9ce50989790e12ab45c7dc38c962f39b973ef107
[openwrt/staging/jow.git] / target / linux / realtek / files-5.15 / drivers / net / dsa / rtl83xx / rtl838x.c
1 // SPDX-License-Identifier: GPL-2.0-only
2
3 #include <asm/mach-rtl838x/mach-rtl83xx.h>
4 #include <linux/iopoll.h>
5 #include <net/nexthop.h>
6
7 #include "rtl83xx.h"
8
9 #define RTL838X_VLAN_PORT_TAG_STS_UNTAG 0x0
10 #define RTL838X_VLAN_PORT_TAG_STS_TAGGED 0x1
11 #define RTL838X_VLAN_PORT_TAG_STS_PRIORITY_TAGGED 0x2
12
13 #define RTL838X_VLAN_PORT_TAG_STS_CTRL_BASE 0xA530
14 /* port 0-28 */
15 #define RTL838X_VLAN_PORT_TAG_STS_CTRL(port) \
16 RTL838X_VLAN_PORT_TAG_STS_CTRL_BASE + (port << 2)
17
18 #define RTL838X_VLAN_PORT_TAG_STS_CTRL_EGR_P_OTAG_KEEP_MASK GENMASK(11,10)
19 #define RTL838X_VLAN_PORT_TAG_STS_CTRL_EGR_P_ITAG_KEEP_MASK GENMASK(9,8)
20 #define RTL838X_VLAN_PORT_TAG_STS_CTRL_IGR_P_OTAG_KEEP_MASK GENMASK(7,6)
21 #define RTL838X_VLAN_PORT_TAG_STS_CTRL_IGR_P_ITAG_KEEP_MASK GENMASK(5,4)
22 #define RTL838X_VLAN_PORT_TAG_STS_CTRL_OTAG_STS_MASK GENMASK(3,2)
23 #define RTL838X_VLAN_PORT_TAG_STS_CTRL_ITAG_STS_MASK GENMASK(1,0)
24
25 extern struct mutex smi_lock;
26
27 // see_dal_maple_acl_log2PhyTmplteField and src/app/diag_v2/src/diag_acl.c
28 /* Definition of the RTL838X-specific template field IDs as used in the PIE */
29 enum template_field_id {
30 TEMPLATE_FIELD_SPMMASK = 0,
31 TEMPLATE_FIELD_SPM0 = 1, // Source portmask ports 0-15
32 TEMPLATE_FIELD_SPM1 = 2, // Source portmask ports 16-28
33 TEMPLATE_FIELD_RANGE_CHK = 3,
34 TEMPLATE_FIELD_DMAC0 = 4, // Destination MAC [15:0]
35 TEMPLATE_FIELD_DMAC1 = 5, // Destination MAC [31:16]
36 TEMPLATE_FIELD_DMAC2 = 6, // Destination MAC [47:32]
37 TEMPLATE_FIELD_SMAC0 = 7, // Source MAC [15:0]
38 TEMPLATE_FIELD_SMAC1 = 8, // Source MAC [31:16]
39 TEMPLATE_FIELD_SMAC2 = 9, // Source MAC [47:32]
40 TEMPLATE_FIELD_ETHERTYPE = 10, // Ethernet typ
41 TEMPLATE_FIELD_OTAG = 11, // Outer VLAN tag
42 TEMPLATE_FIELD_ITAG = 12, // Inner VLAN tag
43 TEMPLATE_FIELD_SIP0 = 13, // IPv4 or IPv6 source IP[15:0] or ARP/RARP
44 // source protocol address in header
45 TEMPLATE_FIELD_SIP1 = 14, // IPv4 or IPv6 source IP[31:16] or ARP/RARP
46 TEMPLATE_FIELD_DIP0 = 15, // IPv4 or IPv6 destination IP[15:0]
47 TEMPLATE_FIELD_DIP1 = 16, // IPv4 or IPv6 destination IP[31:16]
48 TEMPLATE_FIELD_IP_TOS_PROTO = 17, // IPv4 TOS/IPv6 traffic class and
49 // IPv4 proto/IPv6 next header fields
50 TEMPLATE_FIELD_L34_HEADER = 18, // packet with extra tag and IPv6 with auth, dest,
51 // frag, route, hop-by-hop option header,
52 // IGMP type, TCP flag
53 TEMPLATE_FIELD_L4_SPORT = 19, // TCP/UDP source port
54 TEMPLATE_FIELD_L4_DPORT = 20, // TCP/UDP destination port
55 TEMPLATE_FIELD_ICMP_IGMP = 21,
56 TEMPLATE_FIELD_IP_RANGE = 22,
57 TEMPLATE_FIELD_FIELD_SELECTOR_VALID = 23, // Field selector mask
58 TEMPLATE_FIELD_FIELD_SELECTOR_0 = 24,
59 TEMPLATE_FIELD_FIELD_SELECTOR_1 = 25,
60 TEMPLATE_FIELD_FIELD_SELECTOR_2 = 26,
