bmips: improve rx loop
[openwrt/staging/noltari.git] / target / linux / bmips / files / drivers / net / ethernet / broadcom / bcm6368-enetsw.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * BCM6368 Ethernet Switch Controller Driver
4 *
5 * Copyright (C) 2021 Álvaro Fernández Rojas <noltari@gmail.com>
6 * Copyright (C) 2015 Jonas Gorski <jonas.gorski@gmail.com>
7 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
8 */
9
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/ethtool.h>
15 #include <linux/if_vlan.h>
16 #include <linux/interrupt.h>
17 #include <linux/of_clk.h>
18 #include <linux/of_net.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_domain.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/reset.h>
23
24 /* MTU */
25 #define ENETSW_TAG_SIZE 6
26 #define ENETSW_MTU_OVERHEAD (VLAN_ETH_HLEN + VLAN_HLEN + \
27 ENETSW_TAG_SIZE)
28 #define ENETSW_FRAG_SIZE(x) (SKB_DATA_ALIGN(NET_SKB_PAD + x + \
29 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))))
30
31 /* default number of descriptor */
32 #define ENETSW_DEF_RX_DESC 64
33 #define ENETSW_DEF_TX_DESC 32
34 #define ENETSW_DEF_CPY_BREAK 128
35
36 /* maximum burst len for dma (4 bytes unit) */
37 #define ENETSW_DMA_MAXBURST 8
38
39 /* DMA channels */
40 #define DMA_CHAN_WIDTH 0x10
41
42 /* Controller Configuration Register */
43 #define DMA_CFG_REG 0x0
44 #define DMA_CFG_EN_SHIFT 0
45 #define DMA_CFG_EN_MASK (1 << DMA_CFG_EN_SHIFT)
46 #define DMA_CFG_FLOWCH_MASK(x) (1 << ((x >> 1) + 1))
47
48 /* Flow Control Descriptor Low Threshold register */
49 #define DMA_FLOWCL_REG(x) (0x4 + (x) * 6)
50
51 /* Flow Control Descriptor High Threshold register */
52 #define DMA_FLOWCH_REG(x) (0x8 + (x) * 6)
53
54 /* Flow Control Descriptor Buffer Alloca Threshold register */
55 #define DMA_BUFALLOC_REG(x) (0xc + (x) * 6)
56 #define DMA_BUFALLOC_FORCE_SHIFT 31
57 #define DMA_BUFALLOC_FORCE_MASK (1 << DMA_BUFALLOC_FORCE_SHIFT)
58
59 /* Channel Configuration register */
60 #define DMAC_CHANCFG_REG 0x0
61 #define DMAC_CHANCFG_EN_SHIFT 0
62 #define DMAC_CHANCFG_EN_MASK (1 << DMAC_CHANCFG_EN_SHIFT)
63 #define DMAC_CHANCFG_PKTHALT_SHIFT 1
64 #define DMAC_CHANCFG_PKTHALT_MASK (1 << DMAC_CHANCFG_PKTHALT_SHIFT)
65 #define DMAC_CHANCFG_BUFHALT_SHIFT 2
66 #define DMAC_CHANCFG_BUFHALT_MASK (1 << DMAC_CHANCFG_BUFHALT_SHIFT)
67 #define DMAC_CHANCFG_CHAINING_SHIFT 2
68 #define DMAC_CHANCFG_CHAINING_MASK (1 << DMAC_CHANCFG_CHAINING_SHIFT)
69 #define DMAC_CHANCFG_WRAP_EN_SHIFT 3
70 #define DMAC_CHANCFG_WRAP_EN_MASK (1 << DMAC_CHANCFG_WRAP_EN_SHIFT)
71 #define DMAC_CHANCFG_FLOWC_EN_SHIFT 4
72 #define DMAC_CHANCFG_FLOWC_EN_MASK (1 << DMAC_CHANCFG_FLOWC_EN_SHIFT)
73
74 /* Interrupt Control/Status register */
75 #define DMAC_IR_REG 0x4
76 #define DMAC_IR_BUFDONE_MASK (1 << 0)
77 #define DMAC_IR_PKTDONE_MASK (1 << 1)
78 #define DMAC_IR_NOTOWNER_MASK (1 << 2)
79
80 /* Interrupt Mask register */
81 #define DMAC_IRMASK_REG 0x8
82
83 /* Maximum Burst Length */
84 #define DMAC_MAXBURST_REG 0xc
85
86 /* Ring Start Address register */
87 #define DMAS_RSTART_REG 0x0
88
89 /* State Ram Word 2 */
90 #define DMAS_SRAM2_REG 0x4
91
92 /* State Ram Word 3 */
93 #define DMAS_SRAM3_REG 0x8
94
95 /* State Ram Word 4 */
96 #define DMAS_SRAM4_REG 0xc
97
98 struct bcm6368_enetsw_desc {
99 u32 len_stat;
100 u32 address;
101 };
102
103 /* control */
104 #define DMADESC_LENGTH_SHIFT 16
105 #define DMADESC_LENGTH_MASK (0xfff << DMADESC_LENGTH_SHIFT)
106 #define DMADESC_OWNER_MASK (1 << 15)
107 #define DMADESC_EOP_MASK (1 << 14)
108 #define DMADESC_SOP_MASK (1 << 13)
109 #define DMADESC_ESOP_MASK (DMADESC_EOP_MASK | DMADESC_SOP_MASK)
110 #define DMADESC_WRAP_MASK (1 << 12)
111 #define DMADESC_USB_NOZERO_MASK (1 << 1)
112 #define DMADESC_USB_ZERO_MASK (1 << 0)
113
114 /* status */
115 #define DMADESC_UNDER_MASK (1 << 9)
116 #define DMADESC_APPEND_CRC (1 << 8)
117 #define DMADESC_OVSIZE_MASK (1 << 4)
118 #define DMADESC_RXER_MASK (1 << 2)
