&host->timeout, 1);
348
349 host = add_host(rif, lladdr, ipaddr);
350 } else {
351 host->cleanup_pending = false;
352 uloop_timeout_set(&host->timeout, host_timeout * 1000);
353 }
354
355 return host;
356 }
357
358 static void relay_arp_request(struct relayd_interface *from_rif, struct arp_packet *pkt)
359 {
360 struct relayd_interface *rif;
361 struct arp_packet reqpkt;
362
363 memcpy(&reqpkt, pkt, sizeof(reqpkt));
364 list_for_each_entry(rif, &interfaces, list) {
365 if (rif == from_rif)
366 continue;
367
368 memcpy(reqpkt.eth.ether_shost, rif->sll.sll_addr, ETH_ALEN);
369 memcpy(reqpkt.arp.arp_sha, rif->sll.sll_addr, ETH_ALEN);
370
371 DPRINTF(2, "%s: sending ARP who-has "IP_FMT", tell "IP_FMT" ("MAC_FMT")\n",
372 rif->ifname, IP_BUF(reqpkt.arp.arp_tpa),
373 IP_BUF(reqpkt.arp.arp_spa), MAC_BUF(reqpkt.eth.ether_shost));
374
375 sendto(rif->fd.fd, &reqpkt, sizeof(reqpkt), 0,
376 (struct sockaddr *) &rif->sll, sizeof(rif->sll));
377 }
378 }
379
380 static void recv_arp_request(struct relayd_interface *rif, struct arp_packet *pkt)
381 {
382 struct relayd_host *host;
383
384 DPRINTF(2, "%s: ARP who-has "IP_FMT", tell "IP_FMT" ("MAC_FMT")\n",
385 rif->ifname,
386 IP_BUF(pkt->arp.arp_tpa),
387 IP_BUF(pkt->arp.arp_spa),
388 MAC_BUF(pkt->eth.ether_shost));
389
390 if (!memcmp(pkt->arp.arp_spa, "\x00\x00\x00\x00", 4))
391 return;
392
393 refresh_host(rif, pkt->eth.ether_shost, pkt->arp.arp_spa);
394
395 host = find_host_by_ipaddr(NULL, pkt->arp.arp_tpa);
396
397 /*
398 * If a host is being pinged because of a timeout, do not use the cached
399 * entry here. That way we can avoid giving out stale data in case the node
400 * has moved. We shouldn't relay requests here either, as we might miss our
401 * chance to create a host route.
402 */
403 if (host && host->cleanup_pending)
404 return;
405
406 relay_arp_request(rif, pkt);
407 }
408
409
410 static void recv_arp_reply(struct relayd_interface *rif, struct arp_packet *pkt)
411 {
412 struct relayd_host *host;
413
414 DPRINTF(2, "%s: received ARP reply for "IP_FMT" from "MAC_FMT", deliver to "IP_FMT"\n",
415 rif->ifname,
416 IP_BUF(pkt->arp.arp_spa),
417 MAC_BUF(pkt->eth.ether_shost),
418 IP_BUF(pkt->arp.arp_tpa));
419
420 refresh_host(rif, pkt->arp.arp_sha, pkt->arp.arp_spa);
421
422 if (!memcmp(pkt->arp.arp_tpa, rif->src_ip, 4))
423 return;
424
425 host = find_host_by_ipaddr(NULL, pkt->arp.arp_tpa);
426 if (!host)
427 return;
428
429 send_arp_reply(host->rif, pkt->arp.arp_spa, host->lladdr, host->ipaddr);
430 }
431
432 static void recv_packet(struct uloop_fd *fd, unsigned int events)
433 {
434 struct relayd_interface *rif = container_of(fd, struct relayd_interface, fd);
435 struct arp_packet *pkt;
436 static char pktbuf[4096];
437 int pktlen;
438
439 do {
440 if (rif->fd.error)
441 uloop_end();
442
443 pktlen = recv(rif->fd.fd, pktbuf, sizeof(pktbuf), 0);
444 if (pktlen < 0) {
445 if (errno == EINTR)
446 continue;
447
448 break;
449 }
450
451 if (!pktlen)
452 break;
453
454 pkt = (void *)pktbuf;
