mac80211: fix spatial reuse size calculation
[openwrt/staging/blogic.git] / mm / slub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects:
55 * A. page->freelist -> List of object free in a page
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * page->frozen The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
124 }
125
126 void *fixup_red_left(struct kmem_cache *s, void *p)
127 {
128 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
129 p += s->red_left_pad;
130
131 return p;
132 }
133
134 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
135 {
136 #ifdef CONFIG_SLUB_CPU_PARTIAL
137 return !kmem_cache_debug(s);
138 #else
139 return false;
140 #endif
141 }
142
143 /*
144 * Issues still to be resolved:
145 *
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147 *
148 * - Variable sizing of the per node arrays
149 */
150
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
153
154 /* Enable to log cmpxchg failures */
155 #undef SLUB_DEBUG_CMPXCHG
156
157 /*
158 * Mininum number of partial slabs. These will be left on the partial
159 * lists even if they are empty. kmem_cache_shrink may reclaim them.
160 */
161 #define MIN_PARTIAL 5
162
163 /*
164 * Maximum number of desirable partial slabs.
165 * The existence of more partial slabs makes kmem_cache_shrink
166 * sort the partial list by the number of objects in use.
167 */
168 #define MAX_PARTIAL 10
169
170 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
171 SLAB_POISON | SLAB_STORE_USER)
172
173 /*
174 * These debug flags cannot use CMPXCHG because there might be consistency
175 * issues when checking or reading debug information
176 */
177 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
178 SLAB_TRACE)
179
180
181 /*
182 * Debugging flags that require metadata to be stored in the slab. These get
183 * disabled when slub_debug=O is used and a cache's min order increases with
184 * metadata.
185 */
186 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
187
188 #define OO_SHIFT 16
189 #define OO_MASK ((1 << OO_SHIFT) - 1)
190 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
191
192 /* Internal SLUB flags */
193 /* Poison object */
194 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
195 /* Use cmpxchg_double */
196 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
197
198 /*
199 * Tracking user of a slab.
200 */
201 #define TRACK_ADDRS_COUNT 16
202 struct track {
203 unsigned long addr; /* Called from address */
204 #ifdef CONFIG_STACKTRACE
205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
206 #endif
207 int cpu; /* Was running on cpu */
208 int pid; /* Pid context */
209 unsigned long when; /* When did the operation occur */
210 };
211
212 enum track_item { TRACK_ALLOC, TRACK_FREE };
213
214 #ifdef CONFIG_SYSFS
215 static int sysfs_slab_add(struct kmem_cache *);
216 static int sysfs_slab_alias(struct kmem_cache *, const char *);
217 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
218 static void sysfs_slab_remove(struct kmem_cache *s);
219 #else
220 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 { return 0; }
223 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
224 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
225 #endif
226
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 {
229 #ifdef CONFIG_SLUB_STATS
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
235 #endif
236 }
237
238 /********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
242 /*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249 {
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
251 /*
252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
260 */
261 return (void *)((unsigned long)ptr ^ s->random ^
262 (unsigned long)kasan_reset_tag((void *)ptr_addr));
263 #else
264 return ptr;
265 #endif
266 }
267
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache *s,
270 void *ptr_addr)
271 {
272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 (unsigned long)ptr_addr);
274 }
275
276 static inline void *get_freepointer(struct kmem_cache *s, void *object)
277 {
278 return freelist_dereference(s, object + s->offset);
279 }
280
281 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282 {
283 prefetch(object + s->offset);
284 }
285
286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287 {
288 unsigned long freepointer_addr;
289 void *p;
290
291 if (!debug_pagealloc_enabled_static())
292 return get_freepointer(s, object);
293
294 freepointer_addr = (unsigned long)object + s->offset;
295 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
296 return freelist_ptr(s, p, freepointer_addr);
297 }
298
299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300 {
301 unsigned long freeptr_addr = (unsigned long)object + s->offset;
302
303 #ifdef CONFIG_SLAB_FREELIST_HARDENED
304 BUG_ON(object == fp); /* naive detection of double free or corruption */
305 #endif
306
307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
308 }
309
310 /* Loop over all objects in a slab */
311 #define for_each_object(__p, __s, __addr, __objects) \
312 for (__p = fixup_red_left(__s, __addr); \
313 __p < (__addr) + (__objects) * (__s)->size; \
314 __p += (__s)->size)
315
316 /* Determine object index from a given position */
317 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
318 {
319 return (kasan_reset_tag(p) - addr) / s->size;
320 }
321
322 static inline unsigned int order_objects(unsigned int order, unsigned int size)
323 {
324 return ((unsigned int)PAGE_SIZE << order) / size;
325 }
326
327 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
328 unsigned int size)
329 {
330 struct kmem_cache_order_objects x = {
331 (order << OO_SHIFT) + order_objects(order, size)
332 };
333
334 return x;
335 }
336
337 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
338 {
339 return x.x >> OO_SHIFT;
340 }
341
342 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
343 {
344 return x.x & OO_MASK;
345 }
346
347 /*
348 * Per slab locking using the pagelock
349 */
350 static __always_inline void slab_lock(struct page *page)
351 {
352 VM_BUG_ON_PAGE(PageTail(page), page);
353 bit_spin_lock(PG_locked, &page->flags);
354 }
355
356 static __always_inline void slab_unlock(struct page *page)
357 {
358 VM_BUG_ON_PAGE(PageTail(page), page);
359 __bit_spin_unlock(PG_locked, &page->flags);
360 }
361
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367 {
368 VM_BUG_ON(!irqs_disabled());
369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
371 if (s->flags & __CMPXCHG_DOUBLE) {
372 if (cmpxchg_double(&page->freelist, &page->counters,
373 freelist_old, counters_old,
374 freelist_new, counters_new))
375 return true;
376 } else
377 #endif
378 {
379 slab_lock(page);
380 if (page->freelist == freelist_old &&
381 page->counters == counters_old) {
382 page->freelist = freelist_new;
383 page->counters = counters_new;
384 slab_unlock(page);
385 return true;
386 }
387 slab_unlock(page);
388 }
389
390 cpu_relax();
391 stat(s, CMPXCHG_DOUBLE_FAIL);
392
393 #ifdef SLUB_DEBUG_CMPXCHG
394 pr_info("%s %s: cmpxchg double redo ", n, s->name);
395 #endif
396
397 return false;
398 }
399
400 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
401 void *freelist_old, unsigned long counters_old,
402 void *freelist_new, unsigned long counters_new,
403 const char *n)
404 {
405 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
406 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
407 if (s->flags & __CMPXCHG_DOUBLE) {
408 if (cmpxchg_double(&page->freelist, &page->counters,
409 freelist_old, counters_old,
410 freelist_new, counters_new))
411 return true;
412 } else
413 #endif
414 {
415 unsigned long flags;
416
417 local_irq_save(flags);
418 slab_lock(page);
419 if (page->freelist == freelist_old &&
420 page->counters == counters_old) {
421 page->freelist = freelist_new;
422 page->counters = counters_new;
423 slab_unlock(page);
424 local_irq_restore(flags);
425 return true;
426 }
427 slab_unlock(page);
428 local_irq_restore(flags);
429 }
430
431 cpu_relax();
432 stat(s, CMPXCHG_DOUBLE_FAIL);
433
434 #ifdef SLUB_DEBUG_CMPXCHG
435 pr_info("%s %s: cmpxchg double redo ", n, s->name);
436 #endif
437
438 return false;
439 }
440
441 #ifdef CONFIG_SLUB_DEBUG
442 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
443 static DEFINE_SPINLOCK(object_map_lock);
444
445 /*
446 * Determine a map of object in use on a page.
447 *
448 * Node listlock must be held to guarantee that the page does
449 * not vanish from under us.
450 */
451 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
452 {
453 void *p;
454 void *addr = page_address(page);
455
456 VM_BUG_ON(!irqs_disabled());
457
458 spin_lock(&object_map_lock);
459
460 bitmap_zero(object_map, page->objects);
461
462 for (p = page->freelist; p; p = get_freepointer(s, p))
463 set_bit(slab_index(p, s, addr), object_map);
464
465 return object_map;
466 }
467
468 static void put_map(unsigned long *map)
469 {
470 VM_BUG_ON(map != object_map);
471 lockdep_assert_held(&object_map_lock);
472
473 spin_unlock(&object_map_lock);
474 }
475
476 static inline unsigned int size_from_object(struct kmem_cache *s)
477 {
478 if (s->flags & SLAB_RED_ZONE)
479 return s->size - s->red_left_pad;
480
481 return s->size;
482 }
483
484 static inline void *restore_red_left(struct kmem_cache *s, void *p)
485 {
486 if (s->flags & SLAB_RED_ZONE)
487 p -= s->red_left_pad;
488
489 return p;
490 }
491
492 /*
493 * Debug settings:
494 */
495 #if defined(CONFIG_SLUB_DEBUG_ON)
496 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
497 #else
498 static slab_flags_t slub_debug;
499 #endif
500
501 static char *slub_debug_slabs;
502 static int disable_higher_order_debug;
503
504 /*
505 * slub is about to manipulate internal object metadata. This memory lies
506 * outside the range of the allocated object, so accessing it would normally
507 * be reported by kasan as a bounds error. metadata_access_enable() is used
508 * to tell kasan that these accesses are OK.
509 */
510 static inline void metadata_access_enable(void)
511 {
512 kasan_disable_current();
513 }
514
515 static inline void metadata_access_disable(void)
516 {
517 kasan_enable_current();
518 }
519
520 /*
521 * Object debugging
522 */
523
524 /* Verify that a pointer has an address that is valid within a slab page */
525 static inline int check_valid_pointer(struct kmem_cache *s,
526 struct page *page, void *object)
527 {
528 void *base;
529
530 if (!object)
531 return 1;
532
533 base = page_address(page);
534 object = kasan_reset_tag(object);
535 object = restore_red_left(s, object);
536 if (object < base || object >= base + page->objects * s->size ||
537 (object - base) % s->size) {
538 return 0;
539 }
540
541 return 1;
542 }
543
544 static void print_section(char *level, char *text, u8 *addr,
545 unsigned int length)
546 {
547 metadata_access_enable();
548 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
549 length, 1);
550 metadata_access_disable();
551 }
552
553 static struct track *get_track(struct kmem_cache *s, void *object,
554 enum track_item alloc)
555 {
556 struct track *p;
557
558 if (s->offset)
559 p = object + s->offset + sizeof(void *);
560 else
561 p = object + s->inuse;
562
563 return p + alloc;
564 }
565
566 static void set_track(struct kmem_cache *s, void *object,
567 enum track_item alloc, unsigned long addr)
568 {
569 struct track *p = get_track(s, object, alloc);
570
571 if (addr) {
572 #ifdef CONFIG_STACKTRACE
573 unsigned int nr_entries;
574
575 metadata_access_enable();
576 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
577 metadata_access_disable();
578
579 if (nr_entries < TRACK_ADDRS_COUNT)
580 p->addrs[nr_entries] = 0;
581 #endif
582 p->addr = addr;
583 p->cpu = smp_processor_id();
584 p->pid = current->pid;
585 p->when = jiffies;
586 } else {
587 memset(p, 0, sizeof(struct track));
588 }
589 }
590
591 static void init_tracking(struct kmem_cache *s, void *object)
592 {
593 if (!(s->flags & SLAB_STORE_USER))
594 return;
595
596 set_track(s, object, TRACK_FREE, 0UL);
597 set_track(s, object, TRACK_ALLOC, 0UL);
598 }
599
600 static void print_track(const char *s, struct track *t, unsigned long pr_time)
601 {
602 if (!t->addr)
603 return;
604
605 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
606 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
607 #ifdef CONFIG_STACKTRACE
608 {
609 int i;
610 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
611 if (t->addrs[i])
612 pr_err("\t%pS\n", (void *)t->addrs[i]);
613 else
614 break;
615 }
616 #endif
617 }
618
619 static void print_tracking(struct kmem_cache *s, void *object)
620 {
621 unsigned long pr_time = jiffies;
622 if (!(s->flags & SLAB_STORE_USER))
623 return;
624
625 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
626 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
627 }
628
629 static void print_page_info(struct page *page)
630 {
631 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
632 page, page->objects, page->inuse, page->freelist, page->flags);
633
634 }
635
636 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
637 {
638 struct va_format vaf;
639 va_list args;
640
641 va_start(args, fmt);
642 vaf.fmt = fmt;
643 vaf.va = &args;
644 pr_err("=============================================================================\n");
645 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
646 pr_err("-----------------------------------------------------------------------------\n\n");
647
648 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
649 va_end(args);
650 }
651
652 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
653 {
654 struct va_format vaf;
655 va_list args;
656
657 va_start(args, fmt);
658 vaf.fmt = fmt;
659 vaf.va = &args;
660 pr_err("FIX %s: %pV\n", s->name, &vaf);
661 va_end(args);
662 }
663
664 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
665 {
666 unsigned int off; /* Offset of last byte */
667 u8 *addr = page_address(page);
668
669 print_tracking(s, p);
670
671 print_page_info(page);
672
673 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
674 p, p - addr, get_freepointer(s, p));
675
676 if (s->flags & SLAB_RED_ZONE)
677 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
678 s->red_left_pad);
679 else if (p > addr + 16)
680 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
681
682 print_section(KERN_ERR, "Object ", p,
683 min_t(unsigned int, s->object_size, PAGE_SIZE));
684 if (s->flags & SLAB_RED_ZONE)
685 print_section(KERN_ERR, "Redzone ", p + s->object_size,
686 s->inuse - s->object_size);
687
688 if (s->offset)
689 off = s->offset + sizeof(void *);
690 else
691 off = s->inuse;
692
693 if (s->flags & SLAB_STORE_USER)
694 off += 2 * sizeof(struct track);
695
696 off += kasan_metadata_size(s);
697
698 if (off != size_from_object(s))
699 /* Beginning of the filler is the free pointer */
700 print_section(KERN_ERR, "Padding ", p + off,
701 size_from_object(s) - off);
702
703 dump_stack();
704 }
705
706 void object_err(struct kmem_cache *s, struct page *page,
707 u8 *object, char *reason)
708 {
709 slab_bug(s, "%s", reason);
710 print_trailer(s, page, object);
711 }
712
713 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
714 const char *fmt, ...)
715 {
716 va_list args;
717 char buf[100];
718
719 va_start(args, fmt);
720 vsnprintf(buf, sizeof(buf), fmt, args);
721 va_end(args);
722 slab_bug(s, "%s", buf);
723 print_page_info(page);
724 dump_stack();
725 }
726
727 static void init_object(struct kmem_cache *s, void *object, u8 val)
728 {
729 u8 *p = object;
730
731 if (s->flags & SLAB_RED_ZONE)
732 memset(p - s->red_left_pad, val, s->red_left_pad);
733
734 if (s->flags & __OBJECT_POISON) {
735 memset(p, POISON_FREE, s->object_size - 1);
736 p[s->object_size - 1] = POISON_END;
737 }
738
739 if (s->flags & SLAB_RED_ZONE)
740 memset(p + s->object_size, val, s->inuse - s->object_size);
741 }
742
743 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
744 void *from, void *to)
745 {
746 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
747 memset(from, data, to - from);
748 }
749
750 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
751 u8 *object, char *what,
752 u8 *start, unsigned int value, unsigned int bytes)
753 {
754 u8 *fault;
755 u8 *end;
756 u8 *addr = page_address(page);
757
758 metadata_access_enable();
759 fault = memchr_inv(start, value, bytes);
760 metadata_access_disable();
761 if (!fault)
762 return 1;
763
764 end = start + bytes;
765 while (end > fault && end[-1] == value)
766 end--;
767
768 slab_bug(s, "%s overwritten", what);
769 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
770 fault, end - 1, fault - addr,
771 fault[0], value);
772 print_trailer(s, page, object);
773
774 restore_bytes(s, what, value, fault, end);
775 return 0;
776 }
777
778 /*
779 * Object layout:
780 *
781 * object address
782 * Bytes of the object to be managed.
783 * If the freepointer may overlay the object then the free
784 * pointer is the first word of the object.
785 *
786 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
787 * 0xa5 (POISON_END)
788 *
789 * object + s->object_size
790 * Padding to reach word boundary. This is also used for Redzoning.
791 * Padding is extended by another word if Redzoning is enabled and
792 * object_size == inuse.
793 *
794 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
795 * 0xcc (RED_ACTIVE) for objects in use.
796 *
797 * object + s->inuse
798 * Meta data starts here.
799 *
800 * A. Free pointer (if we cannot overwrite object on free)
801 * B. Tracking data for SLAB_STORE_USER
802 * C. Padding to reach required alignment boundary or at mininum
803 * one word if debugging is on to be able to detect writes
804 * before the word boundary.
805 *
806 * Padding is done using 0x5a (POISON_INUSE)
807 *
808 * object + s->size
809 * Nothing is used beyond s->size.
810 *
811 * If slabcaches are merged then the object_size and inuse boundaries are mostly
812 * ignored. And therefore no slab options that rely on these boundaries
813 * may be used with merged slabcaches.
814 */
815
816 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
817 {
818 unsigned long off = s->inuse; /* The end of info */
819
820 if (s->offset)
821 /* Freepointer is placed after the object. */
822 off += sizeof(void *);
823
824 if (s->flags & SLAB_STORE_USER)
825 /* We also have user information there */
826 off += 2 * sizeof(struct track);
827
828 off += kasan_metadata_size(s);
829
830 if (size_from_object(s) == off)
831 return 1;
832
833 return check_bytes_and_report(s, page, p, "Object padding",
834 p + off, POISON_INUSE, size_from_object(s) - off);
835 }
836
837 /* Check the pad bytes at the end of a slab page */
838 static int slab_pad_check(struct kmem_cache *s, struct page *page)
839 {
840 u8 *start;
841 u8 *fault;
842 u8 *end;
843 u8 *pad;
844 int length;
845 int remainder;
846
847 if (!(s->flags & SLAB_POISON))
848 return 1;
849
850 start = page_address(page);
851 length = page_size(page);
852 end = start + length;
853 remainder = length % s->size;
854 if (!remainder)
855 return 1;
856
857 pad = end - remainder;
858 metadata_access_enable();
859 fault = memchr_inv(pad, POISON_INUSE, remainder);
860 metadata_access_disable();
861 if (!fault)
862 return 1;
863 while (end > fault && end[-1] == POISON_INUSE)
864 end--;
865
866 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
867 fault, end - 1, fault - start);
868 print_section(KERN_ERR, "Padding ", pad, remainder);
869
870 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
871 return 0;
872 }
873
874 static int check_object(struct kmem_cache *s, struct page *page,
875 void *object, u8 val)
876 {
877 u8 *p = object;
878 u8 *endobject = object + s->object_size;
879
880 if (s->flags & SLAB_RED_ZONE) {
881 if (!check_bytes_and_report(s, page, object, "Redzone",
882 object - s->red_left_pad, val, s->red_left_pad))
883 return 0;
884
885 if (!check_bytes_and_report(s, page, object, "Redzone",
886 endobject, val, s->inuse - s->object_size))
887 return 0;
888 } else {
889 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
890 check_bytes_and_report(s, page, p, "Alignment padding",
891 endobject, POISON_INUSE,
892 s->inuse - s->object_size);
893 }
894 }
895
896 if (s->flags & SLAB_POISON) {
897 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
898 (!check_bytes_and_report(s, page, p, "Poison", p,
899 POISON_FREE, s->object_size - 1) ||
900 !check_bytes_and_report(s, page, p, "Poison",
901 p + s->object_size - 1, POISON_END, 1)))
902 return 0;
903 /*
904 * check_pad_bytes cleans up on its own.
905 */
906 check_pad_bytes(s, page, p);
907 }
908
909 if (!s->offset && val == SLUB_RED_ACTIVE)
910 /*
911 * Object and freepointer overlap. Cannot check
912 * freepointer while object is allocated.
913 */
914 return 1;
915
916 /* Check free pointer validity */
917 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
918 object_err(s, page, p, "Freepointer corrupt");
919 /*
920 * No choice but to zap it and thus lose the remainder
921 * of the free objects in this slab. May cause
922 * another error because the object count is now wrong.