119 #define DMADESC_CRC_MASK (1 << 1)
120 #define DMADESC_OV_MASK (1 << 0)
121 #define DMADESC_ERR_MASK (DMADESC_UNDER_MASK | \
122 DMADESC_OVSIZE_MASK | \
123 DMADESC_RXER_MASK | \
124 DMADESC_CRC_MASK | \
125 DMADESC_OV_MASK)
126
127 struct bcm6368_enetsw {
128 void __iomem *dma_base;
129 void __iomem *dma_chan;
130 void __iomem *dma_sram;
131
132 struct device **pm;
133 struct device_link **link_pm;
134 int num_pms;
135
136 struct clk **clock;
137 unsigned int num_clocks;
138
139 struct reset_control **reset;
140 unsigned int num_resets;
141
142 int copybreak;
143
144 int irq_rx;
145 int irq_tx;
146
147 /* hw view of rx & tx dma ring */
148 dma_addr_t rx_desc_dma;
149 dma_addr_t tx_desc_dma;
150
151 /* allocated size (in bytes) for rx & tx dma ring */
152 unsigned int rx_desc_alloc_size;
153 unsigned int tx_desc_alloc_size;
154
155 struct napi_struct napi;
156
157 /* dma channel id for rx */
158 int rx_chan;
159
160 /* number of dma desc in rx ring */
161 int rx_ring_size;
162
163 /* cpu view of rx dma ring */
164 struct bcm6368_enetsw_desc *rx_desc_cpu;
165
166 /* current number of armed descriptor given to hardware for rx */
167 int rx_desc_count;
168
169 /* next rx descriptor to fetch from hardware */
170 int rx_curr_desc;
171
172 /* next dirty rx descriptor to refill */
173 int rx_dirty_desc;
174
175 /* size of allocated rx buffer */
176 unsigned int rx_buf_size;
177
178 /* size of allocated rx frag */
179 unsigned int rx_frag_size;
180
181 /* list of buffer given to hw for rx */
182 unsigned char **rx_buf;
183
184 /* used when rx buffer allocation failed, so we defer rx queue
185 * refill */
186 struct timer_list rx_timeout;
187
188 /* lock rx_timeout against rx normal operation */
189 spinlock_t rx_lock;
190
191 /* dma channel id for tx */
192 int tx_chan;
193
194 /* number of dma desc in tx ring */
195 int tx_ring_size;
196
197 /* maximum dma burst size */
198 int dma_maxburst;
199
200 /* cpu view of rx dma ring */
201 struct bcm6368_enetsw_desc *tx_desc_cpu;
202
203 /* number of available descriptor for tx */
204 int tx_desc_count;
205
206 /* next tx descriptor avaiable */
207 int tx_curr_desc;
208
209 /* next dirty tx descriptor to reclaim */
210 int tx_dirty_desc;
211
212 /* list of skb given to hw for tx */
213 struct sk_buff **tx_skb;
214
215 /* lock used by tx reclaim and xmit */
216 spinlock_t tx_lock;
217
218 /* network device reference */
219 struct net_device *net_dev;
220
221 /* platform device reference */
222 struct platform_device *pdev;
223
224 /* dma channel enable mask */
225 u32 dma_chan_en_mask;
226
227 /* dma channel interrupt mask */
228 u32 dma_chan_int_mask;
229
230 /* dma channel width */
231 unsigned int dma_chan_width;
232 };
233
234 static inline void dma_writel(struct bcm6368_enetsw *priv, u32 val, u32 off)
235 {
236 __raw_writel(val, priv->dma_base + off);
237 }
238
239 static inline u32 dma_readl(struct bcm6368_enetsw *priv, u32 off, int chan)
240 {
241 return __raw_readl(priv->dma_chan + off + chan * priv->dma_chan_width);
242 }
243
244 static inline void dmac_writel(struct bcm6368_enetsw *priv, u32 val,
245 u32 off, int chan)
246 {
247 __raw_writel(val, priv->dma_chan + off + chan * priv->dma_chan_width);
248 }
249
250 static inline void dmas_writel(struct bcm6368_enetsw *priv, u32 val,
251 u32 off, int chan)
252 {
253 __raw_writel(val, priv->dma_sram + off + chan * priv->dma_chan_width);
254 }
255
256 /*
257 * refill rx queue
258 */
259 static int bcm6368_enetsw_refill_rx(struct net_device *dev, bool napi_mode)
260 {
261 struct bcm6368_enetsw *priv = netdev_priv(dev);
262
263 while (priv->rx_desc_count < priv->rx_ring_size) {
264 struct bcm6368_enetsw_desc *desc;
265 int desc_idx;
266 u32 len_stat;
267
268 desc_idx = priv->rx_dirty_desc;
269 desc = &priv->rx_desc_cpu[desc_idx];
270
271 if (!priv->rx_buf[desc_idx]) {
272 unsigned char *buf;
273
274 if (likely(napi_mode))