455 if (pkt->arp.arp_op == htons(ARPOP_REPLY))
456 recv_arp_reply(rif, pkt);
457 else if (pkt->arp.arp_op == htons(ARPOP_REQUEST))
458 recv_arp_request(rif, pkt);
459 else
460 DPRINTF(1, "received unknown packet type: %04x\n", ntohs(pkt->arp.arp_op));
461
462 } while (1);
463 }
464
465 static void forward_bcast_packet(struct relayd_interface *from_rif, void *packet, int len)
466 {
467 struct relayd_interface *rif;
468 struct ether_header *eth = packet;
469
470 list_for_each_entry(rif, &interfaces, list) {
471 if (rif == from_rif)
472 continue;
473
474 DPRINTF(3, "%s: forwarding broadcast packet to %s\n", from_rif->ifname, rif->ifname);
475 memcpy(eth->ether_shost, rif->sll.sll_addr, ETH_ALEN);
476 send(rif->bcast_fd.fd, packet, len, 0);
477 }
478 }
479
480 static uint16_t
481 chksum(uint16_t sum, const uint8_t *data, uint16_t len)
482 {
483 const uint8_t *last;
484 uint16_t t;
485
486 last = data + len - 1;
487
488 while(data < last) {
489 t = (data[0] << 8) + data[1];
490 sum += t;
491 if(sum < t)
492 sum++;
493 data += 2;
494 }
495
496 if(data == last) {
497 t = (data[0] << 8) + 0;
498 sum += t;
499 if(sum < t)
500 sum++;
501 }
502
503 return sum;
504 }
505
506 static bool forward_dhcp_packet(struct relayd_interface *rif, void *data, int len)
507 {
508 struct ip_packet *pkt = data;
509 struct udphdr *udp;
510 struct dhcp_header *dhcp;
511 int udplen;
512 uint16_t sum;
513
514 if (pkt->eth.ether_type != htons(ETH_P_IP))
515 return false;
516
517 if (pkt->iph.version != 4)
518 return false;
519
520 if (pkt->iph.protocol != IPPROTO_UDP)
521 return false;
522
523 udp = (void *) ((char *) &pkt->iph + (pkt->iph.ihl << 2));
524 dhcp = (void *) (udp + 1);
525
526 udplen = ntohs(udp->len);
527 if (udplen > len - ((char *) udp - (char *) data))
528 return false;
529
530 if (udp->dest != htons(67) && udp->source != htons(67))
531 return false;
532
533 if (dhcp->op != 1 && dhcp->op != 2)
534 return false;
535
536 if (!forward_dhcp)
537 return true;
538
539 if (dhcp->op == 2)
540 refresh_host(rif, pkt->eth.ether_shost, (void *) &pkt->iph.saddr);
541
542 DPRINTF(2, "%s: handling DHCP %s\n", rif->ifname, (dhcp->op == 1 ? "request" : "response"));
543
544 dhcp->flags |= htons(DHCP_FLAG_BROADCAST);
545
546 udp->check = 0;
547 sum = udplen + IPPROTO_UDP;
548 sum = chksum(sum, (void *) &pkt->iph.saddr, 8);
549 sum = chksum(sum, (void *) udp, udplen);
550 if (sum == 0)
551 sum = 0xffff;
552
553 udp->check = htons(~sum);
554
555 forward_bcast_packet(rif, data, len);
556
557 return true;
558 }
559
560 static void recv_bcast_packet(struct uloop_fd *fd, unsigned int events)
561 {
562 struct relayd_interface *rif = container_of(fd, struct relayd_interface, bcast_fd);
563 static char pktbuf[4096];
564 int pktlen;
565
566 do {
567 if (rif->fd.error)
568 uloop_end();
569
570 pktlen = recv(rif->bcast_fd.fd, pktbuf, sizeof(pktbuf), 0);
571 if (pktlen < 0) {
572 if (errno == EINTR)
573 continue;
574
575 break;
576 }
577
578 if (!pktlen)
579 break;