923 */
924 set_freepointer(s, p, NULL);
925 return 0;
926 }
927 return 1;
928 }
929
930 static int check_slab(struct kmem_cache *s, struct page *page)
931 {
932 int maxobj;
933
934 VM_BUG_ON(!irqs_disabled());
935
936 if (!PageSlab(page)) {
937 slab_err(s, page, "Not a valid slab page");
938 return 0;
939 }
940
941 maxobj = order_objects(compound_order(page), s->size);
942 if (page->objects > maxobj) {
943 slab_err(s, page, "objects %u > max %u",
944 page->objects, maxobj);
945 return 0;
946 }
947 if (page->inuse > page->objects) {
948 slab_err(s, page, "inuse %u > max %u",
949 page->inuse, page->objects);
950 return 0;
951 }
952 /* Slab_pad_check fixes things up after itself */
953 slab_pad_check(s, page);
954 return 1;
955 }
956
957 /*
958 * Determine if a certain object on a page is on the freelist. Must hold the
959 * slab lock to guarantee that the chains are in a consistent state.
960 */
961 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
962 {
963 int nr = 0;
964 void *fp;
965 void *object = NULL;
966 int max_objects;
967
968 fp = page->freelist;
969 while (fp && nr <= page->objects) {
970 if (fp == search)
971 return 1;
972 if (!check_valid_pointer(s, page, fp)) {
973 if (object) {
974 object_err(s, page, object,
975 "Freechain corrupt");
976 set_freepointer(s, object, NULL);
977 } else {
978 slab_err(s, page, "Freepointer corrupt");
979 page->freelist = NULL;
980 page->inuse = page->objects;
981 slab_fix(s, "Freelist cleared");
982 return 0;
983 }
984 break;
985 }
986 object = fp;
987 fp = get_freepointer(s, object);
988 nr++;
989 }
990
991 max_objects = order_objects(compound_order(page), s->size);
992 if (max_objects > MAX_OBJS_PER_PAGE)
993 max_objects = MAX_OBJS_PER_PAGE;
994
995 if (page->objects != max_objects) {
996 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
997 page->objects, max_objects);
998 page->objects = max_objects;
999 slab_fix(s, "Number of objects adjusted.");
1000 }
1001 if (page->inuse != page->objects - nr) {
1002 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1003 page->inuse, page->objects - nr);
1004 page->inuse = page->objects - nr;
1005 slab_fix(s, "Object count adjusted.");
1006 }
1007 return search == NULL;
1008 }
1009
1010 static void trace(struct kmem_cache *s, struct page *page, void *object,
1011 int alloc)
1012 {
1013 if (s->flags & SLAB_TRACE) {
1014 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1015 s->name,
1016 alloc ? "alloc" : "free",
1017 object, page->inuse,
1018 page->freelist);
1019
1020 if (!alloc)
1021 print_section(KERN_INFO, "Object ", (void *)object,
1022 s->object_size);
1023
1024 dump_stack();
1025 }
1026 }
1027
1028 /*
1029 * Tracking of fully allocated slabs for debugging purposes.
1030 */
1031 static void add_full(struct kmem_cache *s,
1032 struct kmem_cache_node *n, struct page *page)
1033 {
1034 if (!(s->flags & SLAB_STORE_USER))
1035 return;
1036
1037 lockdep_assert_held(&n->list_lock);
1038 list_add(&page->slab_list, &n->full);
1039 }
1040
1041 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1042 {
1043 if (!(s->flags & SLAB_STORE_USER))
1044 return;
1045
1046 lockdep_assert_held(&n->list_lock);
1047 list_del(&page->slab_list);
1048 }
1049
1050 /* Tracking of the number of slabs for debugging purposes */
1051 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1052 {
1053 struct kmem_cache_node *n = get_node(s, node);
1054
1055 return atomic_long_read(&n->nr_slabs);
1056 }
1057
1058 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1059 {
1060 return atomic_long_read(&n->nr_slabs);
1061 }
1062
1063 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1064 {
1065 struct kmem_cache_node *n = get_node(s, node);
1066
1067 /*
1068 * May be called early in order to allocate a slab for the
1069 * kmem_cache_node structure. Solve the chicken-egg
1070 * dilemma by deferring the increment of the count during
1071 * bootstrap (see early_kmem_cache_node_alloc).
1072 */
1073 if (likely(n)) {
1074 atomic_long_inc(&n->nr_slabs);
1075 atomic_long_add(objects, &n->total_objects);
1076 }
1077 }
1078 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1079 {
1080 struct kmem_cache_node *n = get_node(s, node);
1081
1082 atomic_long_dec(&n->nr_slabs);
1083 atomic_long_sub(objects, &n->total_objects);
1084 }
1085
1086 /* Object debug checks for alloc/free paths */
1087 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1088 void *object)
1089 {
1090 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1091 return;
1092
1093 init_object(s, object, SLUB_RED_INACTIVE);
1094 init_tracking(s, object);
1095 }
1096
1097 static
1098 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1099 {
1100 if (!(s->flags & SLAB_POISON))
1101 return;
1102
1103 metadata_access_enable();
1104 memset(addr, POISON_INUSE, page_size(page));
1105 metadata_access_disable();
1106 }
1107
1108 static inline int alloc_consistency_checks(struct kmem_cache *s,
1109 struct page *page, void *object)
1110 {
1111 if (!check_slab(s, page))
1112 return 0;
1113
1114 if (!check_valid_pointer(s, page, object)) {
1115 object_err(s, page, object, "Freelist Pointer check fails");
1116 return 0;
1117 }
1118
1119 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1120 return 0;
1121
1122 return 1;
1123 }
1124
1125 static noinline int alloc_debug_processing(struct kmem_cache *s,
1126 struct page *page,
1127 void *object, unsigned long addr)
1128 {
1129 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1130 if (!alloc_consistency_checks(s, page, object))
1131 goto bad;
1132 }
1133
1134 /* Success perform special debug activities for allocs */
1135 if (s->flags & SLAB_STORE_USER)
1136 set_track(s, object, TRACK_ALLOC, addr);
1137 trace(s, page, object, 1);
1138 init_object(s, object, SLUB_RED_ACTIVE);
1139 return 1;
1140
1141 bad:
1142 if (PageSlab(page)) {
1143 /*
1144 * If this is a slab page then lets do the best we can
1145 * to avoid issues in the future. Marking all objects
1146 * as used avoids touching the remaining objects.
1147 */
1148 slab_fix(s, "Marking all objects used");
1149 page->inuse = page->objects;
1150 page->freelist = NULL;
1151 }
1152 return 0;
1153 }
1154
1155 static inline int free_consistency_checks(struct kmem_cache *s,
1156 struct page *page, void *object, unsigned long addr)
1157 {
1158 if (!check_valid_pointer(s, page, object)) {
1159 slab_err(s, page, "Invalid object pointer 0x%p", object);
1160 return 0;
1161 }
1162
1163 if (on_freelist(s, page, object)) {
1164 object_err(s, page, object, "Object already free");
1165 return 0;
1166 }
1167
1168 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1169 return 0;
1170
1171 if (unlikely(s != page->slab_cache)) {
1172 if (!PageSlab(page)) {
1173 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1174 object);
1175 } else if (!page->slab_cache) {
1176 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1177 object);
1178 dump_stack();
1179 } else
1180 object_err(s, page, object,
1181 "page slab pointer corrupt.");
1182 return 0;
1183 }
1184 return 1;
1185 }
1186
1187 /* Supports checking bulk free of a constructed freelist */
1188 static noinline int free_debug_processing(
1189 struct kmem_cache *s, struct page *page,
1190 void *head, void *tail, int bulk_cnt,
1191 unsigned long addr)
1192 {
1193 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1194 void *object = head;
1195 int cnt = 0;
1196 unsigned long uninitialized_var(flags);
1197 int ret = 0;
1198
1199 spin_lock_irqsave(&n->list_lock, flags);
1200 slab_lock(page);
1201
1202 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1203 if (!check_slab(s, page))
1204 goto out;
1205 }
1206
1207 next_object:
1208 cnt++;
1209
1210 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1211 if (!free_consistency_checks(s, page, object, addr))
1212 goto out;
1213 }
1214
1215 if (s->flags & SLAB_STORE_USER)
1216 set_track(s, object, TRACK_FREE, addr);
1217 trace(s, page, object, 0);
1218 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1219 init_object(s, object, SLUB_RED_INACTIVE);
1220
1221 /* Reached end of constructed freelist yet? */
1222 if (object != tail) {
1223 object = get_freepointer(s, object);
1224 goto next_object;
1225 }
1226 ret = 1;
1227
1228 out:
1229 if (cnt != bulk_cnt)
1230 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1231 bulk_cnt, cnt);
1232
1233 slab_unlock(page);
1234 spin_unlock_irqrestore(&n->list_lock, flags);
1235 if (!ret)
1236 slab_fix(s, "Object at 0x%p not freed", object);
1237 return ret;
1238 }
1239
1240 static int __init setup_slub_debug(char *str)
1241 {
1242 slub_debug = DEBUG_DEFAULT_FLAGS;
1243 if (*str++ != '=' || !*str)
1244 /*
1245 * No options specified. Switch on full debugging.
1246 */
1247 goto out;
1248
1249 if (*str == ',')
1250 /*
1251 * No options but restriction on slabs. This means full
1252 * debugging for slabs matching a pattern.
1253 */
1254 goto check_slabs;
1255
1256 slub_debug = 0;
1257 if (*str == '-')
1258 /*
1259 * Switch off all debugging measures.
1260 */
1261 goto out;
1262
1263 /*
1264 * Determine which debug features should be switched on
1265 */
1266 for (; *str && *str != ','; str++) {
1267 switch (tolower(*str)) {
1268 case 'f':
1269 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1270 break;
1271 case 'z':
1272 slub_debug |= SLAB_RED_ZONE;
1273 break;
1274 case 'p':
1275 slub_debug |= SLAB_POISON;
1276 break;
1277 case 'u':
1278 slub_debug |= SLAB_STORE_USER;
1279 break;
1280 case 't':
1281 slub_debug |= SLAB_TRACE;
1282 break;
1283 case 'a':
1284 slub_debug |= SLAB_FAILSLAB;
1285 break;
1286 case 'o':
1287 /*
1288 * Avoid enabling debugging on caches if its minimum
1289 * order would increase as a result.
1290 */
1291 disable_higher_order_debug = 1;
1292 break;
1293 default:
1294 pr_err("slub_debug option '%c' unknown. skipped\n",
1295 *str);
1296 }
1297 }
1298
1299 check_slabs:
1300 if (*str == ',')
1301 slub_debug_slabs = str + 1;
1302 out:
1303 if ((static_branch_unlikely(&init_on_alloc) ||
1304 static_branch_unlikely(&init_on_free)) &&
1305 (slub_debug & SLAB_POISON))
1306 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1307 return 1;
1308 }
1309
1310 __setup("slub_debug", setup_slub_debug);
1311
1312 /*
1313 * kmem_cache_flags - apply debugging options to the cache
1314 * @object_size: the size of an object without meta data
1315 * @flags: flags to set
1316 * @name: name of the cache
1317 * @ctor: constructor function
1318 *
1319 * Debug option(s) are applied to @flags. In addition to the debug
1320 * option(s), if a slab name (or multiple) is specified i.e.
1321 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1322 * then only the select slabs will receive the debug option(s).
1323 */
1324 slab_flags_t kmem_cache_flags(unsigned int object_size,
1325 slab_flags_t flags, const char *name,
1326 void (*ctor)(void *))
1327 {
1328 char *iter;
1329 size_t len;
1330
1331 /* If slub_debug = 0, it folds into the if conditional. */
1332 if (!slub_debug_slabs)
1333 return flags | slub_debug;
1334
1335 len = strlen(name);
1336 iter = slub_debug_slabs;
1337 while (*iter) {
1338 char *end, *glob;
1339 size_t cmplen;
1340
1341 end = strchrnul(iter, ',');
1342
1343 glob = strnchr(iter, end - iter, '*');
1344 if (glob)
1345 cmplen = glob - iter;
1346 else
1347 cmplen = max_t(size_t, len, (end - iter));
1348
1349 if (!strncmp(name, iter, cmplen)) {
1350 flags |= slub_debug;
1351 break;
1352 }
1353
1354 if (!*end)
1355 break;
1356 iter = end + 1;
1357 }
1358
1359 return flags;
1360 }
1361 #else /* !CONFIG_SLUB_DEBUG */
1362 static inline void setup_object_debug(struct kmem_cache *s,
1363 struct page *page, void *object) {}
1364 static inline
1365 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1366
1367 static inline int alloc_debug_processing(struct kmem_cache *s,
1368 struct page *page, void *object, unsigned long addr) { return 0; }
1369
1370 static inline int free_debug_processing(
1371 struct kmem_cache *s, struct page *page,
1372 void *head, void *tail, int bulk_cnt,
1373 unsigned long addr) { return 0; }
1374
1375 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1376 { return 1; }
1377 static inline int check_object(struct kmem_cache *s, struct page *page,
1378 void *object, u8 val) { return 1; }
1379 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1380 struct page *page) {}
1381 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1382 struct page *page) {}
1383 slab_flags_t kmem_cache_flags(unsigned int object_size,
1384 slab_flags_t flags, const char *name,
1385 void (*ctor)(void *))
1386 {
1387 return flags;
1388 }
1389 #define slub_debug 0
1390
1391 #define disable_higher_order_debug 0
1392
1393 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1394 { return 0; }
1395 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1396 { return 0; }
1397 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1398 int objects) {}
1399 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1400 int objects) {}
1401
1402 #endif /* CONFIG_SLUB_DEBUG */
1403
1404 /*
1405 * Hooks for other subsystems that check memory allocations. In a typical
1406 * production configuration these hooks all should produce no code at all.
1407 */
1408 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1409 {
1410 ptr = kasan_kmalloc_large(ptr, size, flags);
1411 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1412 kmemleak_alloc(ptr, size, 1, flags);
1413 return ptr;
1414 }
1415
1416 static __always_inline void kfree_hook(void *x)
1417 {
1418 kmemleak_free(x);
1419 kasan_kfree_large(x, _RET_IP_);
1420 }
1421
1422 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1423 {
1424 kmemleak_free_recursive(x, s->flags);
1425
1426 /*
1427 * Trouble is that we may no longer disable interrupts in the fast path
1428 * So in order to make the debug calls that expect irqs to be
1429 * disabled we need to disable interrupts temporarily.
1430 */
1431 #ifdef CONFIG_LOCKDEP
1432 {
1433 unsigned long flags;
1434
1435 local_irq_save(flags);
1436 debug_check_no_locks_freed(x, s->object_size);
1437 local_irq_restore(flags);
1438 }
1439 #endif
1440 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1441 debug_check_no_obj_freed(x, s->object_size);
1442
1443 /* KASAN might put x into memory quarantine, delaying its reuse */
1444 return kasan_slab_free(s, x, _RET_IP_);
1445 }
1446
1447 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1448 void **head, void **tail)
1449 {
1450
1451 void *object;
1452 void *next = *head;
1453 void *old_tail = *tail ? *tail : *head;
1454 int rsize;
1455
1456 /* Head and tail of the reconstructed freelist */
1457 *head = NULL;
1458 *tail = NULL;
1459
1460 do {
1461 object = next;
1462 next = get_freepointer(s, object);
1463
1464 if (slab_want_init_on_free(s)) {
1465 /*
1466 * Clear the object and the metadata, but don't touch
1467 * the redzone.
1468 */
1469 memset(object, 0, s->object_size);
1470 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1471 : 0;
1472 memset((char *)object + s->inuse, 0,
1473 s->size - s->inuse - rsize);
1474
1475 }
1476 /* If object's reuse doesn't have to be delayed */
1477 if (!slab_free_hook(s, object)) {
1478 /* Move object to the new freelist */
1479 set_freepointer(s, object, *head);
1480 *head = object;
1481 if (!*tail)
1482 *tail = object;
1483 }
1484 } while (object != old_tail);
1485
1486 if (*head == *tail)
1487 *tail = NULL;
1488
1489 return *head != NULL;
1490 }
1491
1492 static void *setup_object(struct kmem_cache *s, struct page *page,
1493 void *object)
1494 {
1495 setup_object_debug(s, page, object);
1496 object = kasan_init_slab_obj(s, object);
1497 if (unlikely(s->ctor)) {
1498 kasan_unpoison_object_data(s, object);
1499 s->ctor(object);
1500 kasan_poison_object_data(s, object);
1501 }
1502 return object;
1503 }
1504
1505 /*
1506 * Slab allocation and freeing
1507 */
1508 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1509 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1510 {
1511 struct page *page;
1512 unsigned int order = oo_order(oo);
1513
1514 if (node == NUMA_NO_NODE)
1515 page = alloc_pages(flags, order);
1516 else
1517 page = __alloc_pages_node(node, flags, order);
1518
1519 if (page && charge_slab_page(page, flags, order, s)) {
1520 __free_pages(page, order);
1521 page = NULL;
1522 }
1523
1524 return page;
1525 }
1526
1527 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1528 /* Pre-initialize the random sequence cache */
1529 static int init_cache_random_seq(struct kmem_cache *s)
1530 {
1531 unsigned int count = oo_objects(s->oo);
1532 int err;
1533
1534 /* Bailout if already initialised */
1535 if (s->random_seq)
1536 return 0;
1537
1538 err = cache_random_seq_create(s, count, GFP_KERNEL);
1539 if (err) {
1540 pr_err("SLUB: Unable to initialize free list for %s\n",
1541 s->name);
1542 return err;
1543 }
1544
1545 /* Transform to an offset on the set of pages */
1546 if (s->random_seq) {
1547 unsigned int i;
1548
1549 for (i = 0; i < count; i++)
1550 s->random_seq[i] *= s->size;
1551 }
1552 return 0;
1553 }
1554
1555 /* Initialize each random sequence freelist per cache */
1556 static void __init init_freelist_randomization(void)
1557 {
1558 struct kmem_cache *s;
1559
1560 mutex_lock(&slab_mutex);
1561
1562 list_for_each_entry(s, &slab_caches, list)
1563 init_cache_random_seq(s);
1564
1565 mutex_unlock(&slab_mutex);
1566 }
1567
1568 /* Get the next entry on the pre-computed freelist randomized */
1569 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1570 unsigned long *pos, void *start,
1571 unsigned long page_limit,
1572 unsigned long freelist_count)
1573 {
1574 unsigned int idx;
1575
1576 /*
1577 * If the target page allocation failed, the number of objects on the
1578 * page might be smaller than the usual size defined by the cache.
1579 */
1580 do {
1581 idx = s->random_seq[*pos];
1582 *pos += 1;
1583 if (*pos >= freelist_count)
1584 *pos = 0;
1585 } while (unlikely(idx >= page_limit));
1586
1587 return (char *)start + idx;
1588 }
1589
1590 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1591 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1592 {
1593 void *start;
1594 void *cur;
1595 void *next;
1596 unsigned long idx, pos, page_limit, freelist_count;
1597
1598 if (page->objects < 2 || !s->random_seq)
1599 return false;
1600
1601 freelist_count = oo_objects(s->oo);
1602 pos = get_random_int() % freelist_count;
1603
1604 page_limit = page->objects * s->size;
1605 start = fixup_red_left(s, page_address(page));
1606
1607 /* First entry is used as the base of the freelist */
1608 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1609 freelist_count);
1610 cur = setup_object(s, page, cur);
1611 page->freelist = cur;
1612
1613 for (idx = 1; idx < page->objects; idx++) {
1614 next = next_freelist_entry(s, page, &pos, start, page_limit,
1615 freelist_count);
1616 next = setup_object(s, page, next);
1617 set_freepointer(s, cur, next);
1618 cur = next;
1619 }
1620 set_freepointer(s, cur, NULL);
1621
1622 return true;
1623 }
1624 #else
1625 static inline int init_cache_random_seq(struct kmem_cache *s)
1626 {
1627 return 0;
1628 }
1629 static inline void init_freelist_randomization(void) { }
1630 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1631 {
1632 return false;
1633 }
1634 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1635
1636 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1637 {
1638 struct page *page;
1639 struct kmem_cache_order_objects oo = s->oo;
1640 gfp_t alloc_gfp;
1641 void *start, *p, *next;
1642 int idx;
1643 bool shuffle;
1644
1645 flags &= gfp_allowed_mask;
1646
1647 if (gfpflags_allow_blocking(flags))
1648 local_irq_enable();
1649
1650 flags |= s->allocflags;
1651
1652 /*
1653 * Let the initial higher-order allocation fail under memory pressure
1654 * so we fall-back to the minimum order allocation.
1655 */
1656 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1657 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1658 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1659
1660 page = alloc_slab_page(s, alloc_gfp, node, oo);
1661 if (unlikely(!page)) {
1662 oo = s->min;
1663 alloc_gfp = flags;
1664 /*
1665 * Allocation may have failed due to fragmentation.