275 buf = napi_alloc_frag(priv->rx_frag_size);
276 else
277 buf = netdev_alloc_frag(priv->rx_frag_size);
278
279 if (unlikely(!buf))
280 break;
281
282 priv->rx_buf[desc_idx] = buf;
283 desc->address = dma_map_single(&priv->pdev->dev,
284 buf + NET_SKB_PAD,
285 priv->rx_buf_size,
286 DMA_FROM_DEVICE);
287 }
288
289 len_stat = priv->rx_buf_size << DMADESC_LENGTH_SHIFT;
290 len_stat |= DMADESC_OWNER_MASK;
291 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
292 len_stat |= DMADESC_WRAP_MASK;
293 priv->rx_dirty_desc = 0;
294 } else {
295 priv->rx_dirty_desc++;
296 }
297 wmb();
298 desc->len_stat = len_stat;
299
300 priv->rx_desc_count++;
301
302 /* tell dma engine we allocated one buffer */
303 dma_writel(priv, 1, DMA_BUFALLOC_REG(priv->rx_chan));
304 }
305
306 /* If rx ring is still empty, set a timer to try allocating
307 * again at a later time. */
308 if (priv->rx_desc_count == 0 && netif_running(dev)) {
309 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
310 priv->rx_timeout.expires = jiffies + HZ;
311 add_timer(&priv->rx_timeout);
312 }
313
314 return 0;
315 }
316
317 /*
318 * timer callback to defer refill rx queue in case we're OOM
319 */
320 static void bcm6368_enetsw_refill_rx_timer(struct timer_list *t)
321 {
322 struct bcm6368_enetsw *priv = from_timer(priv, t, rx_timeout);
323 struct net_device *dev = priv->net_dev;
324
325 spin_lock(&priv->rx_lock);
326 bcm6368_enetsw_refill_rx(dev, false);
327 spin_unlock(&priv->rx_lock);
328 }
329
330 /*
331 * extract packet from rx queue
332 */
333 static int bcm6368_enetsw_receive_queue(struct net_device *dev, int budget)
334 {
335 struct bcm6368_enetsw *priv = netdev_priv(dev);
336 struct device *kdev = &priv->pdev->dev;
337 int processed = 0;
338
339 /* don't scan ring further than number of refilled
340 * descriptor */
341 if (budget > priv->rx_desc_count)
342 budget = priv->rx_desc_count;
343
344 do {
345 struct bcm6368_enetsw_desc *desc;
346 unsigned int frag_size;
347 struct sk_buff *skb;
348 unsigned char *buf;
349 int desc_idx;
350 u32 len_stat;
351 unsigned int len;
352
353 desc_idx = priv->rx_curr_desc;
354 desc = &priv->rx_desc_cpu[desc_idx];
355
356 /* make sure we actually read the descriptor status at
357 * each loop */
358 rmb();
359
360 len_stat = desc->len_stat;
361
362 /* break if dma ownership belongs to hw */
363 if (len_stat & DMADESC_OWNER_MASK)
364 break;
365
366 processed++;
367 priv->rx_curr_desc++;
368 if (priv->rx_curr_desc == priv->rx_ring_size)
369 priv->rx_curr_desc = 0;
370
371 /* if the packet does not have start of packet _and_
372 * end of packet flag set, then just recycle it */
373 if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
374 dev->stats.rx_dropped++;
375 continue;
376 }
377
378 /* valid packet */
379 buf = priv->rx_buf[desc_idx];
380 len = (len_stat & DMADESC_LENGTH_MASK)
381 >> DMADESC_LENGTH_SHIFT;
382 /* don't include FCS */
383 len -= 4;
384
385 if (len < priv->copybreak) {
386 unsigned int nfrag_size = ENETSW_FRAG_SIZE(len);
387 unsigned char *nbuf = napi_alloc_frag(nfrag_size);
388
389 if (unlikely(!nbuf)) {
390 /* forget packet, just rearm desc */
391 dev->stats.rx_dropped++;
392 continue;
393 }
394
395 dma_sync_single_for_cpu(kdev, desc->address,
396 len, DMA_FROM_DEVICE);
397 memcpy(nbuf + NET_SKB_PAD, buf + NET_SKB_PAD, len);
398 dma_sync_single_for_device(kdev, desc->address,
399 len, DMA_FROM_DEVICE);
400 buf = nbuf;
401 frag_size = nfrag_size;
402 } else {
403 dma_unmap_single(kdev, desc->address,
404 priv->rx_buf_size, DMA_FROM_DEVICE);
405 priv->rx_buf[desc_idx] = NULL;
406 frag_size = priv->rx_frag_size;
407 }
408
409 skb = napi_build_skb(buf, frag_size);
410 if (unlikely(!skb)) {
411 skb_free_frag(buf);
412 dev->stats.rx_dropped++;
413 continue;
414 }
415
416 skb_reserve(skb, NET_SKB_PAD);
417 skb_put(skb, len);
418 skb->protocol = eth_type_trans(skb, dev);
419 dev->stats.rx_packets++;
420 dev->stats.rx_bytes += len;