61 TEMPLATE_FIELD_FIELD_SELECTOR_3 = 27,
62 TEMPLATE_FIELD_SIP2 = 28, // IPv6 source IP[47:32]
63 TEMPLATE_FIELD_SIP3 = 29, // IPv6 source IP[63:48]
64 TEMPLATE_FIELD_SIP4 = 30, // IPv6 source IP[79:64]
65 TEMPLATE_FIELD_SIP5 = 31, // IPv6 source IP[95:80]
66 TEMPLATE_FIELD_SIP6 = 32, // IPv6 source IP[111:96]
67 TEMPLATE_FIELD_SIP7 = 33, // IPv6 source IP[127:112]
68 TEMPLATE_FIELD_DIP2 = 34, // IPv6 destination IP[47:32]
69 TEMPLATE_FIELD_DIP3 = 35, // IPv6 destination IP[63:48]
70 TEMPLATE_FIELD_DIP4 = 36, // IPv6 destination IP[79:64]
71 TEMPLATE_FIELD_DIP5 = 37, // IPv6 destination IP[95:80]
72 TEMPLATE_FIELD_DIP6 = 38, // IPv6 destination IP[111:96]
73 TEMPLATE_FIELD_DIP7 = 39, // IPv6 destination IP[127:112]
74 TEMPLATE_FIELD_FWD_VID = 40, // Forwarding VLAN-ID
75 TEMPLATE_FIELD_FLOW_LABEL = 41,
76 };
77
78 /*
79 * The RTL838X SoCs use 5 fixed templates with definitions for which data fields are to
80 * be copied from the Ethernet Frame header into the 12 User-definable fields of the Packet
81 * Inspection Engine's buffer. The following defines the field contents for each of the fixed
82 * templates. Additionally, 3 user-definable templates can be set up via the definitions
83 * in RTL838X_ACL_TMPLTE_CTRL control registers.
84 * TODO: See all src/app/diag_v2/src/diag_pie.c
85 */
86 #define N_FIXED_TEMPLATES 5
87 static enum template_field_id fixed_templates[N_FIXED_TEMPLATES][N_FIXED_FIELDS] =
88 {
89 {
90 TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_OTAG,
91 TEMPLATE_FIELD_SMAC0, TEMPLATE_FIELD_SMAC1, TEMPLATE_FIELD_SMAC2,
92 TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
93 TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_ITAG, TEMPLATE_FIELD_RANGE_CHK
94 }, {
95 TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0,
96 TEMPLATE_FIELD_DIP1,TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_L4_SPORT,
97 TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_ITAG,
98 TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1
99 }, {
100 TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
101 TEMPLATE_FIELD_ITAG, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_IP_TOS_PROTO,
102 TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_SIP0,
103 TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1
104 }, {
105 TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_DIP2,
106 TEMPLATE_FIELD_DIP3, TEMPLATE_FIELD_DIP4, TEMPLATE_FIELD_DIP5,
107 TEMPLATE_FIELD_DIP6, TEMPLATE_FIELD_DIP7, TEMPLATE_FIELD_L4_DPORT,
108 TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_IP_TOS_PROTO
109 }, {
110 TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_SIP2,
111 TEMPLATE_FIELD_SIP3, TEMPLATE_FIELD_SIP4, TEMPLATE_FIELD_SIP5,
112 TEMPLATE_FIELD_SIP6, TEMPLATE_FIELD_SIP7, TEMPLATE_FIELD_ITAG,
113 TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1
114 },
115 };
116
117 void rtl838x_print_matrix(void)
118 {
119 unsigned volatile int *ptr8;
120 int i;
121