1666 * Try a lower order alloc if possible
1667 */
1668 page = alloc_slab_page(s, alloc_gfp, node, oo);
1669 if (unlikely(!page))
1670 goto out;
1671 stat(s, ORDER_FALLBACK);
1672 }
1673
1674 page->objects = oo_objects(oo);
1675
1676 page->slab_cache = s;
1677 __SetPageSlab(page);
1678 if (page_is_pfmemalloc(page))
1679 SetPageSlabPfmemalloc(page);
1680
1681 kasan_poison_slab(page);
1682
1683 start = page_address(page);
1684
1685 setup_page_debug(s, page, start);
1686
1687 shuffle = shuffle_freelist(s, page);
1688
1689 if (!shuffle) {
1690 start = fixup_red_left(s, start);
1691 start = setup_object(s, page, start);
1692 page->freelist = start;
1693 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1694 next = p + s->size;
1695 next = setup_object(s, page, next);
1696 set_freepointer(s, p, next);
1697 p = next;
1698 }
1699 set_freepointer(s, p, NULL);
1700 }
1701
1702 page->inuse = page->objects;
1703 page->frozen = 1;
1704
1705 out:
1706 if (gfpflags_allow_blocking(flags))
1707 local_irq_disable();
1708 if (!page)
1709 return NULL;
1710
1711 inc_slabs_node(s, page_to_nid(page), page->objects);
1712
1713 return page;
1714 }
1715
1716 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1717 {
1718 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1719 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1720 flags &= ~GFP_SLAB_BUG_MASK;
1721 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1722 invalid_mask, &invalid_mask, flags, &flags);
1723 dump_stack();
1724 }
1725
1726 return allocate_slab(s,
1727 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1728 }
1729
1730 static void __free_slab(struct kmem_cache *s, struct page *page)
1731 {
1732 int order = compound_order(page);
1733 int pages = 1 << order;
1734
1735 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1736 void *p;
1737
1738 slab_pad_check(s, page);
1739 for_each_object(p, s, page_address(page),
1740 page->objects)
1741 check_object(s, page, p, SLUB_RED_INACTIVE);
1742 }
1743
1744 __ClearPageSlabPfmemalloc(page);
1745 __ClearPageSlab(page);
1746
1747 page->mapping = NULL;
1748 if (current->reclaim_state)
1749 current->reclaim_state->reclaimed_slab += pages;
1750 uncharge_slab_page(page, order, s);
1751 __free_pages(page, order);
1752 }
1753
1754 static void rcu_free_slab(struct rcu_head *h)
1755 {
1756 struct page *page = container_of(h, struct page, rcu_head);
1757
1758 __free_slab(page->slab_cache, page);
1759 }
1760
1761 static void free_slab(struct kmem_cache *s, struct page *page)
1762 {
1763 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1764 call_rcu(&page->rcu_head, rcu_free_slab);
1765 } else
1766 __free_slab(s, page);
1767 }
1768
1769 static void discard_slab(struct kmem_cache *s, struct page *page)
1770 {
1771 dec_slabs_node(s, page_to_nid(page), page->objects);
1772 free_slab(s, page);
1773 }
1774
1775 /*
1776 * Management of partially allocated slabs.
1777 */
1778 static inline void
1779 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1780 {
1781 n->nr_partial++;
1782 if (tail == DEACTIVATE_TO_TAIL)
1783 list_add_tail(&page->slab_list, &n->partial);
1784 else
1785 list_add(&page->slab_list, &n->partial);
1786 }
1787
1788 static inline void add_partial(struct kmem_cache_node *n,
1789 struct page *page, int tail)
1790 {
1791 lockdep_assert_held(&n->list_lock);
1792 __add_partial(n, page, tail);
1793 }
1794
1795 static inline void remove_partial(struct kmem_cache_node *n,
1796 struct page *page)
1797 {
1798 lockdep_assert_held(&n->list_lock);
1799 list_del(&page->slab_list);
1800 n->nr_partial--;
1801 }
1802
1803 /*
1804 * Remove slab from the partial list, freeze it and
1805 * return the pointer to the freelist.
1806 *
1807 * Returns a list of objects or NULL if it fails.
1808 */
1809 static inline void *acquire_slab(struct kmem_cache *s,
1810 struct kmem_cache_node *n, struct page *page,
1811 int mode, int *objects)
1812 {
1813 void *freelist;
1814 unsigned long counters;
1815 struct page new;
1816
1817 lockdep_assert_held(&n->list_lock);
1818
1819 /*
1820 * Zap the freelist and set the frozen bit.
1821 * The old freelist is the list of objects for the
1822 * per cpu allocation list.
1823 */
1824 freelist = page->freelist;
1825 counters = page->counters;
1826 new.counters = counters;
1827 *objects = new.objects - new.inuse;
1828 if (mode) {
1829 new.inuse = page->objects;
1830 new.freelist = NULL;
1831 } else {
1832 new.freelist = freelist;
1833 }
1834
1835 VM_BUG_ON(new.frozen);
1836 new.frozen = 1;
1837
1838 if (!__cmpxchg_double_slab(s, page,
1839 freelist, counters,
1840 new.freelist, new.counters,
1841 "acquire_slab"))
1842 return NULL;
1843
1844 remove_partial(n, page);
1845 WARN_ON(!freelist);
1846 return freelist;
1847 }
1848
1849 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1850 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1851
1852 /*
1853 * Try to allocate a partial slab from a specific node.
1854 */
1855 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1856 struct kmem_cache_cpu *c, gfp_t flags)
1857 {
1858 struct page *page, *page2;
1859 void *object = NULL;
1860 unsigned int available = 0;
1861 int objects;
1862
1863 /*
1864 * Racy check. If we mistakenly see no partial slabs then we
1865 * just allocate an empty slab. If we mistakenly try to get a
1866 * partial slab and there is none available then get_partials()
1867 * will return NULL.
1868 */
1869 if (!n || !n->nr_partial)
1870 return NULL;
1871
1872 spin_lock(&n->list_lock);
1873 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1874 void *t;
1875
1876 if (!pfmemalloc_match(page, flags))
1877 continue;
1878
1879 t = acquire_slab(s, n, page, object == NULL, &objects);
1880 if (!t)
1881 break;
1882
1883 available += objects;
1884 if (!object) {
1885 c->page = page;
1886 stat(s, ALLOC_FROM_PARTIAL);
1887 object = t;
1888 } else {
1889 put_cpu_partial(s, page, 0);
1890 stat(s, CPU_PARTIAL_NODE);
1891 }
1892 if (!kmem_cache_has_cpu_partial(s)
1893 || available > slub_cpu_partial(s) / 2)
1894 break;
1895
1896 }
1897 spin_unlock(&n->list_lock);
1898 return object;
1899 }
1900
1901 /*
1902 * Get a page from somewhere. Search in increasing NUMA distances.
1903 */
1904 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1905 struct kmem_cache_cpu *c)
1906 {
1907 #ifdef CONFIG_NUMA
1908 struct zonelist *zonelist;
1909 struct zoneref *z;
1910 struct zone *zone;
1911 enum zone_type high_zoneidx = gfp_zone(flags);
1912 void *object;
1913 unsigned int cpuset_mems_cookie;
1914
1915 /*
1916 * The defrag ratio allows a configuration of the tradeoffs between
1917 * inter node defragmentation and node local allocations. A lower
1918 * defrag_ratio increases the tendency to do local allocations
1919 * instead of attempting to obtain partial slabs from other nodes.
1920 *
1921 * If the defrag_ratio is set to 0 then kmalloc() always
1922 * returns node local objects. If the ratio is higher then kmalloc()
1923 * may return off node objects because partial slabs are obtained
1924 * from other nodes and filled up.
1925 *
1926 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1927 * (which makes defrag_ratio = 1000) then every (well almost)
1928 * allocation will first attempt to defrag slab caches on other nodes.
1929 * This means scanning over all nodes to look for partial slabs which
1930 * may be expensive if we do it every time we are trying to find a slab
1931 * with available objects.
1932 */
1933 if (!s->remote_node_defrag_ratio ||
1934 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1935 return NULL;
1936
1937 do {
1938 cpuset_mems_cookie = read_mems_allowed_begin();
1939 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1940 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1941 struct kmem_cache_node *n;
1942
1943 n = get_node(s, zone_to_nid(zone));
1944
1945 if (n && cpuset_zone_allowed(zone, flags) &&
1946 n->nr_partial > s->min_partial) {
1947 object = get_partial_node(s, n, c, flags);
1948 if (object) {
1949 /*
1950 * Don't check read_mems_allowed_retry()
1951 * here - if mems_allowed was updated in
1952 * parallel, that was a harmless race
1953 * between allocation and the cpuset
1954 * update
1955 */
1956 return object;
1957 }
1958 }
1959 }
1960 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1961 #endif /* CONFIG_NUMA */
1962 return NULL;
1963 }
1964
1965 /*
1966 * Get a partial page, lock it and return it.
1967 */
1968 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1969 struct kmem_cache_cpu *c)
1970 {
1971 void *object;
1972 int searchnode = node;
1973
1974 if (node == NUMA_NO_NODE)
1975 searchnode = numa_mem_id();
1976 else if (!node_present_pages(node))
1977 searchnode = node_to_mem_node(node);
1978
1979 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1980 if (object || node != NUMA_NO_NODE)
1981 return object;
1982
1983 return get_any_partial(s, flags, c);
1984 }
1985
1986 #ifdef CONFIG_PREEMPTION
1987 /*
1988 * Calculate the next globally unique transaction for disambiguiation
1989 * during cmpxchg. The transactions start with the cpu number and are then
1990 * incremented by CONFIG_NR_CPUS.
1991 */
1992 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1993 #else
1994 /*
1995 * No preemption supported therefore also no need to check for
1996 * different cpus.
1997 */
1998 #define TID_STEP 1
1999 #endif
2000
2001 static inline unsigned long next_tid(unsigned long tid)
2002 {
2003 return tid + TID_STEP;
2004 }
2005
2006 #ifdef SLUB_DEBUG_CMPXCHG
2007 static inline unsigned int tid_to_cpu(unsigned long tid)
2008 {
2009 return tid % TID_STEP;
2010 }
2011
2012 static inline unsigned long tid_to_event(unsigned long tid)
2013 {
2014 return tid / TID_STEP;
2015 }
2016 #endif
2017
2018 static inline unsigned int init_tid(int cpu)
2019 {
2020 return cpu;
2021 }
2022
2023 static inline void note_cmpxchg_failure(const char *n,
2024 const struct kmem_cache *s, unsigned long tid)
2025 {
2026 #ifdef SLUB_DEBUG_CMPXCHG
2027 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2028
2029 pr_info("%s %s: cmpxchg redo ", n, s->name);
2030
2031 #ifdef CONFIG_PREEMPTION
2032 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2033 pr_warn("due to cpu change %d -> %d\n",
2034 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2035 else
2036 #endif
2037 if (tid_to_event(tid) != tid_to_event(actual_tid))
2038 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2039 tid_to_event(tid), tid_to_event(actual_tid));
2040 else
2041 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2042 actual_tid, tid, next_tid(tid));
2043 #endif
2044 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2045 }
2046
2047 static void init_kmem_cache_cpus(struct kmem_cache *s)
2048 {
2049 int cpu;
2050
2051 for_each_possible_cpu(cpu)
2052 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2053 }
2054
2055 /*
2056 * Remove the cpu slab
2057 */
2058 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2059 void *freelist, struct kmem_cache_cpu *c)
2060 {
2061 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2062 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2063 int lock = 0;
2064 enum slab_modes l = M_NONE, m = M_NONE;
2065 void *nextfree;
2066 int tail = DEACTIVATE_TO_HEAD;
2067 struct page new;
2068 struct page old;
2069
2070 if (page->freelist) {
2071 stat(s, DEACTIVATE_REMOTE_FREES);
2072 tail = DEACTIVATE_TO_TAIL;
2073 }
2074
2075 /*
2076 * Stage one: Free all available per cpu objects back
2077 * to the page freelist while it is still frozen. Leave the
2078 * last one.
2079 *
2080 * There is no need to take the list->lock because the page
2081 * is still frozen.
2082 */
2083 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2084 void *prior;
2085 unsigned long counters;
2086
2087 do {
2088 prior = page->freelist;
2089 counters = page->counters;
2090 set_freepointer(s, freelist, prior);
2091 new.counters = counters;
2092 new.inuse--;
2093 VM_BUG_ON(!new.frozen);
2094
2095 } while (!__cmpxchg_double_slab(s, page,
2096 prior, counters,
2097 freelist, new.counters,
2098 "drain percpu freelist"));
2099
2100 freelist = nextfree;
2101 }
2102
2103 /*
2104 * Stage two: Ensure that the page is unfrozen while the
2105 * list presence reflects the actual number of objects
2106 * during unfreeze.
2107 *
2108 * We setup the list membership and then perform a cmpxchg
2109 * with the count. If there is a mismatch then the page
2110 * is not unfrozen but the page is on the wrong list.
2111 *
2112 * Then we restart the process which may have to remove
2113 * the page from the list that we just put it on again
2114 * because the number of objects in the slab may have
2115 * changed.
2116 */
2117 redo:
2118
2119 old.freelist = page->freelist;
2120 old.counters = page->counters;
2121 VM_BUG_ON(!old.frozen);
2122
2123 /* Determine target state of the slab */
2124 new.counters = old.counters;
2125 if (freelist) {
2126 new.inuse--;
2127 set_freepointer(s, freelist, old.freelist);
2128 new.freelist = freelist;
2129 } else
2130 new.freelist = old.freelist;
2131
2132 new.frozen = 0;
2133
2134 if (!new.inuse && n->nr_partial >= s->min_partial)
2135 m = M_FREE;
2136 else if (new.freelist) {
2137 m = M_PARTIAL;
2138 if (!lock) {
2139 lock = 1;
2140 /*
2141 * Taking the spinlock removes the possibility
2142 * that acquire_slab() will see a slab page that
2143 * is frozen
2144 */
2145 spin_lock(&n->list_lock);
2146 }
2147 } else {
2148 m = M_FULL;
2149 if (kmem_cache_debug(s) && !lock) {
2150 lock = 1;
2151 /*
2152 * This also ensures that the scanning of full
2153 * slabs from diagnostic functions will not see
2154 * any frozen slabs.
2155 */
2156 spin_lock(&n->list_lock);
2157 }
2158 }
2159
2160 if (l != m) {
2161 if (l == M_PARTIAL)
2162 remove_partial(n, page);
2163 else if (l == M_FULL)
2164 remove_full(s, n, page);
2165
2166 if (m == M_PARTIAL)
2167 add_partial(n, page, tail);
2168 else if (m == M_FULL)
2169 add_full(s, n, page);
2170 }
2171
2172 l = m;
2173 if (!__cmpxchg_double_slab(s, page,
2174 old.freelist, old.counters,
2175 new.freelist, new.counters,
2176 "unfreezing slab"))
2177 goto redo;
2178
2179 if (lock)
2180 spin_unlock(&n->list_lock);
2181
2182 if (m == M_PARTIAL)
2183 stat(s, tail);
2184 else if (m == M_FULL)
2185 stat(s, DEACTIVATE_FULL);
2186 else if (m == M_FREE) {
2187 stat(s, DEACTIVATE_EMPTY);
2188 discard_slab(s, page);
2189 stat(s, FREE_SLAB);
2190 }
2191
2192 c->page = NULL;
2193 c->freelist = NULL;
2194 }
2195
2196 /*
2197 * Unfreeze all the cpu partial slabs.
2198 *
2199 * This function must be called with interrupts disabled
2200 * for the cpu using c (or some other guarantee must be there
2201 * to guarantee no concurrent accesses).
2202 */
2203 static void unfreeze_partials(struct kmem_cache *s,
2204 struct kmem_cache_cpu *c)
2205 {
2206 #ifdef CONFIG_SLUB_CPU_PARTIAL
2207 struct kmem_cache_node *n = NULL, *n2 = NULL;
2208 struct page *page, *discard_page = NULL;
2209
2210 while ((page = c->partial)) {
2211 struct page new;
2212 struct page old;
2213
2214 c->partial = page->next;
2215
2216 n2 = get_node(s, page_to_nid(page));
2217 if (n != n2) {
2218 if (n)
2219 spin_unlock(&n->list_lock);
2220
2221 n = n2;
2222 spin_lock(&n->list_lock);
2223 }
2224
2225 do {
2226
2227 old.freelist = page->freelist;
2228 old.counters = page->counters;
2229 VM_BUG_ON(!old.frozen);
2230
2231 new.counters = old.counters;
2232 new.freelist = old.freelist;
2233
2234 new.frozen = 0;
2235
2236 } while (!__cmpxchg_double_slab(s, page,
2237 old.freelist, old.counters,
2238 new.freelist, new.counters,
2239 "unfreezing slab"));
2240
2241 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2242 page->next = discard_page;
2243 discard_page = page;
2244 } else {
2245 add_partial(n, page, DEACTIVATE_TO_TAIL);
2246 stat(s, FREE_ADD_PARTIAL);
2247 }
2248 }
2249
2250 if (n)
2251 spin_unlock(&n->list_lock);
2252
2253 while (discard_page) {
2254 page = discard_page;
2255 discard_page = discard_page->next;
2256
2257 stat(s, DEACTIVATE_EMPTY);
2258 discard_slab(s, page);
2259 stat(s, FREE_SLAB);
2260 }
2261 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2262 }
2263
2264 /*
2265 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2266 * partial page slot if available.
2267 *
2268 * If we did not find a slot then simply move all the partials to the
2269 * per node partial list.
2270 */
2271 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2272 {
2273 #ifdef CONFIG_SLUB_CPU_PARTIAL
2274 struct page *oldpage;
2275 int pages;
2276 int pobjects;
2277
2278 preempt_disable();
2279 do {
2280 pages = 0;
2281 pobjects = 0;
2282 oldpage = this_cpu_read(s->cpu_slab->partial);
2283
2284 if (oldpage) {
2285 pobjects = oldpage->pobjects;
2286 pages = oldpage->pages;
2287 if (drain && pobjects > s->cpu_partial) {
2288 unsigned long flags;
2289 /*
2290 * partial array is full. Move the existing
2291 * set to the per node partial list.
2292 */
2293 local_irq_save(flags);
2294 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2295 local_irq_restore(flags);
2296 oldpage = NULL;
2297 pobjects = 0;
2298 pages = 0;
2299 stat(s, CPU_PARTIAL_DRAIN);
2300 }
2301 }
2302
2303 pages++;
2304 pobjects += page->objects - page->inuse;
2305
2306 page->pages = pages;
2307 page->pobjects = pobjects;
2308 page->next = oldpage;
2309
2310 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2311 != oldpage);
2312 if (unlikely(!s->cpu_partial)) {
2313 unsigned long flags;
2314
2315 local_irq_save(flags);
2316 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2317 local_irq_restore(flags);
2318 }
2319 preempt_enable();
2320 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2321 }
2322
2323 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2324 {
2325 stat(s, CPUSLAB_FLUSH);
2326 deactivate_slab(s, c->page, c->freelist, c);
2327
2328 c->tid = next_tid(c->tid);
2329 }
2330
2331 /*
2332 * Flush cpu slab.
2333 *
2334 * Called from IPI handler with interrupts disabled.
2335 */
2336 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2337 {
2338 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2339
2340 if (c->page)
2341 flush_slab(s, c);
2342
2343 unfreeze_partials(s, c);
2344 }
2345
2346 static void flush_cpu_slab(void *d)
2347 {
2348 struct kmem_cache *s = d;
2349
2350 __flush_cpu_slab(s, smp_processor_id());
2351 }
2352
2353 static bool has_cpu_slab(int cpu, void *info)
2354 {
2355 struct kmem_cache *s = info;
2356 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2357
2358 return c->page || slub_percpu_partial(c);
2359 }
2360
2361 static void flush_all(struct kmem_cache *s)
2362 {
2363 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2364 }
2365
2366 /*
2367 * Use the cpu notifier to insure that the cpu slabs are flushed when
2368 * necessary.
2369 */
2370 static int slub_cpu_dead(unsigned int cpu)
2371 {
2372 struct kmem_cache *s;
2373 unsigned long flags;
2374
2375 mutex_lock(&slab_mutex);
2376 list_for_each_entry(s, &slab_caches, list) {
2377 local_irq_save(flags);
2378 __flush_cpu_slab(s, cpu);
2379 local_irq_restore(flags);
2380 }
2381 mutex_unlock(&slab_mutex);
2382 return 0;
2383 }
2384
2385 /*
2386 * Check if the objects in a per cpu structure fit numa
2387 * locality expectations.