421 netif_receive_skb(skb);
422 } while (processed < budget);
423
424 priv->rx_desc_count -= processed;
425
426 if (processed || !priv->rx_desc_count) {
427 bcm6368_enetsw_refill_rx(dev, true);
428
429 /* kick rx dma */
430 dmac_writel(priv, priv->dma_chan_en_mask,
431 DMAC_CHANCFG_REG, priv->rx_chan);
432 }
433
434 return processed;
435 }
436
437 /*
438 * try to or force reclaim of transmitted buffers
439 */
440 static int bcm6368_enetsw_tx_reclaim(struct net_device *dev, int force)
441 {
442 struct bcm6368_enetsw *priv = netdev_priv(dev);
443 int released = 0;
444
445 while (priv->tx_desc_count < priv->tx_ring_size) {
446 struct bcm6368_enetsw_desc *desc;
447 struct sk_buff *skb;
448
449 /* We run in a bh and fight against start_xmit, which
450 * is called with bh disabled */
451 spin_lock(&priv->tx_lock);
452
453 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
454
455 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
456 spin_unlock(&priv->tx_lock);
457 break;
458 }
459
460 /* ensure other field of the descriptor were not read
461 * before we checked ownership */
462 rmb();
463
464 skb = priv->tx_skb[priv->tx_dirty_desc];
465 priv->tx_skb[priv->tx_dirty_desc] = NULL;
466 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
467 DMA_TO_DEVICE);
468
469 priv->tx_dirty_desc++;
470 if (priv->tx_dirty_desc == priv->tx_ring_size)
471 priv->tx_dirty_desc = 0;
472 priv->tx_desc_count++;
473
474 spin_unlock(&priv->tx_lock);
475
476 if (desc->len_stat & DMADESC_UNDER_MASK)
477 dev->stats.tx_errors++;
478
479 napi_consume_skb(skb, !force);
480 released++;
481 }
482
483 if (netif_queue_stopped(dev) && released)
484 netif_wake_queue(dev);
485
486 return released;
487 }
488
489 /*
490 * poll func, called by network core
491 */
492 static int bcm6368_enetsw_poll(struct napi_struct *napi, int budget)
493 {
494 struct bcm6368_enetsw *priv = container_of(napi, struct bcm6368_enetsw, napi);
495 struct net_device *dev = priv->net_dev;
496 int rx_work_done;
497
498 /* ack interrupts */
499 dmac_writel(priv, priv->dma_chan_int_mask,
500 DMAC_IR_REG, priv->rx_chan);
501 dmac_writel(priv, priv->dma_chan_int_mask,
502 DMAC_IR_REG, priv->tx_chan);
503
504 /* reclaim sent skb */
505 bcm6368_enetsw_tx_reclaim(dev, 0);
506
507 spin_lock(&priv->rx_lock);
508 rx_work_done = bcm6368_enetsw_receive_queue(dev, budget);
509 spin_unlock(&priv->rx_lock);
510
511 if (rx_work_done >= budget) {
512 /* rx queue is not yet empty/clean */
513 return rx_work_done;
514 }
515
516 /* no more packet in rx/tx queue, remove device from poll
517 * queue */
518 napi_complete_done(napi, rx_work_done);
519
520 /* restore rx/tx interrupt */
521 dmac_writel(priv, priv->dma_chan_int_mask,
522 DMAC_IRMASK_REG, priv->rx_chan);
523 dmac_writel(priv, priv->dma_chan_int_mask,
524 DMAC_IRMASK_REG, priv->tx_chan);
525
526 return rx_work_done;
527 }
528
529 /*
530 * rx/tx dma interrupt handler
531 */
532 static irqreturn_t bcm6368_enetsw_isr_dma(int irq, void *dev_id)
533 {
534 struct net_device *dev = dev_id;
535 struct bcm6368_enetsw *priv = netdev_priv(dev);
536
537 /* mask rx/tx interrupts */
538 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
539 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
540
541 napi_schedule(&priv->napi);
542
543 return IRQ_HANDLED;
544 }
545
546 /*
547 * tx request callback
548 */
549 static netdev_tx_t
550 bcm6368_enetsw_start_xmit(struct sk_buff *skb, struct net_device *dev)
551 {
552 struct bcm6368_enetsw *priv = netdev_priv(dev);
553 struct bcm6368_enetsw_desc *desc;
554 u32 len_stat;
555 netdev_tx_t ret;
556
557 /* lock against tx reclaim */
558 spin_lock(&priv->tx_lock);
559
560 /* make sure the tx hw queue is not full, should not happen
561 * since we stop queue before it's the case */
562 if (unlikely(!priv->tx_desc_count)) {
563 netif_stop_queue(dev);
564 dev_err(&priv->pdev->dev, "xmit called with no tx desc "
565 "available?\n");
566 ret = NETDEV_TX_BUSY;