580
581 if (!forward_bcast && !forward_dhcp)
582 continue;
583
584 if (forward_dhcp_packet(rif, pktbuf, pktlen))
585 continue;
586
587 if (forward_bcast)
588 forward_bcast_packet(rif, pktbuf, pktlen);
589 } while (1);
590 }
591
592
593 static int init_interface(struct relayd_interface *rif)
594 {
595 struct sockaddr_ll *sll = &rif->sll;
596 struct sockaddr_in *sin;
597 struct ifreq ifr;
598 int fd = rif->fd.fd;
599 #ifdef PACKET_RECV_TYPE
600 unsigned int pkt_type;
601 #endif
602
603 fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ARP));
604 if (fd < 0)
605 return -1;
606
607 rif->fd.fd = fd;
608
609 memset(&ifr, 0, sizeof(ifr));
610 strcpy(ifr.ifr_name, rif->ifname);
611
612 if (ioctl(fd, SIOCGIFHWADDR, &ifr) < 0) {
613 perror("ioctl(SIOCGIFHWADDR)");
614 return -1;
615 }
616
617 memcpy(sll->sll_addr, ifr.ifr_hwaddr.sa_data, ETH_ALEN);
618 sll->sll_family = AF_PACKET;
619 sll->sll_protocol = htons(ETH_P_ARP);
620 sll->sll_pkttype = PACKET_BROADCAST;
621 sll->sll_hatype = ARPHRD_ETHER;
622 sll->sll_halen = ETH_ALEN;
623
624 if (ioctl(fd, SIOCGIFINDEX, &ifr) < 0) {
625 perror("ioctl(SIOCGIFINDEX)");
626 return -1;
627 }
628
629 sll->sll_ifindex = ifr.ifr_ifindex;
630
631 if (ioctl(fd, SIOCGIFADDR, &ifr) < 0) {
632 memcpy(rif->src_ip, DUMMY_IP, sizeof(rif->src_ip));
633 } else {
634 sin = (struct sockaddr_in *) &ifr.ifr_addr;
635 memcpy(rif->src_ip, &sin->sin_addr.s_addr, sizeof(rif->src_ip));
636 }
637
638 if (bind(fd, (struct sockaddr *)sll, sizeof(struct sockaddr_ll)) < 0) {
639 perror("bind(ETH_P_ARP)");
640 return -1;
641 }
642
643 rif->fd.cb = recv_packet;
644 uloop_fd_add(&rif->fd, ULOOP_READ | ULOOP_EDGE_TRIGGER);
645
646 if (!forward_bcast && !forward_dhcp)
647 return 0;
648
649 fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_IP));
650 if (fd < 0)
651 return 0;
652
653 rif->bcast_fd.fd = fd;
654 rif->bcast_fd.cb = recv_bcast_packet;
655
656 memcpy(&rif->bcast_sll, &rif->sll, sizeof(rif->bcast_sll));
657 sll = &rif->bcast_sll;
658 sll->sll_protocol = htons(ETH_P_IP);
659
660 if (bind(fd, (struct sockaddr *)sll, sizeof(struct sockaddr_ll)) < 0) {
661 perror("bind(ETH_P_IP)");
662 return 0;
663 }
664
665 #ifdef PACKET_RECV_TYPE
666 pkt_type = (1 << PACKET_BROADCAST);
667 setsockopt(fd, SOL_PACKET, PACKET_RECV_TYPE, &pkt_type, sizeof(pkt_type));
668 #endif
669
670 uloop_fd_add(&rif->bcast_fd, ULOOP_READ | ULOOP_EDGE_TRIGGER);
671 return 0;
672 }
673
674 static int init_interfaces(void)
675 {
676 struct relayd_interface *rif;
677 int ret;
678
679 list_for_each_entry(rif, &interfaces, list) {
680 ret = init_interface(rif);
681 if (ret < 0)
682 return ret;
683 }
684
685 return 0;
686 }
687
688 static void del_interface(struct relayd_interface *rif)
689 {
690 struct relayd_host *host, *htmp;
691
692 list_for_each_entry_safe(host, htmp, &rif->hosts, list) {
693 del_host(host);
694 }
695 free(rif);
696 }
697
698 static void cleanup_interfaces(void)
699 {
700 struct relayd_interface *rif, *rtmp;
701