2388 */
2389 static inline int node_match(struct page *page, int node)
2390 {
2391 #ifdef CONFIG_NUMA
2392 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2393 return 0;
2394 #endif
2395 return 1;
2396 }
2397
2398 #ifdef CONFIG_SLUB_DEBUG
2399 static int count_free(struct page *page)
2400 {
2401 return page->objects - page->inuse;
2402 }
2403
2404 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2405 {
2406 return atomic_long_read(&n->total_objects);
2407 }
2408 #endif /* CONFIG_SLUB_DEBUG */
2409
2410 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2411 static unsigned long count_partial(struct kmem_cache_node *n,
2412 int (*get_count)(struct page *))
2413 {
2414 unsigned long flags;
2415 unsigned long x = 0;
2416 struct page *page;
2417
2418 spin_lock_irqsave(&n->list_lock, flags);
2419 list_for_each_entry(page, &n->partial, slab_list)
2420 x += get_count(page);
2421 spin_unlock_irqrestore(&n->list_lock, flags);
2422 return x;
2423 }
2424 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2425
2426 static noinline void
2427 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2428 {
2429 #ifdef CONFIG_SLUB_DEBUG
2430 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2431 DEFAULT_RATELIMIT_BURST);
2432 int node;
2433 struct kmem_cache_node *n;
2434
2435 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2436 return;
2437
2438 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2439 nid, gfpflags, &gfpflags);
2440 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2441 s->name, s->object_size, s->size, oo_order(s->oo),
2442 oo_order(s->min));
2443
2444 if (oo_order(s->min) > get_order(s->object_size))
2445 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2446 s->name);
2447
2448 for_each_kmem_cache_node(s, node, n) {
2449 unsigned long nr_slabs;
2450 unsigned long nr_objs;
2451 unsigned long nr_free;
2452
2453 nr_free = count_partial(n, count_free);
2454 nr_slabs = node_nr_slabs(n);
2455 nr_objs = node_nr_objs(n);
2456
2457 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2458 node, nr_slabs, nr_objs, nr_free);
2459 }
2460 #endif
2461 }
2462
2463 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2464 int node, struct kmem_cache_cpu **pc)
2465 {
2466 void *freelist;
2467 struct kmem_cache_cpu *c = *pc;
2468 struct page *page;
2469
2470 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2471
2472 freelist = get_partial(s, flags, node, c);
2473
2474 if (freelist)
2475 return freelist;
2476
2477 page = new_slab(s, flags, node);
2478 if (page) {
2479 c = raw_cpu_ptr(s->cpu_slab);
2480 if (c->page)
2481 flush_slab(s, c);
2482
2483 /*
2484 * No other reference to the page yet so we can
2485 * muck around with it freely without cmpxchg
2486 */
2487 freelist = page->freelist;
2488 page->freelist = NULL;
2489
2490 stat(s, ALLOC_SLAB);
2491 c->page = page;
2492 *pc = c;
2493 }
2494
2495 return freelist;
2496 }
2497
2498 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2499 {
2500 if (unlikely(PageSlabPfmemalloc(page)))
2501 return gfp_pfmemalloc_allowed(gfpflags);
2502
2503 return true;
2504 }
2505
2506 /*
2507 * Check the page->freelist of a page and either transfer the freelist to the
2508 * per cpu freelist or deactivate the page.
2509 *
2510 * The page is still frozen if the return value is not NULL.
2511 *
2512 * If this function returns NULL then the page has been unfrozen.
2513 *
2514 * This function must be called with interrupt disabled.
2515 */
2516 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2517 {
2518 struct page new;
2519 unsigned long counters;
2520 void *freelist;
2521
2522 do {
2523 freelist = page->freelist;
2524 counters = page->counters;
2525
2526 new.counters = counters;
2527 VM_BUG_ON(!new.frozen);
2528
2529 new.inuse = page->objects;
2530 new.frozen = freelist != NULL;
2531
2532 } while (!__cmpxchg_double_slab(s, page,
2533 freelist, counters,
2534 NULL, new.counters,
2535 "get_freelist"));
2536
2537 return freelist;
2538 }
2539
2540 /*
2541 * Slow path. The lockless freelist is empty or we need to perform
2542 * debugging duties.
2543 *
2544 * Processing is still very fast if new objects have been freed to the
2545 * regular freelist. In that case we simply take over the regular freelist
2546 * as the lockless freelist and zap the regular freelist.
2547 *
2548 * If that is not working then we fall back to the partial lists. We take the
2549 * first element of the freelist as the object to allocate now and move the
2550 * rest of the freelist to the lockless freelist.
2551 *
2552 * And if we were unable to get a new slab from the partial slab lists then
2553 * we need to allocate a new slab. This is the slowest path since it involves
2554 * a call to the page allocator and the setup of a new slab.
2555 *
2556 * Version of __slab_alloc to use when we know that interrupts are
2557 * already disabled (which is the case for bulk allocation).
2558 */
2559 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2560 unsigned long addr, struct kmem_cache_cpu *c)
2561 {
2562 void *freelist;
2563 struct page *page;
2564
2565 page = c->page;
2566 if (!page)
2567 goto new_slab;
2568 redo:
2569
2570 if (unlikely(!node_match(page, node))) {
2571 int searchnode = node;
2572
2573 if (node != NUMA_NO_NODE && !node_present_pages(node))
2574 searchnode = node_to_mem_node(node);
2575
2576 if (unlikely(!node_match(page, searchnode))) {
2577 stat(s, ALLOC_NODE_MISMATCH);
2578 deactivate_slab(s, page, c->freelist, c);
2579 goto new_slab;
2580 }
2581 }
2582
2583 /*
2584 * By rights, we should be searching for a slab page that was
2585 * PFMEMALLOC but right now, we are losing the pfmemalloc
2586 * information when the page leaves the per-cpu allocator
2587 */
2588 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2589 deactivate_slab(s, page, c->freelist, c);
2590 goto new_slab;
2591 }
2592
2593 /* must check again c->freelist in case of cpu migration or IRQ */
2594 freelist = c->freelist;
2595 if (freelist)
2596 goto load_freelist;
2597
2598 freelist = get_freelist(s, page);
2599
2600 if (!freelist) {
2601 c->page = NULL;
2602 stat(s, DEACTIVATE_BYPASS);
2603 goto new_slab;
2604 }
2605
2606 stat(s, ALLOC_REFILL);
2607
2608 load_freelist:
2609 /*
2610 * freelist is pointing to the list of objects to be used.
2611 * page is pointing to the page from which the objects are obtained.
2612 * That page must be frozen for per cpu allocations to work.
2613 */
2614 VM_BUG_ON(!c->page->frozen);
2615 c->freelist = get_freepointer(s, freelist);
2616 c->tid = next_tid(c->tid);
2617 return freelist;
2618
2619 new_slab:
2620
2621 if (slub_percpu_partial(c)) {
2622 page = c->page = slub_percpu_partial(c);
2623 slub_set_percpu_partial(c, page);
2624 stat(s, CPU_PARTIAL_ALLOC);
2625 goto redo;
2626 }
2627
2628 freelist = new_slab_objects(s, gfpflags, node, &c);
2629
2630 if (unlikely(!freelist)) {
2631 slab_out_of_memory(s, gfpflags, node);
2632 return NULL;
2633 }
2634
2635 page = c->page;
2636 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2637 goto load_freelist;
2638
2639 /* Only entered in the debug case */
2640 if (kmem_cache_debug(s) &&
2641 !alloc_debug_processing(s, page, freelist, addr))
2642 goto new_slab; /* Slab failed checks. Next slab needed */
2643
2644 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2645 return freelist;
2646 }
2647
2648 /*
2649 * Another one that disabled interrupt and compensates for possible
2650 * cpu changes by refetching the per cpu area pointer.
2651 */
2652 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2653 unsigned long addr, struct kmem_cache_cpu *c)
2654 {
2655 void *p;
2656 unsigned long flags;
2657
2658 local_irq_save(flags);
2659 #ifdef CONFIG_PREEMPTION
2660 /*
2661 * We may have been preempted and rescheduled on a different
2662 * cpu before disabling interrupts. Need to reload cpu area
2663 * pointer.
2664 */
2665 c = this_cpu_ptr(s->cpu_slab);
2666 #endif
2667
2668 p = ___slab_alloc(s, gfpflags, node, addr, c);
2669 local_irq_restore(flags);
2670 return p;
2671 }
2672
2673 /*
2674 * If the object has been wiped upon free, make sure it's fully initialized by
2675 * zeroing out freelist pointer.
2676 */
2677 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2678 void *obj)
2679 {
2680 if (unlikely(slab_want_init_on_free(s)) && obj)
2681 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2682 }
2683
2684 /*
2685 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2686 * have the fastpath folded into their functions. So no function call
2687 * overhead for requests that can be satisfied on the fastpath.
2688 *
2689 * The fastpath works by first checking if the lockless freelist can be used.
2690 * If not then __slab_alloc is called for slow processing.
2691 *
2692 * Otherwise we can simply pick the next object from the lockless free list.
2693 */
2694 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2695 gfp_t gfpflags, int node, unsigned long addr)
2696 {
2697 void *object;
2698 struct kmem_cache_cpu *c;
2699 struct page *page;
2700 unsigned long tid;
2701
2702 s = slab_pre_alloc_hook(s, gfpflags);
2703 if (!s)
2704 return NULL;
2705 redo:
2706 /*
2707 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2708 * enabled. We may switch back and forth between cpus while
2709 * reading from one cpu area. That does not matter as long
2710 * as we end up on the original cpu again when doing the cmpxchg.
2711 *
2712 * We should guarantee that tid and kmem_cache are retrieved on
2713 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2714 * to check if it is matched or not.
2715 */
2716 do {
2717 tid = this_cpu_read(s->cpu_slab->tid);
2718 c = raw_cpu_ptr(s->cpu_slab);
2719 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
2720 unlikely(tid != READ_ONCE(c->tid)));
2721
2722 /*
2723 * Irqless object alloc/free algorithm used here depends on sequence
2724 * of fetching cpu_slab's data. tid should be fetched before anything
2725 * on c to guarantee that object and page associated with previous tid
2726 * won't be used with current tid. If we fetch tid first, object and
2727 * page could be one associated with next tid and our alloc/free
2728 * request will be failed. In this case, we will retry. So, no problem.
2729 */
2730 barrier();
2731
2732 /*
2733 * The transaction ids are globally unique per cpu and per operation on
2734 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2735 * occurs on the right processor and that there was no operation on the
2736 * linked list in between.
2737 */
2738
2739 object = c->freelist;
2740 page = c->page;
2741 if (unlikely(!object || !node_match(page, node))) {
2742 object = __slab_alloc(s, gfpflags, node, addr, c);
2743 stat(s, ALLOC_SLOWPATH);
2744 } else {
2745 void *next_object = get_freepointer_safe(s, object);
2746
2747 /*
2748 * The cmpxchg will only match if there was no additional
2749 * operation and if we are on the right processor.
2750 *
2751 * The cmpxchg does the following atomically (without lock
2752 * semantics!)
2753 * 1. Relocate first pointer to the current per cpu area.
2754 * 2. Verify that tid and freelist have not been changed
2755 * 3. If they were not changed replace tid and freelist
2756 *
2757 * Since this is without lock semantics the protection is only
2758 * against code executing on this cpu *not* from access by
2759 * other cpus.
2760 */
2761 if (unlikely(!this_cpu_cmpxchg_double(
2762 s->cpu_slab->freelist, s->cpu_slab->tid,
2763 object, tid,
2764 next_object, next_tid(tid)))) {
2765
2766 note_cmpxchg_failure("slab_alloc", s, tid);
2767 goto redo;
2768 }
2769 prefetch_freepointer(s, next_object);
2770 stat(s, ALLOC_FASTPATH);
2771 }
2772
2773 maybe_wipe_obj_freeptr(s, object);
2774
2775 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2776 memset(object, 0, s->object_size);
2777
2778 slab_post_alloc_hook(s, gfpflags, 1, &object);
2779
2780 return object;
2781 }
2782
2783 static __always_inline void *slab_alloc(struct kmem_cache *s,
2784 gfp_t gfpflags, unsigned long addr)
2785 {
2786 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2787 }
2788
2789 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2790 {
2791 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2792
2793 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2794 s->size, gfpflags);
2795
2796 return ret;
2797 }
2798 EXPORT_SYMBOL(kmem_cache_alloc);
2799
2800 #ifdef CONFIG_TRACING
2801 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2802 {
2803 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2804 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2805 ret = kasan_kmalloc(s, ret, size, gfpflags);
2806 return ret;
2807 }
2808 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2809 #endif
2810
2811 #ifdef CONFIG_NUMA
2812 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2813 {
2814 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2815
2816 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2817 s->object_size, s->size, gfpflags, node);
2818
2819 return ret;
2820 }
2821 EXPORT_SYMBOL(kmem_cache_alloc_node);
2822
2823 #ifdef CONFIG_TRACING
2824 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2825 gfp_t gfpflags,
2826 int node, size_t size)
2827 {
2828 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2829
2830 trace_kmalloc_node(_RET_IP_, ret,
2831 size, s->size, gfpflags, node);
2832
2833 ret = kasan_kmalloc(s, ret, size, gfpflags);
2834 return ret;
2835 }
2836 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2837 #endif
2838 #endif /* CONFIG_NUMA */
2839
2840 /*
2841 * Slow path handling. This may still be called frequently since objects
2842 * have a longer lifetime than the cpu slabs in most processing loads.
2843 *
2844 * So we still attempt to reduce cache line usage. Just take the slab
2845 * lock and free the item. If there is no additional partial page
2846 * handling required then we can return immediately.
2847 */
2848 static void __slab_free(struct kmem_cache *s, struct page *page,
2849 void *head, void *tail, int cnt,
2850 unsigned long addr)
2851
2852 {
2853 void *prior;
2854 int was_frozen;
2855 struct page new;
2856 unsigned long counters;
2857 struct kmem_cache_node *n = NULL;
2858 unsigned long uninitialized_var(flags);
2859
2860 stat(s, FREE_SLOWPATH);
2861
2862 if (kmem_cache_debug(s) &&
2863 !free_debug_processing(s, page, head, tail, cnt, addr))
2864 return;
2865
2866 do {
2867 if (unlikely(n)) {
2868 spin_unlock_irqrestore(&n->list_lock, flags);
2869 n = NULL;
2870 }
2871 prior = page->freelist;
2872 counters = page->counters;
2873 set_freepointer(s, tail, prior);
2874 new.counters = counters;
2875 was_frozen = new.frozen;
2876 new.inuse -= cnt;
2877 if ((!new.inuse || !prior) && !was_frozen) {
2878
2879 if (kmem_cache_has_cpu_partial(s) && !prior) {
2880
2881 /*
2882 * Slab was on no list before and will be
2883 * partially empty
2884 * We can defer the list move and instead
2885 * freeze it.
2886 */
2887 new.frozen = 1;
2888
2889 } else { /* Needs to be taken off a list */
2890
2891 n = get_node(s, page_to_nid(page));
2892 /*
2893 * Speculatively acquire the list_lock.
2894 * If the cmpxchg does not succeed then we may
2895 * drop the list_lock without any processing.
2896 *
2897 * Otherwise the list_lock will synchronize with
2898 * other processors updating the list of slabs.
2899 */
2900 spin_lock_irqsave(&n->list_lock, flags);
2901
2902 }
2903 }
2904
2905 } while (!cmpxchg_double_slab(s, page,
2906 prior, counters,
2907 head, new.counters,
2908 "__slab_free"));
2909
2910 if (likely(!n)) {
2911
2912 /*
2913 * If we just froze the page then put it onto the
2914 * per cpu partial list.
2915 */
2916 if (new.frozen && !was_frozen) {
2917 put_cpu_partial(s, page, 1);
2918 stat(s, CPU_PARTIAL_FREE);
2919 }
2920 /*
2921 * The list lock was not taken therefore no list
2922 * activity can be necessary.
2923 */
2924 if (was_frozen)
2925 stat(s, FREE_FROZEN);
2926 return;
2927 }
2928
2929 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2930 goto slab_empty;
2931
2932 /*
2933 * Objects left in the slab. If it was not on the partial list before
2934 * then add it.
2935 */
2936 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2937 remove_full(s, n, page);
2938 add_partial(n, page, DEACTIVATE_TO_TAIL);
2939 stat(s, FREE_ADD_PARTIAL);
2940 }
2941 spin_unlock_irqrestore(&n->list_lock, flags);
2942 return;
2943
2944 slab_empty:
2945 if (prior) {
2946 /*
2947 * Slab on the partial list.
2948 */
2949 remove_partial(n, page);
2950 stat(s, FREE_REMOVE_PARTIAL);
2951 } else {
2952 /* Slab must be on the full list */
2953 remove_full(s, n, page);
2954 }
2955
2956 spin_unlock_irqrestore(&n->list_lock, flags);
2957 stat(s, FREE_SLAB);
2958 discard_slab(s, page);
2959 }
2960
2961 /*
2962 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2963 * can perform fastpath freeing without additional function calls.
2964 *
2965 * The fastpath is only possible if we are freeing to the current cpu slab
2966 * of this processor. This typically the case if we have just allocated
2967 * the item before.
2968 *
2969 * If fastpath is not possible then fall back to __slab_free where we deal
2970 * with all sorts of special processing.
2971 *
2972 * Bulk free of a freelist with several objects (all pointing to the
2973 * same page) possible by specifying head and tail ptr, plus objects
2974 * count (cnt). Bulk free indicated by tail pointer being set.
2975 */
2976 static __always_inline void do_slab_free(struct kmem_cache *s,
2977 struct page *page, void *head, void *tail,
2978 int cnt, unsigned long addr)
2979 {
2980 void *tail_obj = tail ? : head;
2981 struct kmem_cache_cpu *c;
2982 unsigned long tid;
2983 redo:
2984 /*
2985 * Determine the currently cpus per cpu slab.
2986 * The cpu may change afterward. However that does not matter since
2987 * data is retrieved via this pointer. If we are on the same cpu
2988 * during the cmpxchg then the free will succeed.
2989 */
2990 do {
2991 tid = this_cpu_read(s->cpu_slab->tid);
2992 c = raw_cpu_ptr(s->cpu_slab);
2993 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
2994 unlikely(tid != READ_ONCE(c->tid)));
2995
2996 /* Same with comment on barrier() in slab_alloc_node() */
2997 barrier();
2998
2999 if (likely(page == c->page)) {
3000 set_freepointer(s, tail_obj, c->freelist);
3001
3002 if (unlikely(!this_cpu_cmpxchg_double(
3003 s->cpu_slab->freelist, s->cpu_slab->tid,
3004 c->freelist, tid,
3005 head, next_tid(tid)))) {
3006
3007 note_cmpxchg_failure("slab_free", s, tid);
3008 goto redo;
3009 }
3010 stat(s, FREE_FASTPATH);
3011 } else
3012 __slab_free(s, page, head, tail_obj, cnt, addr);
3013
3014 }
3015
3016 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3017 void *head, void *tail, int cnt,
3018 unsigned long addr)
3019 {
3020 /*
3021 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3022 * to remove objects, whose reuse must be delayed.
3023 */
3024 if (slab_free_freelist_hook(s, &head, &tail))
3025 do_slab_free(s, page, head, tail, cnt, addr);
3026 }
3027
3028 #ifdef CONFIG_KASAN_GENERIC
3029 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3030 {
3031 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3032 }
3033 #endif
3034
3035 void kmem_cache_free(struct kmem_cache *s, void *x)
3036 {
3037 s = cache_from_obj(s, x);
3038 if (!s)
3039 return;
3040 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3041 trace_kmem_cache_free(_RET_IP_, x);
3042 }
3043 EXPORT_SYMBOL(kmem_cache_free);
3044
3045 struct detached_freelist {
3046 struct page *page;
3047 void *tail;
3048 void *freelist;
3049 int cnt;
3050 struct kmem_cache *s;
3051 };
3052
3053 /*
3054 * This function progressively scans the array with free objects (with
3055 * a limited look ahead) and extract objects belonging to the same
3056 * page. It builds a detached freelist directly within the given
3057 * page/objects. This can happen without any need for
3058 * synchronization, because the objects are owned by running process.
3059 * The freelist is build up as a single linked list in the objects.
3060 * The idea is, that this detached freelist can then be bulk
3061 * transferred to the real freelist(s), but only requiring a single
3062 * synchronization primitive. Look ahead in the array is limited due
3063 * to performance reasons.