567 goto out_unlock;
568 }
569
570 /* pad small packets */
571 if (skb->len < (ETH_ZLEN + ETH_FCS_LEN)) {
572 int needed = (ETH_ZLEN + ETH_FCS_LEN) - skb->len;
573 char *data;
574
575 if (unlikely(skb_tailroom(skb) < needed)) {
576 struct sk_buff *nskb;
577
578 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
579 if (!nskb) {
580 ret = NETDEV_TX_BUSY;
581 goto out_unlock;
582 }
583
584 dev_kfree_skb(skb);
585 skb = nskb;
586 }
587 data = skb_put_zero(skb, needed);
588 }
589
590 /* point to the next available desc */
591 desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
592 priv->tx_skb[priv->tx_curr_desc] = skb;
593
594 /* fill descriptor */
595 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
596 DMA_TO_DEVICE);
597
598 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
599 len_stat |= DMADESC_ESOP_MASK | DMADESC_APPEND_CRC |
600 DMADESC_OWNER_MASK;
601
602 priv->tx_curr_desc++;
603 if (priv->tx_curr_desc == priv->tx_ring_size) {
604 priv->tx_curr_desc = 0;
605 len_stat |= DMADESC_WRAP_MASK;
606 }
607 priv->tx_desc_count--;
608
609 /* dma might be already polling, make sure we update desc
610 * fields in correct order */
611 wmb();
612 desc->len_stat = len_stat;
613 wmb();
614
615 /* kick tx dma */
616 dmac_writel(priv, priv->dma_chan_en_mask, DMAC_CHANCFG_REG,
617 priv->tx_chan);
618
619 /* stop queue if no more desc available */
620 if (!priv->tx_desc_count)
621 netif_stop_queue(dev);
622
623 dev->stats.tx_bytes += skb->len;
624 dev->stats.tx_packets++;
625 ret = NETDEV_TX_OK;
626
627 out_unlock:
628 spin_unlock(&priv->tx_lock);
629 return ret;
630 }
631
632 /*
633 * disable dma in given channel
634 */
635 static void bcm6368_enetsw_disable_dma(struct bcm6368_enetsw *priv, int chan)
636 {
637 int limit = 1000;
638
639 dmac_writel(priv, 0, DMAC_CHANCFG_REG, chan);
640
641 do {
642 u32 val;
643
644 val = dma_readl(priv, DMAC_CHANCFG_REG, chan);
645 if (!(val & DMAC_CHANCFG_EN_MASK))
646 break;
647
648 udelay(1);
649 } while (limit--);
650 }
651
652 static int bcm6368_enetsw_open(struct net_device *dev)
653 {
654 struct bcm6368_enetsw *priv = netdev_priv(dev);
655 struct device *kdev = &priv->pdev->dev;
656 int i, ret;
657 unsigned int size;
658 void *p;
659 u32 val;
660
661 /* mask all interrupts and request them */
662 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
663 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
664
665 ret = request_irq(priv->irq_rx, bcm6368_enetsw_isr_dma,
666 0, dev->name, dev);
667 if (ret)
668 goto out_freeirq;
669
670 if (priv->irq_tx != -1) {
671 ret = request_irq(priv->irq_tx, bcm6368_enetsw_isr_dma,
672 0, dev->name, dev);
673 if (ret)
674 goto out_freeirq_rx;
675 }
676
677 /* allocate rx dma ring */
678 size = priv->rx_ring_size * sizeof(struct bcm6368_enetsw_desc);
679 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
680 if (!p) {
681 dev_err(kdev, "cannot allocate rx ring %u\n", size);
682 ret = -ENOMEM;
683 goto out_freeirq_tx;
684 }
685
686 memset(p, 0, size);
687 priv->rx_desc_alloc_size = size;
688 priv->rx_desc_cpu = p;
689
690 /* allocate tx dma ring */
691 size = priv->tx_ring_size * sizeof(struct bcm6368_enetsw_desc);
692 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
693 if (!p) {
694 dev_err(kdev, "cannot allocate tx ring\n");
695 ret = -ENOMEM;
696 goto out_free_rx_ring;
697 }
698
699 memset(p, 0, size);
700 priv->tx_desc_alloc_size = size;
701 priv->tx_desc_cpu = p;
702
703 priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
704 GFP_KERNEL);
705 if (!priv->tx_skb) {
706 dev_err(kdev, "cannot allocate tx skb queue\n");
707 ret = -ENOMEM;
708 goto out_free_tx_ring;
709 }
710
711 priv->tx_desc_count = priv->tx_ring_size;
712 priv->tx_dirty_desc = 0;
713 priv->tx_curr_desc = 0;
714 spin_lock_init(&priv->tx_lock);
715
716 /* init & fill rx ring with buffers */
717 priv->rx_buf = kzalloc(sizeof(unsigned char *) * priv->rx_ring_size,