702 list_for_each_entry_safe(rif, rtmp, &interfaces, list) {
703 del_interface(rif);
704 }
705 }
706
707 static int alloc_interface(const char *ifname, bool managed)
708 {
709 struct relayd_interface *rif;
710
711 if (strlen(ifname) >= IFNAMSIZ)
712 return -1;
713
714 rif = calloc(1, sizeof(*rif));
715 if (!rif)
716 return -1;
717
718 INIT_LIST_HEAD(&rif->list);
719 INIT_LIST_HEAD(&rif->hosts);
720 strcpy(rif->ifname, ifname);
721 list_add(&rif->list, &interfaces);
722 rif->managed = managed;
723
724 return 0;
725 }
726
727 #ifndef NDA_RTA
728 #define NDA_RTA(r) \
729 ((struct rtattr*)(((char*)(r)) + NLMSG_ALIGN(sizeof(struct ndmsg))))
730 #endif
731
732 static void rtnl_parse_newneigh(struct nlmsghdr *h)
733 {
734 struct relayd_interface *rif = NULL;
735 struct ndmsg *r = NLMSG_DATA(h);
736 const uint8_t *lladdr = NULL;
737 const uint8_t *ipaddr = NULL;
738 struct rtattr *rta;
739 int len;
740
741 if (r->ndm_family != AF_INET)
742 return;
743
744 list_for_each_entry(rif, &interfaces, list) {
745 if (rif->sll.sll_ifindex == r->ndm_ifindex)
746 goto found_interface;
747 }
748 return;
749
750 found_interface:
751 len = h->nlmsg_len - NLMSG_LENGTH(sizeof(*r));
752 for (rta = NDA_RTA(r); RTA_OK(rta, len); rta = RTA_NEXT(rta, len)) {
753 switch(rta->rta_type) {
754 case NDA_LLADDR:
755 lladdr = RTA_DATA(rta);
756 break;
757 case NDA_DST:
758 ipaddr = RTA_DATA(rta);
759 break;
760 default:
761 break;
762 }
763 }
764
765 if (!lladdr || !ipaddr || (r->ndm_state & (NUD_INCOMPLETE|NUD_FAILED)))
766 return;
767
768 if (!memcmp(lladdr, "\x00\x00\x00\x00\x00\x00", ETH_ALEN))
769 return;
770
771 DPRINTF(1, "%s: Found ARP cache entry for host "IP_FMT" ("MAC_FMT")\n",
772 rif->ifname, IP_BUF(ipaddr), MAC_BUF(lladdr));
773 refresh_host(rif, lladdr, ipaddr);
774 }
775
776 static void rtnl_parse_packet(void *data, int len)
777 {
778 struct nlmsghdr *h;
779
780 for (h = data; NLMSG_OK(h, len); h = NLMSG_NEXT(h, len)) {
781 if (h->nlmsg_type == NLMSG_DONE ||
782 h->nlmsg_type == NLMSG_ERROR)
783 return;
784
785 if (h->nlmsg_seq != rtnl_dump_seq)
786 continue;
787
788 if (h->nlmsg_type == RTM_NEWNEIGH)
789 rtnl_parse_newneigh(h);
790 }
791 }
792
793 static void rtnl_cb(struct uloop_fd *fd, unsigned int events)
794 {
795 struct sockaddr_nl nladdr;
796 static uint8_t buf[16384];
797 struct iovec iov = {
798 .iov_base = buf,
799 .iov_len = sizeof(buf),
800 };
801 struct msghdr msg = {
802 .msg_name = &nladdr,
803 .msg_namelen = sizeof(nladdr),
804 .msg_iov = &iov,
805 .msg_iovlen = 1,
806 };
807
808 do {
809 int len;
810
811 len = recvmsg(rtnl_sock.fd, &msg, 0);
812 if (len < 0) {
813 if (errno == EINTR)
814 continue;
815
816 return;
817 }
818
819 if (!len)
820 break;
821
822 if (nladdr.nl_pid != 0)
823 continue;
824
825 rtnl_parse_packet(buf, len);
826 } while (1);
827 }
828
829 static int rtnl_init(void)
830 {
831 struct sockaddr_nl snl_local;
832 static struct {
833 struct nlmsghdr nlh;
834 struct rtgenmsg g;
835 } req = {
836 .nlh = {
837 .nlmsg_len = sizeof(req),