3064 */
3065 static inline
3066 int build_detached_freelist(struct kmem_cache *s, size_t size,
3067 void **p, struct detached_freelist *df)
3068 {
3069 size_t first_skipped_index = 0;
3070 int lookahead = 3;
3071 void *object;
3072 struct page *page;
3073
3074 /* Always re-init detached_freelist */
3075 df->page = NULL;
3076
3077 do {
3078 object = p[--size];
3079 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3080 } while (!object && size);
3081
3082 if (!object)
3083 return 0;
3084
3085 page = virt_to_head_page(object);
3086 if (!s) {
3087 /* Handle kalloc'ed objects */
3088 if (unlikely(!PageSlab(page))) {
3089 BUG_ON(!PageCompound(page));
3090 kfree_hook(object);
3091 __free_pages(page, compound_order(page));
3092 p[size] = NULL; /* mark object processed */
3093 return size;
3094 }
3095 /* Derive kmem_cache from object */
3096 df->s = page->slab_cache;
3097 } else {
3098 df->s = cache_from_obj(s, object); /* Support for memcg */
3099 }
3100
3101 /* Start new detached freelist */
3102 df->page = page;
3103 set_freepointer(df->s, object, NULL);
3104 df->tail = object;
3105 df->freelist = object;
3106 p[size] = NULL; /* mark object processed */
3107 df->cnt = 1;
3108
3109 while (size) {
3110 object = p[--size];
3111 if (!object)
3112 continue; /* Skip processed objects */
3113
3114 /* df->page is always set at this point */
3115 if (df->page == virt_to_head_page(object)) {
3116 /* Opportunity build freelist */
3117 set_freepointer(df->s, object, df->freelist);
3118 df->freelist = object;
3119 df->cnt++;
3120 p[size] = NULL; /* mark object processed */
3121
3122 continue;
3123 }
3124
3125 /* Limit look ahead search */
3126 if (!--lookahead)
3127 break;
3128
3129 if (!first_skipped_index)
3130 first_skipped_index = size + 1;
3131 }
3132
3133 return first_skipped_index;
3134 }
3135
3136 /* Note that interrupts must be enabled when calling this function. */
3137 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3138 {
3139 if (WARN_ON(!size))
3140 return;
3141
3142 do {
3143 struct detached_freelist df;
3144
3145 size = build_detached_freelist(s, size, p, &df);
3146 if (!df.page)
3147 continue;
3148
3149 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3150 } while (likely(size));
3151 }
3152 EXPORT_SYMBOL(kmem_cache_free_bulk);
3153
3154 /* Note that interrupts must be enabled when calling this function. */
3155 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3156 void **p)
3157 {
3158 struct kmem_cache_cpu *c;
3159 int i;
3160
3161 /* memcg and kmem_cache debug support */
3162 s = slab_pre_alloc_hook(s, flags);
3163 if (unlikely(!s))
3164 return false;
3165 /*
3166 * Drain objects in the per cpu slab, while disabling local
3167 * IRQs, which protects against PREEMPT and interrupts
3168 * handlers invoking normal fastpath.
3169 */
3170 local_irq_disable();
3171 c = this_cpu_ptr(s->cpu_slab);
3172
3173 for (i = 0; i < size; i++) {
3174 void *object = c->freelist;
3175
3176 if (unlikely(!object)) {
3177 /*
3178 * Invoking slow path likely have side-effect
3179 * of re-populating per CPU c->freelist
3180 */
3181 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3182 _RET_IP_, c);
3183 if (unlikely(!p[i]))
3184 goto error;
3185
3186 c = this_cpu_ptr(s->cpu_slab);
3187 maybe_wipe_obj_freeptr(s, p[i]);
3188
3189 continue; /* goto for-loop */
3190 }
3191 c->freelist = get_freepointer(s, object);
3192 p[i] = object;
3193 maybe_wipe_obj_freeptr(s, p[i]);
3194 }
3195 c->tid = next_tid(c->tid);
3196 local_irq_enable();
3197
3198 /* Clear memory outside IRQ disabled fastpath loop */
3199 if (unlikely(slab_want_init_on_alloc(flags, s))) {
3200 int j;
3201
3202 for (j = 0; j < i; j++)
3203 memset(p[j], 0, s->object_size);
3204 }
3205
3206 /* memcg and kmem_cache debug support */
3207 slab_post_alloc_hook(s, flags, size, p);
3208 return i;
3209 error:
3210 local_irq_enable();
3211 slab_post_alloc_hook(s, flags, i, p);
3212 __kmem_cache_free_bulk(s, i, p);
3213 return 0;
3214 }
3215 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3216
3217
3218 /*
3219 * Object placement in a slab is made very easy because we always start at
3220 * offset 0. If we tune the size of the object to the alignment then we can
3221 * get the required alignment by putting one properly sized object after
3222 * another.
3223 *
3224 * Notice that the allocation order determines the sizes of the per cpu
3225 * caches. Each processor has always one slab available for allocations.
3226 * Increasing the allocation order reduces the number of times that slabs
3227 * must be moved on and off the partial lists and is therefore a factor in
3228 * locking overhead.
3229 */
3230
3231 /*
3232 * Mininum / Maximum order of slab pages. This influences locking overhead
3233 * and slab fragmentation. A higher order reduces the number of partial slabs
3234 * and increases the number of allocations possible without having to
3235 * take the list_lock.
3236 */
3237 static unsigned int slub_min_order;
3238 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3239 static unsigned int slub_min_objects;
3240
3241 /*
3242 * Calculate the order of allocation given an slab object size.
3243 *
3244 * The order of allocation has significant impact on performance and other
3245 * system components. Generally order 0 allocations should be preferred since
3246 * order 0 does not cause fragmentation in the page allocator. Larger objects
3247 * be problematic to put into order 0 slabs because there may be too much
3248 * unused space left. We go to a higher order if more than 1/16th of the slab
3249 * would be wasted.
3250 *
3251 * In order to reach satisfactory performance we must ensure that a minimum
3252 * number of objects is in one slab. Otherwise we may generate too much
3253 * activity on the partial lists which requires taking the list_lock. This is
3254 * less a concern for large slabs though which are rarely used.
3255 *
3256 * slub_max_order specifies the order where we begin to stop considering the
3257 * number of objects in a slab as critical. If we reach slub_max_order then
3258 * we try to keep the page order as low as possible. So we accept more waste
3259 * of space in favor of a small page order.
3260 *
3261 * Higher order allocations also allow the placement of more objects in a
3262 * slab and thereby reduce object handling overhead. If the user has
3263 * requested a higher mininum order then we start with that one instead of
3264 * the smallest order which will fit the object.
3265 */
3266 static inline unsigned int slab_order(unsigned int size,
3267 unsigned int min_objects, unsigned int max_order,
3268 unsigned int fract_leftover)
3269 {
3270 unsigned int min_order = slub_min_order;
3271 unsigned int order;
3272
3273 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3274 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3275
3276 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3277 order <= max_order; order++) {
3278
3279 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3280 unsigned int rem;
3281
3282 rem = slab_size % size;
3283
3284 if (rem <= slab_size / fract_leftover)
3285 break;
3286 }
3287
3288 return order;
3289 }
3290
3291 static inline int calculate_order(unsigned int size)
3292 {
3293 unsigned int order;
3294 unsigned int min_objects;
3295 unsigned int max_objects;
3296
3297 /*
3298 * Attempt to find best configuration for a slab. This
3299 * works by first attempting to generate a layout with
3300 * the best configuration and backing off gradually.
3301 *
3302 * First we increase the acceptable waste in a slab. Then
3303 * we reduce the minimum objects required in a slab.
3304 */
3305 min_objects = slub_min_objects;
3306 if (!min_objects)
3307 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3308 max_objects = order_objects(slub_max_order, size);
3309 min_objects = min(min_objects, max_objects);
3310
3311 while (min_objects > 1) {
3312 unsigned int fraction;
3313
3314 fraction = 16;
3315 while (fraction >= 4) {
3316 order = slab_order(size, min_objects,
3317 slub_max_order, fraction);
3318 if (order <= slub_max_order)
3319 return order;
3320 fraction /= 2;
3321 }
3322 min_objects--;
3323 }
3324
3325 /*
3326 * We were unable to place multiple objects in a slab. Now
3327 * lets see if we can place a single object there.
3328 */
3329 order = slab_order(size, 1, slub_max_order, 1);
3330 if (order <= slub_max_order)
3331 return order;
3332
3333 /*
3334 * Doh this slab cannot be placed using slub_max_order.
3335 */
3336 order = slab_order(size, 1, MAX_ORDER, 1);
3337 if (order < MAX_ORDER)
3338 return order;
3339 return -ENOSYS;
3340 }
3341
3342 static void
3343 init_kmem_cache_node(struct kmem_cache_node *n)
3344 {
3345 n->nr_partial = 0;
3346 spin_lock_init(&n->list_lock);
3347 INIT_LIST_HEAD(&n->partial);
3348 #ifdef CONFIG_SLUB_DEBUG
3349 atomic_long_set(&n->nr_slabs, 0);
3350 atomic_long_set(&n->total_objects, 0);
3351 INIT_LIST_HEAD(&n->full);
3352 #endif
3353 }
3354
3355 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3356 {
3357 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3358 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3359
3360 /*
3361 * Must align to double word boundary for the double cmpxchg
3362 * instructions to work; see __pcpu_double_call_return_bool().
3363 */
3364 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3365 2 * sizeof(void *));
3366
3367 if (!s->cpu_slab)
3368 return 0;
3369
3370 init_kmem_cache_cpus(s);
3371
3372 return 1;
3373 }
3374
3375 static struct kmem_cache *kmem_cache_node;
3376
3377 /*
3378 * No kmalloc_node yet so do it by hand. We know that this is the first
3379 * slab on the node for this slabcache. There are no concurrent accesses
3380 * possible.
3381 *
3382 * Note that this function only works on the kmem_cache_node
3383 * when allocating for the kmem_cache_node. This is used for bootstrapping
3384 * memory on a fresh node that has no slab structures yet.
3385 */
3386 static void early_kmem_cache_node_alloc(int node)
3387 {
3388 struct page *page;
3389 struct kmem_cache_node *n;
3390
3391 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3392
3393 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3394
3395 BUG_ON(!page);
3396 if (page_to_nid(page) != node) {
3397 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3398 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3399 }
3400
3401 n = page->freelist;
3402 BUG_ON(!n);
3403 #ifdef CONFIG_SLUB_DEBUG
3404 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3405 init_tracking(kmem_cache_node, n);
3406 #endif
3407 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3408 GFP_KERNEL);
3409 page->freelist = get_freepointer(kmem_cache_node, n);
3410 page->inuse = 1;
3411 page->frozen = 0;
3412 kmem_cache_node->node[node] = n;
3413 init_kmem_cache_node(n);
3414 inc_slabs_node(kmem_cache_node, node, page->objects);
3415
3416 /*
3417 * No locks need to be taken here as it has just been
3418 * initialized and there is no concurrent access.
3419 */
3420 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3421 }
3422
3423 static void free_kmem_cache_nodes(struct kmem_cache *s)
3424 {
3425 int node;
3426 struct kmem_cache_node *n;
3427
3428 for_each_kmem_cache_node(s, node, n) {
3429 s->node[node] = NULL;
3430 kmem_cache_free(kmem_cache_node, n);
3431 }
3432 }
3433
3434 void __kmem_cache_release(struct kmem_cache *s)
3435 {
3436 cache_random_seq_destroy(s);
3437 free_percpu(s->cpu_slab);
3438 free_kmem_cache_nodes(s);
3439 }
3440
3441 static int init_kmem_cache_nodes(struct kmem_cache *s)
3442 {
3443 int node;
3444
3445 for_each_node_state(node, N_NORMAL_MEMORY) {
3446 struct kmem_cache_node *n;
3447
3448 if (slab_state == DOWN) {
3449 early_kmem_cache_node_alloc(node);
3450 continue;
3451 }
3452 n = kmem_cache_alloc_node(kmem_cache_node,
3453 GFP_KERNEL, node);
3454
3455 if (!n) {
3456 free_kmem_cache_nodes(s);
3457 return 0;
3458 }
3459
3460 init_kmem_cache_node(n);
3461 s->node[node] = n;
3462 }
3463 return 1;
3464 }
3465
3466 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3467 {
3468 if (min < MIN_PARTIAL)
3469 min = MIN_PARTIAL;
3470 else if (min > MAX_PARTIAL)
3471 min = MAX_PARTIAL;
3472 s->min_partial = min;
3473 }
3474
3475 static void set_cpu_partial(struct kmem_cache *s)
3476 {
3477 #ifdef CONFIG_SLUB_CPU_PARTIAL
3478 /*
3479 * cpu_partial determined the maximum number of objects kept in the
3480 * per cpu partial lists of a processor.
3481 *
3482 * Per cpu partial lists mainly contain slabs that just have one
3483 * object freed. If they are used for allocation then they can be
3484 * filled up again with minimal effort. The slab will never hit the
3485 * per node partial lists and therefore no locking will be required.
3486 *
3487 * This setting also determines
3488 *
3489 * A) The number of objects from per cpu partial slabs dumped to the
3490 * per node list when we reach the limit.
3491 * B) The number of objects in cpu partial slabs to extract from the
3492 * per node list when we run out of per cpu objects. We only fetch
3493 * 50% to keep some capacity around for frees.
3494 */
3495 if (!kmem_cache_has_cpu_partial(s))
3496 s->cpu_partial = 0;
3497 else if (s->size >= PAGE_SIZE)
3498 s->cpu_partial = 2;
3499 else if (s->size >= 1024)
3500 s->cpu_partial = 6;
3501 else if (s->size >= 256)
3502 s->cpu_partial = 13;
3503 else
3504 s->cpu_partial = 30;
3505 #endif
3506 }
3507
3508 /*
3509 * calculate_sizes() determines the order and the distribution of data within
3510 * a slab object.
3511 */
3512 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3513 {
3514 slab_flags_t flags = s->flags;
3515 unsigned int size = s->object_size;
3516 unsigned int order;
3517
3518 /*
3519 * Round up object size to the next word boundary. We can only
3520 * place the free pointer at word boundaries and this determines
3521 * the possible location of the free pointer.
3522 */
3523 size = ALIGN(size, sizeof(void *));
3524
3525 #ifdef CONFIG_SLUB_DEBUG
3526 /*
3527 * Determine if we can poison the object itself. If the user of
3528 * the slab may touch the object after free or before allocation
3529 * then we should never poison the object itself.
3530 */
3531 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3532 !s->ctor)
3533 s->flags |= __OBJECT_POISON;
3534 else
3535 s->flags &= ~__OBJECT_POISON;
3536
3537
3538 /*
3539 * If we are Redzoning then check if there is some space between the
3540 * end of the object and the free pointer. If not then add an
3541 * additional word to have some bytes to store Redzone information.
3542 */
3543 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3544 size += sizeof(void *);
3545 #endif
3546
3547 /*
3548 * With that we have determined the number of bytes in actual use
3549 * by the object. This is the potential offset to the free pointer.
3550 */
3551 s->inuse = size;
3552
3553 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3554 s->ctor)) {
3555 /*
3556 * Relocate free pointer after the object if it is not
3557 * permitted to overwrite the first word of the object on
3558 * kmem_cache_free.
3559 *
3560 * This is the case if we do RCU, have a constructor or
3561 * destructor or are poisoning the objects.
3562 */
3563 s->offset = size;
3564 size += sizeof(void *);
3565 }
3566
3567 #ifdef CONFIG_SLUB_DEBUG
3568 if (flags & SLAB_STORE_USER)
3569 /*
3570 * Need to store information about allocs and frees after
3571 * the object.
3572 */
3573 size += 2 * sizeof(struct track);
3574 #endif
3575
3576 kasan_cache_create(s, &size, &s->flags);
3577 #ifdef CONFIG_SLUB_DEBUG
3578 if (flags & SLAB_RED_ZONE) {
3579 /*
3580 * Add some empty padding so that we can catch
3581 * overwrites from earlier objects rather than let
3582 * tracking information or the free pointer be
3583 * corrupted if a user writes before the start
3584 * of the object.
3585 */
3586 size += sizeof(void *);
3587
3588 s->red_left_pad = sizeof(void *);
3589 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3590 size += s->red_left_pad;
3591 }
3592 #endif
3593
3594 /*
3595 * SLUB stores one object immediately after another beginning from
3596 * offset 0. In order to align the objects we have to simply size
3597 * each object to conform to the alignment.
3598 */
3599 size = ALIGN(size, s->align);
3600 s->size = size;
3601 if (forced_order >= 0)
3602 order = forced_order;
3603 else
3604 order = calculate_order(size);
3605
3606 if ((int)order < 0)
3607 return 0;
3608
3609 s->allocflags = 0;
3610 if (order)
3611 s->allocflags |= __GFP_COMP;
3612
3613 if (s->flags & SLAB_CACHE_DMA)
3614 s->allocflags |= GFP_DMA;
3615
3616 if (s->flags & SLAB_CACHE_DMA32)
3617 s->allocflags |= GFP_DMA32;
3618
3619 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3620 s->allocflags |= __GFP_RECLAIMABLE;
3621
3622 /*
3623 * Determine the number of objects per slab
3624 */
3625 s->oo = oo_make(order, size);
3626 s->min = oo_make(get_order(size), size);
3627 if (oo_objects(s->oo) > oo_objects(s->max))
3628 s->max = s->oo;
3629
3630 return !!oo_objects(s->oo);
3631 }
3632
3633 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3634 {
3635 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3636 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3637 s->random = get_random_long();
3638 #endif
3639
3640 if (!calculate_sizes(s, -1))
3641 goto error;
3642 if (disable_higher_order_debug) {
3643 /*
3644 * Disable debugging flags that store metadata if the min slab
3645 * order increased.
3646 */
3647 if (get_order(s->size) > get_order(s->object_size)) {
3648 s->flags &= ~DEBUG_METADATA_FLAGS;
3649 s->offset = 0;
3650 if (!calculate_sizes(s, -1))
3651 goto error;
3652 }
3653 }
3654
3655 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3656 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3657 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3658 /* Enable fast mode */
3659 s->flags |= __CMPXCHG_DOUBLE;
3660 #endif
3661
3662 /*
3663 * The larger the object size is, the more pages we want on the partial
3664 * list to avoid pounding the page allocator excessively.
3665 */
3666 set_min_partial(s, ilog2(s->size) / 2);
3667
3668 set_cpu_partial(s);
3669
3670 #ifdef CONFIG_NUMA
3671 s->remote_node_defrag_ratio = 1000;
3672 #endif
3673
3674 /* Initialize the pre-computed randomized freelist if slab is up */
3675 if (slab_state >= UP) {
3676 if (init_cache_random_seq(s))
3677 goto error;
3678 }
3679
3680 if (!init_kmem_cache_nodes(s))
3681 goto error;
3682
3683 if (alloc_kmem_cache_cpus(s))
3684 return 0;
3685
3686 free_kmem_cache_nodes(s);
3687 error:
3688 return -EINVAL;
3689 }
3690
3691 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3692 const char *text)
3693 {
3694 #ifdef CONFIG_SLUB_DEBUG
3695 void *addr = page_address(page);
3696 void *p;
3697 unsigned long *map;
3698
3699 slab_err(s, page, text, s->name);
3700 slab_lock(page);
3701
3702 map = get_map(s, page);
3703 for_each_object(p, s, addr, page->objects) {
3704
3705 if (!test_bit(slab_index(p, s, addr), map)) {
3706 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3707 print_tracking(s, p);
3708 }
3709 }
3710 put_map(map);
3711
3712 slab_unlock(page);
3713 #endif
3714 }
3715
3716 /*
3717 * Attempt to free all partial slabs on a node.
3718 * This is called from __kmem_cache_shutdown(). We must take list_lock
3719 * because sysfs file might still access partial list after the shutdowning.
3720 */
3721 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3722 {
3723 LIST_HEAD(discard);
3724 struct page *page, *h;
3725
3726 BUG_ON(irqs_disabled());
3727 spin_lock_irq(&n->list_lock);
3728 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3729 if (!page->inuse) {
3730 remove_partial(n, page);
3731 list_add(&page->slab_list, &discard);
3732 } else {
3733 list_slab_objects(s, page,
3734 "Objects remaining in %s on __kmem_cache_shutdown()");
3735 }
3736 }
3737 spin_unlock_irq(&n->list_lock);
3738
3739 list_for_each_entry_safe(page, h, &discard, slab_list)
3740 discard_slab(s, page);
3741 }
3742
3743 bool __kmem_cache_empty(struct kmem_cache *s)
3744 {
3745 int node;
3746 struct kmem_cache_node *n;
3747
3748 for_each_kmem_cache_node(s, node, n)
3749 if (n->nr_partial || slabs_node(s, node))
3750 return false;
3751 return true;
3752 }
3753
3754 /*
3755 * Release all resources used by a slab cache.