718 GFP_KERNEL);
719 if (!priv->rx_buf) {
720 dev_err(kdev, "cannot allocate rx buffer queue\n");
721 ret = -ENOMEM;
722 goto out_free_tx_skb;
723 }
724
725 priv->rx_desc_count = 0;
726 priv->rx_dirty_desc = 0;
727 priv->rx_curr_desc = 0;
728
729 /* initialize flow control buffer allocation */
730 dma_writel(priv, DMA_BUFALLOC_FORCE_MASK | 0,
731 DMA_BUFALLOC_REG(priv->rx_chan));
732
733 if (bcm6368_enetsw_refill_rx(dev, false)) {
734 dev_err(kdev, "cannot allocate rx buffer queue\n");
735 ret = -ENOMEM;
736 goto out;
737 }
738
739 /* write rx & tx ring addresses */
740 dmas_writel(priv, priv->rx_desc_dma,
741 DMAS_RSTART_REG, priv->rx_chan);
742 dmas_writel(priv, priv->tx_desc_dma,
743 DMAS_RSTART_REG, priv->tx_chan);
744
745 /* clear remaining state ram for rx & tx channel */
746 dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->rx_chan);
747 dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->tx_chan);
748 dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->rx_chan);
749 dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->tx_chan);
750 dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->rx_chan);
751 dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->tx_chan);
752
753 /* set dma maximum burst len */
754 dmac_writel(priv, priv->dma_maxburst,
755 DMAC_MAXBURST_REG, priv->rx_chan);
756 dmac_writel(priv, priv->dma_maxburst,
757 DMAC_MAXBURST_REG, priv->tx_chan);
758
759 /* set flow control low/high threshold to 1/3 / 2/3 */
760 val = priv->rx_ring_size / 3;
761 dma_writel(priv, val, DMA_FLOWCL_REG(priv->rx_chan));
762 val = (priv->rx_ring_size * 2) / 3;
763 dma_writel(priv, val, DMA_FLOWCH_REG(priv->rx_chan));
764
765 /* all set, enable mac and interrupts, start dma engine and
766 * kick rx dma channel
767 */
768 wmb();
769 dma_writel(priv, DMA_CFG_EN_MASK, DMA_CFG_REG);
770 dmac_writel(priv, DMAC_CHANCFG_EN_MASK,
771 DMAC_CHANCFG_REG, priv->rx_chan);
772
773 /* watch "packet transferred" interrupt in rx and tx */
774 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
775 DMAC_IR_REG, priv->rx_chan);
776 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
777 DMAC_IR_REG, priv->tx_chan);
778
779 /* make sure we enable napi before rx interrupt */
780 napi_enable(&priv->napi);
781
782 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
783 DMAC_IRMASK_REG, priv->rx_chan);
784 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
785 DMAC_IRMASK_REG, priv->tx_chan);
786
787 netif_carrier_on(dev);
788 netif_start_queue(dev);
789
790 return 0;
791
792 out:
793 for (i = 0; i < priv->rx_ring_size; i++) {
794 struct bcm6368_enetsw_desc *desc;
795
796 if (!priv->rx_buf[i])
797 continue;
798
799 desc = &priv->rx_desc_cpu[i];
800 dma_unmap_single(kdev, desc->address, priv->rx_buf_size,
801 DMA_FROM_DEVICE);
802 skb_free_frag(priv->rx_buf[i]);
803 }
804 kfree(priv->rx_buf);
805
806 out_free_tx_skb:
807 kfree(priv->tx_skb);
808
809 out_free_tx_ring:
810 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
811 priv->tx_desc_cpu, priv->tx_desc_dma);
812
813 out_free_rx_ring:
814 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
815 priv->rx_desc_cpu, priv->rx_desc_dma);
816
817 out_freeirq_tx:
818 if (priv->irq_tx != -1)
819 free_irq(priv->irq_tx, dev);
820
821 out_freeirq_rx:
822 free_irq(priv->irq_rx, dev);
823
824 out_freeirq:
825 return ret;
826 }
827
828 static int bcm6368_enetsw_stop(struct net_device *dev)
829 {
830 struct bcm6368_enetsw *priv = netdev_priv(dev);
831 struct device *kdev = &priv->pdev->dev;
832 int i;
833
834 netif_stop_queue(dev);
835 napi_disable(&priv->napi);
836 del_timer_sync(&priv->rx_timeout);
837
838 /* mask all interrupts */
839 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
840 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
841
842 /* disable dma & mac */
843 bcm6368_enetsw_disable_dma(priv, priv->tx_chan);
844 bcm6368_enetsw_disable_dma(priv, priv->rx_chan);
845