838 .nlmsg_type = RTM_GETNEIGH,
839 .nlmsg_flags = NLM_F_ROOT|NLM_F_MATCH|NLM_F_REQUEST,
840 .nlmsg_pid = 0,
841 },
842 .g.rtgen_family = AF_INET,
843 };
844
845 rtnl_sock.fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
846 if (rtnl_sock.fd < 0) {
847 perror("socket(AF_NETLINK)");
848 return -1;
849 }
850
851 snl_local.nl_family = AF_NETLINK;
852
853 if (bind(rtnl_sock.fd, (struct sockaddr *) &snl_local, sizeof(struct sockaddr_nl)) < 0) {
854 perror("bind");
855 close(rtnl_sock.fd);
856 return -1;
857 }
858
859 rtnl_sock.cb = rtnl_cb;
860 uloop_fd_add(&rtnl_sock, ULOOP_READ | ULOOP_EDGE_TRIGGER);
861
862 rtnl_seq = time(NULL);
863 rtnl_dump_seq = rtnl_seq;
864 req.nlh.nlmsg_seq = rtnl_seq;
865 send(rtnl_sock.fd, &req, sizeof(req), 0);
866
867 return 0;
868 }
869
870 static void die(int signo)
871 {
872 /*
873 * When we hit SIGTERM, clean up interfaces directly, so that we
874 * won't leave our routing in an invalid state.
875 */
876 cleanup_interfaces();
877 exit(1);
878 }
879
880 static int usage(const char *progname)
881 {
882 fprintf(stderr, "Usage: %s <options>\n"
883 "\n"
884 "Options:\n"
885 " -d Enable debug messages\n"
886 " -i <ifname> Add an interface for relaying\n"
887 " -I <ifname> Same as -i, except with ARP cache and host route management\n"
888 " You need to specify at least two interfaces\n"
889 " -t <timeout> Host entry expiry timeout\n"
890 " -B Enable broadcast forwarding\n"
891 " -D Enable DHCP forwarding\n"
892 "\n",
893 progname);
894 return -1;
895 }
896
897 int main(int argc, char **argv)
898 {
899 bool managed;
900 int ifnum = 0;
901 int ch;
902
903 debug = 0;
904 inet_sock = socket(AF_INET, SOCK_DGRAM, 0);
905 if (inet_sock < 0) {
906 perror("socket(AF_INET)");
907 return 1;
908 }
909
910 host_timeout = 60;
911 forward_bcast = 0;
912 uloop_init();
913
914 while ((ch = getopt(argc, argv, "I:i:t:BDd")) != -1) {
915 switch(ch) {
916 case 'I':
917 managed = true;
918 /* fall through */
919 case 'i':
920 ifnum++;
921 if (alloc_interface(optarg, managed) < 0)
922 return 1;
923
924 managed = false;
925 break;
926 case 't':
927 host_timeout = atoi(optarg);
928 if (host_timeout <= 0)
929 return usage(argv[0]);
930 break;
931 case 'd':
932 debug++;
933 break;
934 case 'B':
935 forward_bcast = 1;
936 break;
937 case 'D':
938 forward_dhcp = 1;
939 break;
940 case '?':
941 default:
942 return usage(argv[0]);
943 }
944 }
945
946 if (list_empty(&interfaces))
947 return usage(argv[0]);
948
949 if (ifnum < 2) {
950 fprintf(stderr, "ERROR: Need at least 2 interfaces for relaying\n");
951 return -1;
952 }
953
954 argc -= optind;
955 argv += optind;
956
957 signal(SIGTERM, die);
958 signal(SIGHUP, die);
959 signal(SIGUSR1, die);
960 signal(SIGUSR2, die);
961
962 if (init_interfaces() < 0)
963 return 1;
964
965 if (rtnl_init() < 0)
966 return 1;
967
968 uloop_run();
969 uloop_done();
970
971 cleanup_interfaces();
972 uloop_fd_delete(&rtnl_sock);
973 close(rtnl_sock.fd);
974 close(inet_sock);
975
976 return 0;
977 }