3756 */
3757 int __kmem_cache_shutdown(struct kmem_cache *s)
3758 {
3759 int node;
3760 struct kmem_cache_node *n;
3761
3762 flush_all(s);
3763 /* Attempt to free all objects */
3764 for_each_kmem_cache_node(s, node, n) {
3765 free_partial(s, n);
3766 if (n->nr_partial || slabs_node(s, node))
3767 return 1;
3768 }
3769 sysfs_slab_remove(s);
3770 return 0;
3771 }
3772
3773 /********************************************************************
3774 * Kmalloc subsystem
3775 *******************************************************************/
3776
3777 static int __init setup_slub_min_order(char *str)
3778 {
3779 get_option(&str, (int *)&slub_min_order);
3780
3781 return 1;
3782 }
3783
3784 __setup("slub_min_order=", setup_slub_min_order);
3785
3786 static int __init setup_slub_max_order(char *str)
3787 {
3788 get_option(&str, (int *)&slub_max_order);
3789 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3790
3791 return 1;
3792 }
3793
3794 __setup("slub_max_order=", setup_slub_max_order);
3795
3796 static int __init setup_slub_min_objects(char *str)
3797 {
3798 get_option(&str, (int *)&slub_min_objects);
3799
3800 return 1;
3801 }
3802
3803 __setup("slub_min_objects=", setup_slub_min_objects);
3804
3805 void *__kmalloc(size_t size, gfp_t flags)
3806 {
3807 struct kmem_cache *s;
3808 void *ret;
3809
3810 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3811 return kmalloc_large(size, flags);
3812
3813 s = kmalloc_slab(size, flags);
3814
3815 if (unlikely(ZERO_OR_NULL_PTR(s)))
3816 return s;
3817
3818 ret = slab_alloc(s, flags, _RET_IP_);
3819
3820 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3821
3822 ret = kasan_kmalloc(s, ret, size, flags);
3823
3824 return ret;
3825 }
3826 EXPORT_SYMBOL(__kmalloc);
3827
3828 #ifdef CONFIG_NUMA
3829 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3830 {
3831 struct page *page;
3832 void *ptr = NULL;
3833 unsigned int order = get_order(size);
3834
3835 flags |= __GFP_COMP;
3836 page = alloc_pages_node(node, flags, order);
3837 if (page) {
3838 ptr = page_address(page);
3839 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3840 1 << order);
3841 }
3842
3843 return kmalloc_large_node_hook(ptr, size, flags);
3844 }
3845
3846 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3847 {
3848 struct kmem_cache *s;
3849 void *ret;
3850
3851 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3852 ret = kmalloc_large_node(size, flags, node);
3853
3854 trace_kmalloc_node(_RET_IP_, ret,
3855 size, PAGE_SIZE << get_order(size),
3856 flags, node);
3857
3858 return ret;
3859 }
3860
3861 s = kmalloc_slab(size, flags);
3862
3863 if (unlikely(ZERO_OR_NULL_PTR(s)))
3864 return s;
3865
3866 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3867
3868 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3869
3870 ret = kasan_kmalloc(s, ret, size, flags);
3871
3872 return ret;
3873 }
3874 EXPORT_SYMBOL(__kmalloc_node);
3875 #endif /* CONFIG_NUMA */
3876
3877 #ifdef CONFIG_HARDENED_USERCOPY
3878 /*
3879 * Rejects incorrectly sized objects and objects that are to be copied
3880 * to/from userspace but do not fall entirely within the containing slab
3881 * cache's usercopy region.
3882 *
3883 * Returns NULL if check passes, otherwise const char * to name of cache
3884 * to indicate an error.
3885 */
3886 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3887 bool to_user)
3888 {
3889 struct kmem_cache *s;
3890 unsigned int offset;
3891 size_t object_size;
3892
3893 ptr = kasan_reset_tag(ptr);
3894
3895 /* Find object and usable object size. */
3896 s = page->slab_cache;
3897
3898 /* Reject impossible pointers. */
3899 if (ptr < page_address(page))
3900 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3901 to_user, 0, n);
3902
3903 /* Find offset within object. */
3904 offset = (ptr - page_address(page)) % s->size;
3905
3906 /* Adjust for redzone and reject if within the redzone. */
3907 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3908 if (offset < s->red_left_pad)
3909 usercopy_abort("SLUB object in left red zone",
3910 s->name, to_user, offset, n);
3911 offset -= s->red_left_pad;
3912 }
3913
3914 /* Allow address range falling entirely within usercopy region. */
3915 if (offset >= s->useroffset &&
3916 offset - s->useroffset <= s->usersize &&
3917 n <= s->useroffset - offset + s->usersize)
3918 return;
3919
3920 /*
3921 * If the copy is still within the allocated object, produce
3922 * a warning instead of rejecting the copy. This is intended
3923 * to be a temporary method to find any missing usercopy
3924 * whitelists.
3925 */
3926 object_size = slab_ksize(s);
3927 if (usercopy_fallback &&
3928 offset <= object_size && n <= object_size - offset) {
3929 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3930 return;
3931 }
3932
3933 usercopy_abort("SLUB object", s->name, to_user, offset, n);
3934 }
3935 #endif /* CONFIG_HARDENED_USERCOPY */
3936
3937 size_t __ksize(const void *object)
3938 {
3939 struct page *page;
3940
3941 if (unlikely(object == ZERO_SIZE_PTR))
3942 return 0;
3943
3944 page = virt_to_head_page(object);
3945
3946 if (unlikely(!PageSlab(page))) {
3947 WARN_ON(!PageCompound(page));
3948 return page_size(page);
3949 }
3950
3951 return slab_ksize(page->slab_cache);
3952 }
3953 EXPORT_SYMBOL(__ksize);
3954
3955 void kfree(const void *x)
3956 {
3957 struct page *page;
3958 void *object = (void *)x;
3959
3960 trace_kfree(_RET_IP_, x);
3961
3962 if (unlikely(ZERO_OR_NULL_PTR(x)))
3963 return;
3964
3965 page = virt_to_head_page(x);
3966 if (unlikely(!PageSlab(page))) {
3967 unsigned int order = compound_order(page);
3968
3969 BUG_ON(!PageCompound(page));
3970 kfree_hook(object);
3971 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3972 -(1 << order));
3973 __free_pages(page, order);
3974 return;
3975 }
3976 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3977 }
3978 EXPORT_SYMBOL(kfree);
3979
3980 #define SHRINK_PROMOTE_MAX 32
3981
3982 /*
3983 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3984 * up most to the head of the partial lists. New allocations will then
3985 * fill those up and thus they can be removed from the partial lists.
3986 *
3987 * The slabs with the least items are placed last. This results in them
3988 * being allocated from last increasing the chance that the last objects
3989 * are freed in them.
3990 */
3991 int __kmem_cache_shrink(struct kmem_cache *s)
3992 {
3993 int node;
3994 int i;
3995 struct kmem_cache_node *n;
3996 struct page *page;
3997 struct page *t;
3998 struct list_head discard;
3999 struct list_head promote[SHRINK_PROMOTE_MAX];
4000 unsigned long flags;
4001 int ret = 0;
4002
4003 flush_all(s);
4004 for_each_kmem_cache_node(s, node, n) {
4005 INIT_LIST_HEAD(&discard);
4006 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4007 INIT_LIST_HEAD(promote + i);
4008
4009 spin_lock_irqsave(&n->list_lock, flags);
4010
4011 /*
4012 * Build lists of slabs to discard or promote.
4013 *
4014 * Note that concurrent frees may occur while we hold the
4015 * list_lock. page->inuse here is the upper limit.
4016 */
4017 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4018 int free = page->objects - page->inuse;
4019
4020 /* Do not reread page->inuse */
4021 barrier();
4022
4023 /* We do not keep full slabs on the list */
4024 BUG_ON(free <= 0);
4025
4026 if (free == page->objects) {
4027 list_move(&page->slab_list, &discard);
4028 n->nr_partial--;
4029 } else if (free <= SHRINK_PROMOTE_MAX)
4030 list_move(&page->slab_list, promote + free - 1);
4031 }
4032
4033 /*
4034 * Promote the slabs filled up most to the head of the
4035 * partial list.
4036 */
4037 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4038 list_splice(promote + i, &n->partial);
4039
4040 spin_unlock_irqrestore(&n->list_lock, flags);
4041
4042 /* Release empty slabs */
4043 list_for_each_entry_safe(page, t, &discard, slab_list)
4044 discard_slab(s, page);
4045
4046 if (slabs_node(s, node))
4047 ret = 1;
4048 }
4049
4050 return ret;
4051 }
4052
4053 #ifdef CONFIG_MEMCG
4054 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4055 {
4056 /*
4057 * Called with all the locks held after a sched RCU grace period.
4058 * Even if @s becomes empty after shrinking, we can't know that @s
4059 * doesn't have allocations already in-flight and thus can't
4060 * destroy @s until the associated memcg is released.
4061 *
4062 * However, let's remove the sysfs files for empty caches here.
4063 * Each cache has a lot of interface files which aren't
4064 * particularly useful for empty draining caches; otherwise, we can
4065 * easily end up with millions of unnecessary sysfs files on
4066 * systems which have a lot of memory and transient cgroups.
4067 */
4068 if (!__kmem_cache_shrink(s))
4069 sysfs_slab_remove(s);
4070 }
4071
4072 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4073 {
4074 /*
4075 * Disable empty slabs caching. Used to avoid pinning offline
4076 * memory cgroups by kmem pages that can be freed.
4077 */
4078 slub_set_cpu_partial(s, 0);
4079 s->min_partial = 0;
4080 }
4081 #endif /* CONFIG_MEMCG */
4082
4083 static int slab_mem_going_offline_callback(void *arg)
4084 {
4085 struct kmem_cache *s;
4086
4087 mutex_lock(&slab_mutex);
4088 list_for_each_entry(s, &slab_caches, list)
4089 __kmem_cache_shrink(s);
4090 mutex_unlock(&slab_mutex);
4091
4092 return 0;
4093 }
4094
4095 static void slab_mem_offline_callback(void *arg)
4096 {
4097 struct kmem_cache_node *n;
4098 struct kmem_cache *s;
4099 struct memory_notify *marg = arg;
4100 int offline_node;
4101
4102 offline_node = marg->status_change_nid_normal;
4103
4104 /*
4105 * If the node still has available memory. we need kmem_cache_node
4106 * for it yet.
4107 */
4108 if (offline_node < 0)
4109 return;
4110
4111 mutex_lock(&slab_mutex);
4112 list_for_each_entry(s, &slab_caches, list) {
4113 n = get_node(s, offline_node);
4114 if (n) {
4115 /*
4116 * if n->nr_slabs > 0, slabs still exist on the node
4117 * that is going down. We were unable to free them,
4118 * and offline_pages() function shouldn't call this
4119 * callback. So, we must fail.
4120 */
4121 BUG_ON(slabs_node(s, offline_node));
4122
4123 s->node[offline_node] = NULL;
4124 kmem_cache_free(kmem_cache_node, n);
4125 }
4126 }
4127 mutex_unlock(&slab_mutex);
4128 }
4129
4130 static int slab_mem_going_online_callback(void *arg)
4131 {
4132 struct kmem_cache_node *n;
4133 struct kmem_cache *s;
4134 struct memory_notify *marg = arg;
4135 int nid = marg->status_change_nid_normal;
4136 int ret = 0;
4137
4138 /*
4139 * If the node's memory is already available, then kmem_cache_node is
4140 * already created. Nothing to do.
4141 */
4142 if (nid < 0)
4143 return 0;
4144
4145 /*
4146 * We are bringing a node online. No memory is available yet. We must
4147 * allocate a kmem_cache_node structure in order to bring the node
4148 * online.
4149 */
4150 mutex_lock(&slab_mutex);
4151 list_for_each_entry(s, &slab_caches, list) {
4152 /*
4153 * XXX: kmem_cache_alloc_node will fallback to other nodes
4154 * since memory is not yet available from the node that
4155 * is brought up.
4156 */
4157 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4158 if (!n) {
4159 ret = -ENOMEM;
4160 goto out;
4161 }
4162 init_kmem_cache_node(n);
4163 s->node[nid] = n;
4164 }
4165 out:
4166 mutex_unlock(&slab_mutex);
4167 return ret;
4168 }
4169
4170 static int slab_memory_callback(struct notifier_block *self,
4171 unsigned long action, void *arg)
4172 {
4173 int ret = 0;
4174
4175 switch (action) {
4176 case MEM_GOING_ONLINE:
4177 ret = slab_mem_going_online_callback(arg);
4178 break;
4179 case MEM_GOING_OFFLINE:
4180 ret = slab_mem_going_offline_callback(arg);
4181 break;
4182 case MEM_OFFLINE:
4183 case MEM_CANCEL_ONLINE:
4184 slab_mem_offline_callback(arg);
4185 break;
4186 case MEM_ONLINE:
4187 case MEM_CANCEL_OFFLINE:
4188 break;
4189 }
4190 if (ret)
4191 ret = notifier_from_errno(ret);
4192 else
4193 ret = NOTIFY_OK;
4194 return ret;
4195 }
4196
4197 static struct notifier_block slab_memory_callback_nb = {
4198 .notifier_call = slab_memory_callback,
4199 .priority = SLAB_CALLBACK_PRI,
4200 };
4201
4202 /********************************************************************
4203 * Basic setup of slabs
4204 *******************************************************************/
4205
4206 /*
4207 * Used for early kmem_cache structures that were allocated using
4208 * the page allocator. Allocate them properly then fix up the pointers
4209 * that may be pointing to the wrong kmem_cache structure.
4210 */
4211
4212 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4213 {
4214 int node;
4215 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4216 struct kmem_cache_node *n;
4217
4218 memcpy(s, static_cache, kmem_cache->object_size);
4219
4220 /*
4221 * This runs very early, and only the boot processor is supposed to be
4222 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4223 * IPIs around.
4224 */
4225 __flush_cpu_slab(s, smp_processor_id());
4226 for_each_kmem_cache_node(s, node, n) {
4227 struct page *p;
4228
4229 list_for_each_entry(p, &n->partial, slab_list)
4230 p->slab_cache = s;
4231
4232 #ifdef CONFIG_SLUB_DEBUG
4233 list_for_each_entry(p, &n->full, slab_list)
4234 p->slab_cache = s;
4235 #endif
4236 }
4237 slab_init_memcg_params(s);
4238 list_add(&s->list, &slab_caches);
4239 memcg_link_cache(s, NULL);
4240 return s;
4241 }
4242
4243 void __init kmem_cache_init(void)
4244 {
4245 static __initdata struct kmem_cache boot_kmem_cache,
4246 boot_kmem_cache_node;
4247
4248 if (debug_guardpage_minorder())
4249 slub_max_order = 0;
4250
4251 kmem_cache_node = &boot_kmem_cache_node;
4252 kmem_cache = &boot_kmem_cache;
4253
4254 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4255 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4256
4257 register_hotmemory_notifier(&slab_memory_callback_nb);
4258
4259 /* Able to allocate the per node structures */
4260 slab_state = PARTIAL;
4261
4262 create_boot_cache(kmem_cache, "kmem_cache",
4263 offsetof(struct kmem_cache, node) +
4264 nr_node_ids * sizeof(struct kmem_cache_node *),
4265 SLAB_HWCACHE_ALIGN, 0, 0);
4266
4267 kmem_cache = bootstrap(&boot_kmem_cache);
4268 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4269
4270 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4271 setup_kmalloc_cache_index_table();
4272 create_kmalloc_caches(0);
4273
4274 /* Setup random freelists for each cache */
4275 init_freelist_randomization();
4276
4277 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4278 slub_cpu_dead);
4279
4280 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4281 cache_line_size(),
4282 slub_min_order, slub_max_order, slub_min_objects,
4283 nr_cpu_ids, nr_node_ids);
4284 }
4285
4286 void __init kmem_cache_init_late(void)
4287 {
4288 }
4289
4290 struct kmem_cache *
4291 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4292 slab_flags_t flags, void (*ctor)(void *))
4293 {
4294 struct kmem_cache *s, *c;
4295
4296 s = find_mergeable(size, align, flags, name, ctor);
4297 if (s) {
4298 s->refcount++;
4299
4300 /*
4301 * Adjust the object sizes so that we clear
4302 * the complete object on kzalloc.
4303 */
4304 s->object_size = max(s->object_size, size);
4305 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4306
4307 for_each_memcg_cache(c, s) {
4308 c->object_size = s->object_size;
4309 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4310 }
4311
4312 if (sysfs_slab_alias(s, name)) {
4313 s->refcount--;
4314 s = NULL;
4315 }
4316 }
4317
4318 return s;
4319 }
4320
4321 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4322 {
4323 int err;
4324
4325 err = kmem_cache_open(s, flags);
4326 if (err)
4327 return err;
4328
4329 /* Mutex is not taken during early boot */
4330 if (slab_state <= UP)
4331 return 0;
4332
4333 memcg_propagate_slab_attrs(s);
4334 err = sysfs_slab_add(s);
4335 if (err)
4336 __kmem_cache_release(s);
4337
4338 return err;
4339 }
4340
4341 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4342 {
4343 struct kmem_cache *s;
4344 void *ret;
4345
4346 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4347 return kmalloc_large(size, gfpflags);
4348
4349 s = kmalloc_slab(size, gfpflags);
4350
4351 if (unlikely(ZERO_OR_NULL_PTR(s)))
4352 return s;
4353
4354 ret = slab_alloc(s, gfpflags, caller);
4355
4356 /* Honor the call site pointer we received. */
4357 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4358
4359 return ret;
4360 }
4361
4362 #ifdef CONFIG_NUMA
4363 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4364 int node, unsigned long caller)
4365 {
4366 struct kmem_cache *s;
4367 void *ret;
4368
4369 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4370 ret = kmalloc_large_node(size, gfpflags, node);
4371
4372 trace_kmalloc_node(caller, ret,
4373 size, PAGE_SIZE << get_order(size),
4374 gfpflags, node);
4375
4376 return ret;
4377 }
4378
4379 s = kmalloc_slab(size, gfpflags);
4380
4381 if (unlikely(ZERO_OR_NULL_PTR(s)))
4382 return s;
4383
4384 ret = slab_alloc_node(s, gfpflags, node, caller);
4385
4386 /* Honor the call site pointer we received. */
4387 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4388
4389 return ret;
4390 }
4391 #endif
4392
4393 #ifdef CONFIG_SYSFS
4394 static int count_inuse(struct page *page)
4395 {
4396 return page->inuse;
4397 }
4398
4399 static int count_total(struct page *page)
4400 {
4401 return page->objects;
4402 }
4403 #endif
4404
4405 #ifdef CONFIG_SLUB_DEBUG
4406 static void validate_slab(struct kmem_cache *s, struct page *page)
4407 {
4408 void *p;
4409 void *addr = page_address(page);
4410 unsigned long *map;
4411
4412 slab_lock(page);
4413
4414 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4415 goto unlock;
4416
4417 /* Now we know that a valid freelist exists */
4418 map = get_map(s, page);
4419 for_each_object(p, s, addr, page->objects) {
4420 u8 val = test_bit(slab_index(p, s, addr), map) ?
4421 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4422
4423 if (!check_object(s, page, p, val))
4424 break;
4425 }
4426 put_map(map);
4427 unlock:
4428 slab_unlock(page);
4429 }
4430
4431 static int validate_slab_node(struct kmem_cache *s,
4432 struct kmem_cache_node *n)
4433 {
4434 unsigned long count = 0;
4435 struct page *page;
4436 unsigned long flags;
4437
4438 spin_lock_irqsave(&n->list_lock, flags);
4439
4440 list_for_each_entry(page, &n->partial, slab_list) {
4441 validate_slab(s, page);
4442 count++;
4443 }
4444 if (count != n->nr_partial)
4445 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4446 s->name, count, n->nr_partial);
4447
4448 if (!(s->flags & SLAB_STORE_USER))
4449 goto out;
4450
4451 list_for_each_entry(page, &n->full, slab_list) {
4452 validate_slab(s, page);
4453 count++;
4454 }
4455 if (count != atomic_long_read(&n->nr_slabs))
4456 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4457 s->name, count, atomic_long_read(&n->nr_slabs));
4458
4459 out:
4460 spin_unlock_irqrestore(&n->list_lock, flags);
4461 return count;
4462 }
4463
4464 static long validate_slab_cache(struct kmem_cache *s)
4465 {
4466 int node;
4467 unsigned long count = 0;
4468 struct kmem_cache_node *n;
4469
4470 flush_all(s);
4471 for_each_kmem_cache_node(s, node, n)
4472 count += validate_slab_node(s, n);
4473
4474 return count;
4475 }
4476 /*
4477 * Generate lists of code addresses where slabcache objects are allocated
4478 * and freed.