846 /* force reclaim of all tx buffers */
847 bcm6368_enetsw_tx_reclaim(dev, 1);
848
849 /* free the rx buffer ring */
850 for (i = 0; i < priv->rx_ring_size; i++) {
851 struct bcm6368_enetsw_desc *desc;
852
853 if (!priv->rx_buf[i])
854 continue;
855
856 desc = &priv->rx_desc_cpu[i];
857 dma_unmap_single_attrs(kdev, desc->address, priv->rx_buf_size,
858 DMA_FROM_DEVICE,
859 DMA_ATTR_SKIP_CPU_SYNC);
860 skb_free_frag(priv->rx_buf[i]);
861 }
862
863 /* free remaining allocated memory */
864 kfree(priv->rx_buf);
865 kfree(priv->tx_skb);
866 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
867 priv->rx_desc_cpu, priv->rx_desc_dma);
868 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
869 priv->tx_desc_cpu, priv->tx_desc_dma);
870 if (priv->irq_tx != -1)
871 free_irq(priv->irq_tx, dev);
872 free_irq(priv->irq_rx, dev);
873
874 return 0;
875 }
876
877 static const struct net_device_ops bcm6368_enetsw_ops = {
878 .ndo_open = bcm6368_enetsw_open,
879 .ndo_stop = bcm6368_enetsw_stop,
880 .ndo_start_xmit = bcm6368_enetsw_start_xmit,
881 };
882
883 static int bcm6368_enetsw_probe(struct platform_device *pdev)
884 {
885 struct bcm6368_enetsw *priv;
886 struct device *dev = &pdev->dev;
887 struct device_node *node = dev->of_node;
888 struct net_device *ndev;
889 struct resource *res;
890 unsigned i;
891 int ret;
892
893 ndev = alloc_etherdev(sizeof(*priv));
894 if (!ndev)
895 return -ENOMEM;
896
897 priv = netdev_priv(ndev);
898
899 priv->num_pms = of_count_phandle_with_args(node, "power-domains",
900 "#power-domain-cells");
901 if (priv->num_pms > 1) {
902 priv->pm = devm_kcalloc(dev, priv->num_pms,
903 sizeof(struct device *), GFP_KERNEL);
904 if (!priv->pm)
905 return -ENOMEM;
906
907 priv->link_pm = devm_kcalloc(dev, priv->num_pms,
908 sizeof(struct device_link *),
909 GFP_KERNEL);
910 if (!priv->link_pm)
911 return -ENOMEM;
912
913 for (i = 0; i < priv->num_pms; i++) {
914 priv->pm[i] = genpd_dev_pm_attach_by_id(dev, i);
915 if (IS_ERR(priv->pm[i])) {
916 dev_err(dev, "error getting pm %d\n", i);
917 return -EINVAL;
918 }
919
920 priv->link_pm[i] = device_link_add(dev, priv->pm[i],
921 DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME |
922 DL_FLAG_RPM_ACTIVE);
923 }
924 }
925
926 pm_runtime_enable(dev);
927 pm_runtime_no_callbacks(dev);
928 ret = pm_runtime_get_sync(dev);
929 if (ret < 0) {
930 pm_runtime_disable(dev);
931 dev_info(dev, "PM prober defer: ret=%d\n", ret);
932 return -EPROBE_DEFER;
933 }
934
935 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
936 priv->dma_base = devm_ioremap_resource(dev, res);
937 if (IS_ERR(priv->dma_base))
938 return PTR_ERR(priv->dma_base);
939
940 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
941 "dma-channels");
942 priv->dma_chan = devm_ioremap_resource(dev, res);
943 if (IS_ERR(priv->dma_chan))
944 return PTR_ERR(priv->dma_chan);
945
946 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma-sram");
947 priv->dma_sram = devm_ioremap_resource(dev, res);
948 if (IS_ERR(priv->dma_sram))
949 return PTR_ERR(priv->dma_sram);
950
951 priv->irq_rx = platform_get_irq_byname(pdev, "rx");
952 if (!priv->irq_rx)
953 return -ENODEV;
954
955 priv->irq_tx = platform_get_irq_byname(pdev, "tx");
956 if (!priv->irq_tx)
957 return -ENODEV;
958 else if (priv->irq_tx < 0)
959 priv->irq_tx = -1;
960
961 if (device_property_read_u32(dev, "dma-rx", &priv->rx_chan))
962 return -ENODEV;
963
964 if (device_property_read_u32(dev, "dma-tx", &priv->tx_chan))
965 return -ENODEV;
966
967 priv->rx_ring_size = ENETSW_DEF_RX_DESC;
968 priv->tx_ring_size = ENETSW_DEF_TX_DESC;
969
970 priv->dma_maxburst = ENETSW_DMA_MAXBURST;
971
972 priv->copybreak = ENETSW_DEF_CPY_BREAK;
973
974 priv->dma_chan_en_mask = DMAC_CHANCFG_EN_MASK;
975 priv->dma_chan_int_mask = DMAC_IR_PKTDONE_MASK;
976 priv->dma_chan_width = DMA_CHAN_WIDTH;
977
978 of_get_mac_address(node, ndev->dev_addr);
979 if (is_valid_ether_addr(ndev->dev_addr)) {