4479 */
4480
4481 struct location {
4482 unsigned long count;
4483 unsigned long addr;
4484 long long sum_time;
4485 long min_time;
4486 long max_time;
4487 long min_pid;
4488 long max_pid;
4489 DECLARE_BITMAP(cpus, NR_CPUS);
4490 nodemask_t nodes;
4491 };
4492
4493 struct loc_track {
4494 unsigned long max;
4495 unsigned long count;
4496 struct location *loc;
4497 };
4498
4499 static void free_loc_track(struct loc_track *t)
4500 {
4501 if (t->max)
4502 free_pages((unsigned long)t->loc,
4503 get_order(sizeof(struct location) * t->max));
4504 }
4505
4506 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4507 {
4508 struct location *l;
4509 int order;
4510
4511 order = get_order(sizeof(struct location) * max);
4512
4513 l = (void *)__get_free_pages(flags, order);
4514 if (!l)
4515 return 0;
4516
4517 if (t->count) {
4518 memcpy(l, t->loc, sizeof(struct location) * t->count);
4519 free_loc_track(t);
4520 }
4521 t->max = max;
4522 t->loc = l;
4523 return 1;
4524 }
4525
4526 static int add_location(struct loc_track *t, struct kmem_cache *s,
4527 const struct track *track)
4528 {
4529 long start, end, pos;
4530 struct location *l;
4531 unsigned long caddr;
4532 unsigned long age = jiffies - track->when;
4533
4534 start = -1;
4535 end = t->count;
4536
4537 for ( ; ; ) {
4538 pos = start + (end - start + 1) / 2;
4539
4540 /*
4541 * There is nothing at "end". If we end up there
4542 * we need to add something to before end.
4543 */
4544 if (pos == end)
4545 break;
4546
4547 caddr = t->loc[pos].addr;
4548 if (track->addr == caddr) {
4549
4550 l = &t->loc[pos];
4551 l->count++;
4552 if (track->when) {
4553 l->sum_time += age;
4554 if (age < l->min_time)
4555 l->min_time = age;
4556 if (age > l->max_time)
4557 l->max_time = age;
4558
4559 if (track->pid < l->min_pid)
4560 l->min_pid = track->pid;
4561 if (track->pid > l->max_pid)
4562 l->max_pid = track->pid;
4563
4564 cpumask_set_cpu(track->cpu,
4565 to_cpumask(l->cpus));
4566 }
4567 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4568 return 1;
4569 }
4570
4571 if (track->addr < caddr)
4572 end = pos;
4573 else
4574 start = pos;
4575 }
4576
4577 /*
4578 * Not found. Insert new tracking element.
4579 */
4580 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4581 return 0;
4582
4583 l = t->loc + pos;
4584 if (pos < t->count)
4585 memmove(l + 1, l,
4586 (t->count - pos) * sizeof(struct location));
4587 t->count++;
4588 l->count = 1;
4589 l->addr = track->addr;
4590 l->sum_time = age;
4591 l->min_time = age;
4592 l->max_time = age;
4593 l->min_pid = track->pid;
4594 l->max_pid = track->pid;
4595 cpumask_clear(to_cpumask(l->cpus));
4596 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4597 nodes_clear(l->nodes);
4598 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4599 return 1;
4600 }
4601
4602 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4603 struct page *page, enum track_item alloc)
4604 {
4605 void *addr = page_address(page);
4606 void *p;
4607 unsigned long *map;
4608
4609 map = get_map(s, page);
4610 for_each_object(p, s, addr, page->objects)
4611 if (!test_bit(slab_index(p, s, addr), map))
4612 add_location(t, s, get_track(s, p, alloc));
4613 put_map(map);
4614 }
4615
4616 static int list_locations(struct kmem_cache *s, char *buf,
4617 enum track_item alloc)
4618 {
4619 int len = 0;
4620 unsigned long i;
4621 struct loc_track t = { 0, 0, NULL };
4622 int node;
4623 struct kmem_cache_node *n;
4624
4625 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4626 GFP_KERNEL)) {
4627 return sprintf(buf, "Out of memory\n");
4628 }
4629 /* Push back cpu slabs */
4630 flush_all(s);
4631
4632 for_each_kmem_cache_node(s, node, n) {
4633 unsigned long flags;
4634 struct page *page;
4635
4636 if (!atomic_long_read(&n->nr_slabs))
4637 continue;
4638
4639 spin_lock_irqsave(&n->list_lock, flags);
4640 list_for_each_entry(page, &n->partial, slab_list)
4641 process_slab(&t, s, page, alloc);
4642 list_for_each_entry(page, &n->full, slab_list)
4643 process_slab(&t, s, page, alloc);
4644 spin_unlock_irqrestore(&n->list_lock, flags);
4645 }
4646
4647 for (i = 0; i < t.count; i++) {
4648 struct location *l = &t.loc[i];
4649
4650 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4651 break;
4652 len += sprintf(buf + len, "%7ld ", l->count);
4653
4654 if (l->addr)
4655 len += sprintf(buf + len, "%pS", (void *)l->addr);
4656 else
4657 len += sprintf(buf + len, "<not-available>");
4658
4659 if (l->sum_time != l->min_time) {
4660 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4661 l->min_time,
4662 (long)div_u64(l->sum_time, l->count),
4663 l->max_time);
4664 } else
4665 len += sprintf(buf + len, " age=%ld",
4666 l->min_time);
4667
4668 if (l->min_pid != l->max_pid)
4669 len += sprintf(buf + len, " pid=%ld-%ld",
4670 l->min_pid, l->max_pid);
4671 else
4672 len += sprintf(buf + len, " pid=%ld",
4673 l->min_pid);
4674
4675 if (num_online_cpus() > 1 &&
4676 !cpumask_empty(to_cpumask(l->cpus)) &&
4677 len < PAGE_SIZE - 60)
4678 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4679 " cpus=%*pbl",
4680 cpumask_pr_args(to_cpumask(l->cpus)));
4681
4682 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4683 len < PAGE_SIZE - 60)
4684 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4685 " nodes=%*pbl",
4686 nodemask_pr_args(&l->nodes));
4687
4688 len += sprintf(buf + len, "\n");
4689 }
4690
4691 free_loc_track(&t);
4692 if (!t.count)
4693 len += sprintf(buf, "No data\n");
4694 return len;
4695 }
4696 #endif /* CONFIG_SLUB_DEBUG */
4697
4698 #ifdef SLUB_RESILIENCY_TEST
4699 static void __init resiliency_test(void)
4700 {
4701 u8 *p;
4702 int type = KMALLOC_NORMAL;
4703
4704 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4705
4706 pr_err("SLUB resiliency testing\n");
4707 pr_err("-----------------------\n");
4708 pr_err("A. Corruption after allocation\n");
4709
4710 p = kzalloc(16, GFP_KERNEL);
4711 p[16] = 0x12;
4712 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4713 p + 16);
4714
4715 validate_slab_cache(kmalloc_caches[type][4]);
4716
4717 /* Hmmm... The next two are dangerous */
4718 p = kzalloc(32, GFP_KERNEL);
4719 p[32 + sizeof(void *)] = 0x34;
4720 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4721 p);
4722 pr_err("If allocated object is overwritten then not detectable\n\n");
4723
4724 validate_slab_cache(kmalloc_caches[type][5]);
4725 p = kzalloc(64, GFP_KERNEL);
4726 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4727 *p = 0x56;
4728 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4729 p);
4730 pr_err("If allocated object is overwritten then not detectable\n\n");
4731 validate_slab_cache(kmalloc_caches[type][6]);
4732
4733 pr_err("\nB. Corruption after free\n");
4734 p = kzalloc(128, GFP_KERNEL);
4735 kfree(p);
4736 *p = 0x78;
4737 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4738 validate_slab_cache(kmalloc_caches[type][7]);
4739
4740 p = kzalloc(256, GFP_KERNEL);
4741 kfree(p);
4742 p[50] = 0x9a;
4743 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4744 validate_slab_cache(kmalloc_caches[type][8]);
4745
4746 p = kzalloc(512, GFP_KERNEL);
4747 kfree(p);
4748 p[512] = 0xab;
4749 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4750 validate_slab_cache(kmalloc_caches[type][9]);
4751 }
4752 #else
4753 #ifdef CONFIG_SYSFS
4754 static void resiliency_test(void) {};
4755 #endif
4756 #endif /* SLUB_RESILIENCY_TEST */
4757
4758 #ifdef CONFIG_SYSFS
4759 enum slab_stat_type {
4760 SL_ALL, /* All slabs */
4761 SL_PARTIAL, /* Only partially allocated slabs */
4762 SL_CPU, /* Only slabs used for cpu caches */
4763 SL_OBJECTS, /* Determine allocated objects not slabs */
4764 SL_TOTAL /* Determine object capacity not slabs */
4765 };
4766
4767 #define SO_ALL (1 << SL_ALL)
4768 #define SO_PARTIAL (1 << SL_PARTIAL)
4769 #define SO_CPU (1 << SL_CPU)
4770 #define SO_OBJECTS (1 << SL_OBJECTS)
4771 #define SO_TOTAL (1 << SL_TOTAL)
4772
4773 #ifdef CONFIG_MEMCG
4774 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4775
4776 static int __init setup_slub_memcg_sysfs(char *str)
4777 {
4778 int v;
4779
4780 if (get_option(&str, &v) > 0)
4781 memcg_sysfs_enabled = v;
4782
4783 return 1;
4784 }
4785
4786 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4787 #endif
4788
4789 static ssize_t show_slab_objects(struct kmem_cache *s,
4790 char *buf, unsigned long flags)
4791 {
4792 unsigned long total = 0;
4793 int node;
4794 int x;
4795 unsigned long *nodes;
4796
4797 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4798 if (!nodes)
4799 return -ENOMEM;
4800
4801 if (flags & SO_CPU) {
4802 int cpu;
4803
4804 for_each_possible_cpu(cpu) {
4805 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4806 cpu);
4807 int node;
4808 struct page *page;
4809
4810 page = READ_ONCE(c->page);
4811 if (!page)
4812 continue;
4813
4814 node = page_to_nid(page);
4815 if (flags & SO_TOTAL)
4816 x = page->objects;
4817 else if (flags & SO_OBJECTS)
4818 x = page->inuse;
4819 else
4820 x = 1;
4821
4822 total += x;
4823 nodes[node] += x;
4824
4825 page = slub_percpu_partial_read_once(c);
4826 if (page) {
4827 node = page_to_nid(page);
4828 if (flags & SO_TOTAL)
4829 WARN_ON_ONCE(1);
4830 else if (flags & SO_OBJECTS)
4831 WARN_ON_ONCE(1);
4832 else
4833 x = page->pages;
4834 total += x;
4835 nodes[node] += x;
4836 }
4837 }
4838 }
4839
4840 /*
4841 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4842 * already held which will conflict with an existing lock order:
4843 *
4844 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4845 *
4846 * We don't really need mem_hotplug_lock (to hold off
4847 * slab_mem_going_offline_callback) here because slab's memory hot
4848 * unplug code doesn't destroy the kmem_cache->node[] data.
4849 */
4850
4851 #ifdef CONFIG_SLUB_DEBUG
4852 if (flags & SO_ALL) {
4853 struct kmem_cache_node *n;
4854
4855 for_each_kmem_cache_node(s, node, n) {
4856
4857 if (flags & SO_TOTAL)
4858 x = atomic_long_read(&n->total_objects);
4859 else if (flags & SO_OBJECTS)
4860 x = atomic_long_read(&n->total_objects) -
4861 count_partial(n, count_free);
4862 else
4863 x = atomic_long_read(&n->nr_slabs);
4864 total += x;
4865 nodes[node] += x;
4866 }
4867
4868 } else
4869 #endif
4870 if (flags & SO_PARTIAL) {
4871 struct kmem_cache_node *n;
4872
4873 for_each_kmem_cache_node(s, node, n) {
4874 if (flags & SO_TOTAL)
4875 x = count_partial(n, count_total);
4876 else if (flags & SO_OBJECTS)
4877 x = count_partial(n, count_inuse);
4878 else
4879 x = n->nr_partial;
4880 total += x;
4881 nodes[node] += x;
4882 }
4883 }
4884 x = sprintf(buf, "%lu", total);
4885 #ifdef CONFIG_NUMA
4886 for (node = 0; node < nr_node_ids; node++)
4887 if (nodes[node])
4888 x += sprintf(buf + x, " N%d=%lu",
4889 node, nodes[node]);
4890 #endif
4891 kfree(nodes);
4892 return x + sprintf(buf + x, "\n");
4893 }
4894
4895 #ifdef CONFIG_SLUB_DEBUG
4896 static int any_slab_objects(struct kmem_cache *s)
4897 {
4898 int node;
4899 struct kmem_cache_node *n;
4900
4901 for_each_kmem_cache_node(s, node, n)
4902 if (atomic_long_read(&n->total_objects))
4903 return 1;
4904
4905 return 0;
4906 }
4907 #endif
4908
4909 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4910 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4911
4912 struct slab_attribute {
4913 struct attribute attr;
4914 ssize_t (*show)(struct kmem_cache *s, char *buf);
4915 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4916 };
4917
4918 #define SLAB_ATTR_RO(_name) \
4919 static struct slab_attribute _name##_attr = \
4920 __ATTR(_name, 0400, _name##_show, NULL)
4921
4922 #define SLAB_ATTR(_name) \
4923 static struct slab_attribute _name##_attr = \
4924 __ATTR(_name, 0600, _name##_show, _name##_store)
4925
4926 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4927 {
4928 return sprintf(buf, "%u\n", s->size);
4929 }
4930 SLAB_ATTR_RO(slab_size);
4931
4932 static ssize_t align_show(struct kmem_cache *s, char *buf)
4933 {
4934 return sprintf(buf, "%u\n", s->align);
4935 }
4936 SLAB_ATTR_RO(align);
4937
4938 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4939 {
4940 return sprintf(buf, "%u\n", s->object_size);
4941 }
4942 SLAB_ATTR_RO(object_size);
4943
4944 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4945 {
4946 return sprintf(buf, "%u\n", oo_objects(s->oo));
4947 }
4948 SLAB_ATTR_RO(objs_per_slab);
4949
4950 static ssize_t order_store(struct kmem_cache *s,
4951 const char *buf, size_t length)
4952 {
4953 unsigned int order;
4954 int err;
4955
4956 err = kstrtouint(buf, 10, &order);
4957 if (err)
4958 return err;
4959
4960 if (order > slub_max_order || order < slub_min_order)
4961 return -EINVAL;
4962
4963 calculate_sizes(s, order);
4964 return length;
4965 }
4966
4967 static ssize_t order_show(struct kmem_cache *s, char *buf)
4968 {
4969 return sprintf(buf, "%u\n", oo_order(s->oo));
4970 }
4971 SLAB_ATTR(order);
4972
4973 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4974 {
4975 return sprintf(buf, "%lu\n", s->min_partial);
4976 }
4977
4978 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4979 size_t length)
4980 {
4981 unsigned long min;
4982 int err;
4983
4984 err = kstrtoul(buf, 10, &min);
4985 if (err)
4986 return err;
4987
4988 set_min_partial(s, min);
4989 return length;
4990 }
4991 SLAB_ATTR(min_partial);
4992
4993 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4994 {
4995 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4996 }
4997
4998 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4999 size_t length)
5000 {
5001 unsigned int objects;
5002 int err;
5003
5004 err = kstrtouint(buf, 10, &objects);
5005 if (err)
5006 return err;
5007 if (objects && !kmem_cache_has_cpu_partial(s))
5008 return -EINVAL;
5009
5010 slub_set_cpu_partial(s, objects);
5011 flush_all(s);
5012 return length;
5013 }
5014 SLAB_ATTR(cpu_partial);
5015
5016 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5017 {
5018 if (!s->ctor)
5019 return 0;
5020 return sprintf(buf, "%pS\n", s->ctor);
5021 }
5022 SLAB_ATTR_RO(ctor);
5023
5024 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5025 {
5026 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5027 }
5028 SLAB_ATTR_RO(aliases);
5029
5030 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5031 {
5032 return show_slab_objects(s, buf, SO_PARTIAL);
5033 }
5034 SLAB_ATTR_RO(partial);
5035
5036 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5037 {
5038 return show_slab_objects(s, buf, SO_CPU);
5039 }
5040 SLAB_ATTR_RO(cpu_slabs);
5041
5042 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5043 {
5044 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5045 }
5046 SLAB_ATTR_RO(objects);
5047
5048 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5049 {
5050 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5051 }
5052 SLAB_ATTR_RO(objects_partial);
5053
5054 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5055 {
5056 int objects = 0;
5057 int pages = 0;
5058 int cpu;
5059 int len;
5060
5061 for_each_online_cpu(cpu) {
5062 struct page *page;
5063
5064 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5065
5066 if (page) {
5067 pages += page->pages;
5068 objects += page->pobjects;
5069 }
5070 }
5071
5072 len = sprintf(buf, "%d(%d)", objects, pages);
5073
5074 #ifdef CONFIG_SMP
5075 for_each_online_cpu(cpu) {
5076 struct page *page;
5077
5078 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5079
5080 if (page && len < PAGE_SIZE - 20)
5081 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5082 page->pobjects, page->pages);
5083 }
5084 #endif
5085 return len + sprintf(buf + len, "\n");
5086 }
5087 SLAB_ATTR_RO(slabs_cpu_partial);
5088
5089 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5090 {
5091 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5092 }
5093
5094 static ssize_t reclaim_account_store(struct kmem_cache *s,
5095 const char *buf, size_t length)
5096 {
5097 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5098 if (buf[0] == '1')
5099 s->flags |= SLAB_RECLAIM_ACCOUNT;
5100 return length;
5101 }
5102 SLAB_ATTR(reclaim_account);
5103
5104 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5105 {
5106 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5107 }
5108 SLAB_ATTR_RO(hwcache_align);
5109
5110 #ifdef CONFIG_ZONE_DMA
5111 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5112 {
5113 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5114 }
5115 SLAB_ATTR_RO(cache_dma);
5116 #endif
5117
5118 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5119 {
5120 return sprintf(buf, "%u\n", s->usersize);
5121 }
5122 SLAB_ATTR_RO(usersize);
5123
5124 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5125 {
5126 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5127 }
5128 SLAB_ATTR_RO(destroy_by_rcu);
5129
5130 #ifdef CONFIG_SLUB_DEBUG
5131 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5132 {
5133 return show_slab_objects(s, buf, SO_ALL);
5134 }
5135 SLAB_ATTR_RO(slabs);
5136
5137 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5138 {
5139 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5140 }
5141 SLAB_ATTR_RO(total_objects);
5142
5143 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5144 {
5145 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5146 }
5147
5148 static ssize_t sanity_checks_store(struct kmem_cache *s,
5149 const char *buf, size_t length)
5150 {
5151 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5152 if (buf[0] == '1') {
5153 s->flags &= ~__CMPXCHG_DOUBLE;
5154 s->flags |= SLAB_CONSISTENCY_CHECKS;
5155 }
5156 return length;
5157 }
5158 SLAB_ATTR(sanity_checks);
5159
5160 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5161 {
5162 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5163 }
5164
5165 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5166 size_t length)
5167 {
5168 /*
5169 * Tracing a merged cache is going to give confusing results
5170 * as well as cause other issues like converting a mergeable
5171 * cache into an umergeable one.