980 dev_info(dev, "mtd mac %pM\n", ndev->dev_addr);
981 } else {
982 random_ether_addr(ndev->dev_addr);
983 dev_info(dev, "random mac %pM\n", ndev->dev_addr);
984 }
985
986 priv->rx_buf_size = ALIGN(ndev->mtu + ENETSW_MTU_OVERHEAD,
987 priv->dma_maxburst * 4);
988
989 priv->rx_frag_size = ENETSW_FRAG_SIZE(priv->rx_buf_size);
990
991 priv->num_clocks = of_clk_get_parent_count(node);
992 if (priv->num_clocks) {
993 priv->clock = devm_kcalloc(dev, priv->num_clocks,
994 sizeof(struct clk *), GFP_KERNEL);
995 if (!priv->clock)
996 return -ENOMEM;
997 }
998 for (i = 0; i < priv->num_clocks; i++) {
999 priv->clock[i] = of_clk_get(node, i);
1000 if (IS_ERR(priv->clock[i])) {
1001 dev_err(dev, "error getting clock %d\n", i);
1002 return -EINVAL;
1003 }
1004
1005 ret = clk_prepare_enable(priv->clock[i]);
1006 if (ret) {
1007 dev_err(dev, "error enabling clock %d\n", i);
1008 return ret;
1009 }
1010 }
1011
1012 priv->num_resets = of_count_phandle_with_args(node, "resets",
1013 "#reset-cells");
1014 if (priv->num_resets) {
1015 priv->reset = devm_kcalloc(dev, priv->num_resets,
1016 sizeof(struct reset_control *),
1017 GFP_KERNEL);
1018 if (!priv->reset)
1019 return -ENOMEM;
1020 }
1021 for (i = 0; i < priv->num_resets; i++) {
1022 priv->reset[i] = devm_reset_control_get_by_index(dev, i);
1023 if (IS_ERR(priv->reset[i])) {
1024 dev_err(dev, "error getting reset %d\n", i);
1025 return -EINVAL;
1026 }
1027
1028 ret = reset_control_reset(priv->reset[i]);
1029 if (ret) {
1030 dev_err(dev, "error performing reset %d\n", i);
1031 return ret;
1032 }
1033 }
1034
1035 spin_lock_init(&priv->rx_lock);
1036
1037 timer_setup(&priv->rx_timeout, bcm6368_enetsw_refill_rx_timer, 0);
1038
1039 /* register netdevice */
1040 ndev->netdev_ops = &bcm6368_enetsw_ops;
1041 ndev->min_mtu = ETH_ZLEN;
1042 ndev->mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
1043 ndev->max_mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
1044 netif_napi_add(ndev, &priv->napi, bcm6368_enetsw_poll, 16);
1045 SET_NETDEV_DEV(ndev, dev);
1046
1047 ret = register_netdev(ndev);
1048 if (ret)
1049 goto out_disable_clk;
1050
1051 netif_carrier_off(ndev);
1052 platform_set_drvdata(pdev, ndev);
1053 priv->pdev = pdev;
1054 priv->net_dev = ndev;
1055
1056 return 0;
1057
1058 out_disable_clk:
1059 for (i = 0; i < priv->num_resets; i++)
1060 reset_control_assert(priv->reset[i]);
1061
1062 for (i = 0; i < priv->num_clocks; i++)
1063 clk_disable_unprepare(priv->clock[i]);
1064
1065 return ret;
1066 }
1067
1068 static int bcm6368_enetsw_remove(struct platform_device *pdev)
1069 {
1070 struct device *dev = &pdev->dev;
1071 struct net_device *ndev = platform_get_drvdata(pdev);
1072 struct bcm6368_enetsw *priv = netdev_priv(ndev);
1073 unsigned int i;
1074
1075 unregister_netdev(ndev);
1076
1077 pm_runtime_put_sync(dev);
1078 for (i = 0; priv->pm && i < priv->num_pms; i++) {
1079 dev_pm_domain_detach(priv->pm[i], true);
1080 device_link_del(priv->link_pm[i]);
1081 }
1082
1083 for (i = 0; i < priv->num_resets; i++)
1084 reset_control_assert(priv->reset[i]);
1085
1086 for (i = 0; i < priv->num_clocks; i++)
1087 clk_disable_unprepare(priv->clock[i]);
1088
1089 free_netdev(ndev);
1090
1091 return 0;
1092 }
1093
1094 static const struct of_device_id bcm6368_enetsw_of_match[] = {
1095 { .compatible = "brcm,bcm6318-enetsw", },
1096 { .compatible = "brcm,bcm6328-enetsw", },
1097 { .compatible = "brcm,bcm6362-enetsw", },
1098 { .compatible = "brcm,bcm6368-enetsw", },
1099 { .compatible = "brcm,bcm63268-enetsw", },
1100 { /* sentinel */ }
1101 };
1102 MODULE_DEVICE_TABLE(of, bcm6368_enetsw_of_match);
1103
1104 static struct platform_driver bcm6368_enetsw_driver = {
1105 .driver = {
1106 .name = "bcm6368-enetsw",
1107 .of_match_table = of_match_ptr(bcm6368_enetsw_of_match),
1108 },
1109 .probe = bcm6368_enetsw_probe,
1110 .remove = bcm6368_enetsw_remove,
1111 };
1112 module_platform_driver(bcm6368_enetsw_driver);