5172 */
5173 if (s->refcount > 1)
5174 return -EINVAL;
5175
5176 s->flags &= ~SLAB_TRACE;
5177 if (buf[0] == '1') {
5178 s->flags &= ~__CMPXCHG_DOUBLE;
5179 s->flags |= SLAB_TRACE;
5180 }
5181 return length;
5182 }
5183 SLAB_ATTR(trace);
5184
5185 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5186 {
5187 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5188 }
5189
5190 static ssize_t red_zone_store(struct kmem_cache *s,
5191 const char *buf, size_t length)
5192 {
5193 if (any_slab_objects(s))
5194 return -EBUSY;
5195
5196 s->flags &= ~SLAB_RED_ZONE;
5197 if (buf[0] == '1') {
5198 s->flags |= SLAB_RED_ZONE;
5199 }
5200 calculate_sizes(s, -1);
5201 return length;
5202 }
5203 SLAB_ATTR(red_zone);
5204
5205 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5206 {
5207 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5208 }
5209
5210 static ssize_t poison_store(struct kmem_cache *s,
5211 const char *buf, size_t length)
5212 {
5213 if (any_slab_objects(s))
5214 return -EBUSY;
5215
5216 s->flags &= ~SLAB_POISON;
5217 if (buf[0] == '1') {
5218 s->flags |= SLAB_POISON;
5219 }
5220 calculate_sizes(s, -1);
5221 return length;
5222 }
5223 SLAB_ATTR(poison);
5224
5225 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5226 {
5227 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5228 }
5229
5230 static ssize_t store_user_store(struct kmem_cache *s,
5231 const char *buf, size_t length)
5232 {
5233 if (any_slab_objects(s))
5234 return -EBUSY;
5235
5236 s->flags &= ~SLAB_STORE_USER;
5237 if (buf[0] == '1') {
5238 s->flags &= ~__CMPXCHG_DOUBLE;
5239 s->flags |= SLAB_STORE_USER;
5240 }
5241 calculate_sizes(s, -1);
5242 return length;
5243 }
5244 SLAB_ATTR(store_user);
5245
5246 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5247 {
5248 return 0;
5249 }
5250
5251 static ssize_t validate_store(struct kmem_cache *s,
5252 const char *buf, size_t length)
5253 {
5254 int ret = -EINVAL;
5255
5256 if (buf[0] == '1') {
5257 ret = validate_slab_cache(s);
5258 if (ret >= 0)
5259 ret = length;
5260 }
5261 return ret;
5262 }
5263 SLAB_ATTR(validate);
5264
5265 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5266 {
5267 if (!(s->flags & SLAB_STORE_USER))
5268 return -ENOSYS;
5269 return list_locations(s, buf, TRACK_ALLOC);
5270 }
5271 SLAB_ATTR_RO(alloc_calls);
5272
5273 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5274 {
5275 if (!(s->flags & SLAB_STORE_USER))
5276 return -ENOSYS;
5277 return list_locations(s, buf, TRACK_FREE);
5278 }
5279 SLAB_ATTR_RO(free_calls);
5280 #endif /* CONFIG_SLUB_DEBUG */
5281
5282 #ifdef CONFIG_FAILSLAB
5283 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5284 {
5285 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5286 }
5287
5288 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5289 size_t length)
5290 {
5291 if (s->refcount > 1)
5292 return -EINVAL;
5293
5294 s->flags &= ~SLAB_FAILSLAB;
5295 if (buf[0] == '1')
5296 s->flags |= SLAB_FAILSLAB;
5297 return length;
5298 }
5299 SLAB_ATTR(failslab);
5300 #endif
5301
5302 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5303 {
5304 return 0;
5305 }
5306
5307 static ssize_t shrink_store(struct kmem_cache *s,
5308 const char *buf, size_t length)
5309 {
5310 if (buf[0] == '1')
5311 kmem_cache_shrink_all(s);
5312 else
5313 return -EINVAL;
5314 return length;
5315 }
5316 SLAB_ATTR(shrink);
5317
5318 #ifdef CONFIG_NUMA
5319 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5320 {
5321 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5322 }
5323
5324 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5325 const char *buf, size_t length)
5326 {
5327 unsigned int ratio;
5328 int err;
5329
5330 err = kstrtouint(buf, 10, &ratio);
5331 if (err)
5332 return err;
5333 if (ratio > 100)
5334 return -ERANGE;
5335
5336 s->remote_node_defrag_ratio = ratio * 10;
5337
5338 return length;
5339 }
5340 SLAB_ATTR(remote_node_defrag_ratio);
5341 #endif
5342
5343 #ifdef CONFIG_SLUB_STATS
5344 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5345 {
5346 unsigned long sum = 0;
5347 int cpu;
5348 int len;
5349 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5350
5351 if (!data)
5352 return -ENOMEM;
5353
5354 for_each_online_cpu(cpu) {
5355 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5356
5357 data[cpu] = x;
5358 sum += x;
5359 }
5360
5361 len = sprintf(buf, "%lu", sum);
5362
5363 #ifdef CONFIG_SMP
5364 for_each_online_cpu(cpu) {
5365 if (data[cpu] && len < PAGE_SIZE - 20)
5366 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5367 }
5368 #endif
5369 kfree(data);
5370 return len + sprintf(buf + len, "\n");
5371 }
5372
5373 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5374 {
5375 int cpu;
5376
5377 for_each_online_cpu(cpu)
5378 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5379 }
5380
5381 #define STAT_ATTR(si, text) \
5382 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5383 { \
5384 return show_stat(s, buf, si); \
5385 } \
5386 static ssize_t text##_store(struct kmem_cache *s, \
5387 const char *buf, size_t length) \
5388 { \
5389 if (buf[0] != '0') \
5390 return -EINVAL; \
5391 clear_stat(s, si); \
5392 return length; \
5393 } \
5394 SLAB_ATTR(text); \
5395
5396 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5397 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5398 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5399 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5400 STAT_ATTR(FREE_FROZEN, free_frozen);
5401 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5402 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5403 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5404 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5405 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5406 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5407 STAT_ATTR(FREE_SLAB, free_slab);
5408 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5409 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5410 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5411 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5412 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5413 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5414 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5415 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5416 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5417 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5418 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5419 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5420 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5421 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5422 #endif /* CONFIG_SLUB_STATS */
5423
5424 static struct attribute *slab_attrs[] = {
5425 &slab_size_attr.attr,
5426 &object_size_attr.attr,
5427 &objs_per_slab_attr.attr,
5428 &order_attr.attr,
5429 &min_partial_attr.attr,
5430 &cpu_partial_attr.attr,
5431 &objects_attr.attr,
5432 &objects_partial_attr.attr,
5433 &partial_attr.attr,
5434 &cpu_slabs_attr.attr,
5435 &ctor_attr.attr,
5436 &aliases_attr.attr,
5437 &align_attr.attr,
5438 &hwcache_align_attr.attr,
5439 &reclaim_account_attr.attr,
5440 &destroy_by_rcu_attr.attr,
5441 &shrink_attr.attr,
5442 &slabs_cpu_partial_attr.attr,
5443 #ifdef CONFIG_SLUB_DEBUG
5444 &total_objects_attr.attr,
5445 &slabs_attr.attr,
5446 &sanity_checks_attr.attr,
5447 &trace_attr.attr,
5448 &red_zone_attr.attr,
5449 &poison_attr.attr,
5450 &store_user_attr.attr,
5451 &validate_attr.attr,
5452 &alloc_calls_attr.attr,
5453 &free_calls_attr.attr,
5454 #endif
5455 #ifdef CONFIG_ZONE_DMA
5456 &cache_dma_attr.attr,
5457 #endif
5458 #ifdef CONFIG_NUMA
5459 &remote_node_defrag_ratio_attr.attr,
5460 #endif
5461 #ifdef CONFIG_SLUB_STATS
5462 &alloc_fastpath_attr.attr,
5463 &alloc_slowpath_attr.attr,
5464 &free_fastpath_attr.attr,
5465 &free_slowpath_attr.attr,
5466 &free_frozen_attr.attr,
5467 &free_add_partial_attr.attr,
5468 &free_remove_partial_attr.attr,
5469 &alloc_from_partial_attr.attr,
5470 &alloc_slab_attr.attr,
5471 &alloc_refill_attr.attr,
5472 &alloc_node_mismatch_attr.attr,
5473 &free_slab_attr.attr,
5474 &cpuslab_flush_attr.attr,
5475 &deactivate_full_attr.attr,
5476 &deactivate_empty_attr.attr,
5477 &deactivate_to_head_attr.attr,
5478 &deactivate_to_tail_attr.attr,
5479 &deactivate_remote_frees_attr.attr,
5480 &deactivate_bypass_attr.attr,
5481 &order_fallback_attr.attr,
5482 &cmpxchg_double_fail_attr.attr,
5483 &cmpxchg_double_cpu_fail_attr.attr,
5484 &cpu_partial_alloc_attr.attr,
5485 &cpu_partial_free_attr.attr,
5486 &cpu_partial_node_attr.attr,
5487 &cpu_partial_drain_attr.attr,
5488 #endif
5489 #ifdef CONFIG_FAILSLAB
5490 &failslab_attr.attr,
5491 #endif
5492 &usersize_attr.attr,
5493
5494 NULL
5495 };
5496
5497 static const struct attribute_group slab_attr_group = {
5498 .attrs = slab_attrs,
5499 };
5500
5501 static ssize_t slab_attr_show(struct kobject *kobj,
5502 struct attribute *attr,
5503 char *buf)
5504 {
5505 struct slab_attribute *attribute;
5506 struct kmem_cache *s;
5507 int err;
5508
5509 attribute = to_slab_attr(attr);
5510 s = to_slab(kobj);
5511
5512 if (!attribute->show)
5513 return -EIO;
5514
5515 err = attribute->show(s, buf);
5516
5517 return err;
5518 }
5519
5520 static ssize_t slab_attr_store(struct kobject *kobj,
5521 struct attribute *attr,
5522 const char *buf, size_t len)
5523 {
5524 struct slab_attribute *attribute;
5525 struct kmem_cache *s;
5526 int err;
5527
5528 attribute = to_slab_attr(attr);
5529 s = to_slab(kobj);
5530
5531 if (!attribute->store)
5532 return -EIO;
5533
5534 err = attribute->store(s, buf, len);
5535 #ifdef CONFIG_MEMCG
5536 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5537 struct kmem_cache *c;
5538
5539 mutex_lock(&slab_mutex);
5540 if (s->max_attr_size < len)
5541 s->max_attr_size = len;
5542
5543 /*
5544 * This is a best effort propagation, so this function's return
5545 * value will be determined by the parent cache only. This is
5546 * basically because not all attributes will have a well
5547 * defined semantics for rollbacks - most of the actions will
5548 * have permanent effects.
5549 *
5550 * Returning the error value of any of the children that fail
5551 * is not 100 % defined, in the sense that users seeing the
5552 * error code won't be able to know anything about the state of
5553 * the cache.
5554 *
5555 * Only returning the error code for the parent cache at least
5556 * has well defined semantics. The cache being written to
5557 * directly either failed or succeeded, in which case we loop
5558 * through the descendants with best-effort propagation.
5559 */
5560 for_each_memcg_cache(c, s)
5561 attribute->store(c, buf, len);
5562 mutex_unlock(&slab_mutex);
5563 }
5564 #endif
5565 return err;
5566 }
5567
5568 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5569 {
5570 #ifdef CONFIG_MEMCG
5571 int i;
5572 char *buffer = NULL;
5573 struct kmem_cache *root_cache;
5574
5575 if (is_root_cache(s))
5576 return;
5577
5578 root_cache = s->memcg_params.root_cache;
5579
5580 /*
5581 * This mean this cache had no attribute written. Therefore, no point
5582 * in copying default values around
5583 */
5584 if (!root_cache->max_attr_size)
5585 return;
5586
5587 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5588 char mbuf[64];
5589 char *buf;
5590 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5591 ssize_t len;
5592
5593 if (!attr || !attr->store || !attr->show)
5594 continue;
5595
5596 /*
5597 * It is really bad that we have to allocate here, so we will
5598 * do it only as a fallback. If we actually allocate, though,
5599 * we can just use the allocated buffer until the end.
5600 *
5601 * Most of the slub attributes will tend to be very small in
5602 * size, but sysfs allows buffers up to a page, so they can
5603 * theoretically happen.
5604 */
5605 if (buffer)
5606 buf = buffer;
5607 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5608 buf = mbuf;
5609 else {
5610 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5611 if (WARN_ON(!buffer))
5612 continue;
5613 buf = buffer;
5614 }
5615
5616 len = attr->show(root_cache, buf);
5617 if (len > 0)
5618 attr->store(s, buf, len);
5619 }
5620
5621 if (buffer)
5622 free_page((unsigned long)buffer);
5623 #endif /* CONFIG_MEMCG */
5624 }
5625
5626 static void kmem_cache_release(struct kobject *k)
5627 {
5628 slab_kmem_cache_release(to_slab(k));
5629 }
5630
5631 static const struct sysfs_ops slab_sysfs_ops = {
5632 .show = slab_attr_show,
5633 .store = slab_attr_store,
5634 };
5635
5636 static struct kobj_type slab_ktype = {
5637 .sysfs_ops = &slab_sysfs_ops,
5638 .release = kmem_cache_release,
5639 };
5640
5641 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5642 {
5643 struct kobj_type *ktype = get_ktype(kobj);
5644
5645 if (ktype == &slab_ktype)
5646 return 1;
5647 return 0;
5648 }
5649
5650 static const struct kset_uevent_ops slab_uevent_ops = {
5651 .filter = uevent_filter,
5652 };
5653
5654 static struct kset *slab_kset;
5655
5656 static inline struct kset *cache_kset(struct kmem_cache *s)
5657 {
5658 #ifdef CONFIG_MEMCG
5659 if (!is_root_cache(s))
5660 return s->memcg_params.root_cache->memcg_kset;
5661 #endif
5662 return slab_kset;
5663 }
5664
5665 #define ID_STR_LENGTH 64
5666
5667 /* Create a unique string id for a slab cache:
5668 *
5669 * Format :[flags-]size
5670 */
5671 static char *create_unique_id(struct kmem_cache *s)
5672 {
5673 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5674 char *p = name;
5675
5676 BUG_ON(!name);
5677
5678 *p++ = ':';
5679 /*
5680 * First flags affecting slabcache operations. We will only
5681 * get here for aliasable slabs so we do not need to support
5682 * too many flags. The flags here must cover all flags that
5683 * are matched during merging to guarantee that the id is
5684 * unique.
5685 */
5686 if (s->flags & SLAB_CACHE_DMA)
5687 *p++ = 'd';
5688 if (s->flags & SLAB_CACHE_DMA32)
5689 *p++ = 'D';
5690 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5691 *p++ = 'a';
5692 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5693 *p++ = 'F';
5694 if (s->flags & SLAB_ACCOUNT)
5695 *p++ = 'A';
5696 if (p != name + 1)
5697 *p++ = '-';
5698 p += sprintf(p, "%07u", s->size);
5699
5700 BUG_ON(p > name + ID_STR_LENGTH - 1);
5701 return name;
5702 }
5703
5704 static void sysfs_slab_remove_workfn(struct work_struct *work)
5705 {
5706 struct kmem_cache *s =
5707 container_of(work, struct kmem_cache, kobj_remove_work);
5708
5709 if (!s->kobj.state_in_sysfs)
5710 /*
5711 * For a memcg cache, this may be called during
5712 * deactivation and again on shutdown. Remove only once.
5713 * A cache is never shut down before deactivation is
5714 * complete, so no need to worry about synchronization.
5715 */
5716 goto out;
5717
5718 #ifdef CONFIG_MEMCG
5719 kset_unregister(s->memcg_kset);
5720 #endif
5721 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5722 out:
5723 kobject_put(&s->kobj);
5724 }
5725
5726 static int sysfs_slab_add(struct kmem_cache *s)
5727 {
5728 int err;
5729 const char *name;
5730 struct kset *kset = cache_kset(s);
5731 int unmergeable = slab_unmergeable(s);
5732
5733 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5734
5735 if (!kset) {
5736 kobject_init(&s->kobj, &slab_ktype);
5737 return 0;
5738 }
5739
5740 if (!unmergeable && disable_higher_order_debug &&
5741 (slub_debug & DEBUG_METADATA_FLAGS))
5742 unmergeable = 1;
5743
5744 if (unmergeable) {
5745 /*
5746 * Slabcache can never be merged so we can use the name proper.
5747 * This is typically the case for debug situations. In that
5748 * case we can catch duplicate names easily.
5749 */
5750 sysfs_remove_link(&slab_kset->kobj, s->name);
5751 name = s->name;
5752 } else {
5753 /*
5754 * Create a unique name for the slab as a target
5755 * for the symlinks.
5756 */
5757 name = create_unique_id(s);
5758 }
5759
5760 s->kobj.kset = kset;
5761 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5762 if (err)
5763 goto out;
5764
5765 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5766 if (err)
5767 goto out_del_kobj;
5768
5769 #ifdef CONFIG_MEMCG
5770 if (is_root_cache(s) && memcg_sysfs_enabled) {
5771 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5772 if (!s->memcg_kset) {
5773 err = -ENOMEM;
5774 goto out_del_kobj;
5775 }
5776 }
5777 #endif
5778
5779 kobject_uevent(&s->kobj, KOBJ_ADD);
5780 if (!unmergeable) {
5781 /* Setup first alias */
5782 sysfs_slab_alias(s, s->name);
5783 }
5784 out:
5785 if (!unmergeable)
5786 kfree(name);
5787 return err;
5788 out_del_kobj:
5789 kobject_del(&s->kobj);
5790 goto out;
5791 }
5792
5793 static void sysfs_slab_remove(struct kmem_cache *s)
5794 {
5795 if (slab_state < FULL)
5796 /*
5797 * Sysfs has not been setup yet so no need to remove the
5798 * cache from sysfs.
5799 */
5800 return;
5801
5802 kobject_get(&s->kobj);
5803 schedule_work(&s->kobj_remove_work);
5804 }
5805
5806 void sysfs_slab_unlink(struct kmem_cache *s)
5807 {
5808 if (slab_state >= FULL)
5809 kobject_del(&s->kobj);
5810 }
5811
5812 void sysfs_slab_release(struct kmem_cache *s)
5813 {
5814 if (slab_state >= FULL)
5815 kobject_put(&s->kobj);
5816 }
5817
5818 /*
5819 * Need to buffer aliases during bootup until sysfs becomes
5820 * available lest we lose that information.
5821 */
5822 struct saved_alias {
5823 struct kmem_cache *s;
5824 const char *name;
5825 struct saved_alias *next;
5826 };
5827
5828 static struct saved_alias *alias_list;
5829
5830 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5831 {
5832 struct saved_alias *al;
5833
5834 if (slab_state == FULL) {
5835 /*
5836 * If we have a leftover link then remove it.
5837 */
5838 sysfs_remove_link(&slab_kset->kobj, name);
5839 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5840 }
5841
5842 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5843 if (!al)
5844 return -ENOMEM;
5845
5846 al->s = s;
5847 al->name = name;
5848 al->next = alias_list;
5849 alias_list = al;
5850 return 0;
5851 }
5852
5853 static int __init slab_sysfs_init(void)
5854 {
5855 struct kmem_cache *s;
5856 int err;
5857
5858 mutex_lock(&slab_mutex);
5859
5860 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5861 if (!slab_kset) {
5862 mutex_unlock(&slab_mutex);
5863 pr_err("Cannot register slab subsystem.\n");
5864 return -ENOSYS;
5865 }
5866
5867 slab_state = FULL;
5868
5869 list_for_each_entry(s, &slab_caches, list) {
5870 err = sysfs_slab_add(s);
5871 if (err)
5872 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5873 s->name);
5874 }
5875
5876 while (alias_list) {
5877 struct saved_alias *al = alias_list;
5878
5879 alias_list = alias_list->next;
5880 err = sysfs_slab_alias(al->s, al->name);
5881 if (err)
5882 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5883 al->name);
5884 kfree(al);
5885 }
5886
5887 mutex_unlock(&slab_mutex);
5888 resiliency_test();
5889 return 0;
5890 }
5891
5892 __initcall(slab_sysfs_init);
5893 #endif /* CONFIG_SYSFS */
5894
5895 /*
5896 * The /proc/slabinfo ABI
5897 */
5898 #ifdef CONFIG_SLUB_DEBUG
5899 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5900 {
5901 unsigned long nr_slabs = 0;
5902 unsigned long nr_objs = 0;
5903 unsigned long nr_free = 0;
5904 int node;
5905 struct kmem_cache_node *n;
5906
5907 for_each_kmem_cache_node(s, node, n) {
5908 nr_slabs += node_nr_slabs(n);
5909 nr_objs += node_nr_objs(n);
5910 nr_free += count_partial(n, count_free);
5911 }
5912
5913 sinfo->active_objs = nr_objs - nr_free;
5914 sinfo->num_objs = nr_objs;
5915 sinfo->active_slabs = nr_slabs;
5916 sinfo->num_slabs = nr_slabs;
5917 sinfo->objects_per_slab = oo_objects(s->oo);
5918 sinfo->cache_order = oo_order(s->oo);
5919 }
5920
5921 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5922 {
5923 }
5924
5925 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5926 size_t count, loff_t *ppos)
5927 {
5928 return -EIO;
5929 }
5930 #endif /* CONFIG_SLUB_DEBUG */