122 ptr8 = RTL838X_SW_BASE + RTL838X_PORT_ISO_CTRL(0);
123 for (i = 0; i < 28; i += 8)
124 pr_debug("> %8x %8x %8x %8x %8x %8x %8x %8x\n",
125 ptr8[i + 0], ptr8[i + 1], ptr8[i + 2], ptr8[i + 3],
126 ptr8[i + 4], ptr8[i + 5], ptr8[i + 6], ptr8[i + 7]);
127 pr_debug("CPU_PORT> %8x\n", ptr8[28]);
128 }
129
130 static inline int rtl838x_port_iso_ctrl(int p)
131 {
132 return RTL838X_PORT_ISO_CTRL(p);
133 }
134
135 static inline void rtl838x_exec_tbl0_cmd(u32 cmd)
136 {
137 sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_0);
138 do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_0) & BIT(15));
139 }
140
141 static inline void rtl838x_exec_tbl1_cmd(u32 cmd)
142 {
143 sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_1);
144 do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_1) & BIT(15));
145 }
146
147 static inline int rtl838x_tbl_access_data_0(int i)
148 {
149 return RTL838X_TBL_ACCESS_DATA_0(i);
150 }
151
152 static void rtl838x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info)
153 {
154 u32 v;
155 // Read VLAN table (0) via register 0
156 struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 0);
157
158 rtl_table_read(r, vlan);
159 info->tagged_ports = sw_r32(rtl_table_data(r, 0));
160 v = sw_r32(rtl_table_data(r, 1));
161 pr_debug("VLAN_READ %d: %016llx %08x\n", vlan, info->tagged_ports, v);
162 rtl_table_release(r);
163
164 info->profile_id = v & 0x7;
165 info->hash_mc_fid = !!(v & 0x8);
166 info->hash_uc_fid = !!(v & 0x10);
167 info->fid = (v >> 5) & 0x3f;
168
169 // Read UNTAG table (0) via table register 1
170 r = rtl_table_get(RTL8380_TBL_1, 0);
171 rtl_table_read(r, vlan);
172 info->untagged_ports = sw_r32(rtl_table_data(r, 0));
173 rtl_table_release(r);
174 }
175
176 static void rtl838x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info)
177 {
178 u32 v;
179 // Access VLAN table (0) via register 0
180 struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 0);
181
182 sw_w32(info->tagged_ports, rtl_table_data(r, 0));
183
184 v = info->profile_id;
185 v |= info->hash_mc_fid ? 0x8 : 0;
186 v |= info->hash_uc_fid ? 0x10 : 0;
187 v |= ((u32)info->fid) << 5;
188 sw_w32(v, rtl_table_data(r, 1));
189
190 rtl_table_write(r, vlan);
191 rtl_table_release(r);
192 }
193
194 static void rtl838x_vlan_set_untagged(u32 vlan, u64 portmask)
195 {
196 // Access UNTAG table (0) via register 1
197 struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 0);
198
199 sw_w32(portmask & 0x1fffffff, rtl_table_data(r, 0));
200 rtl_table_write(r, vlan);
201 rtl_table_release(r);
202 }
203
204 /* Sets the L2 forwarding to be based on either the inner VLAN tag or the outer
205 */
206 static void rtl838x_vlan_fwd_on_inner(int port, bool is_set)
207 {
208 if (is_set)
209 sw_w32_mask(BIT(port), 0, RTL838X_VLAN_PORT_FWD);
210 else
211 sw_w32_mask(0, BIT(port), RTL838X_VLAN_PORT_FWD);
212 }
213
214 static u64 rtl838x_l2_hash_seed(u64 mac, u32 vid)
215 {
216 return mac << 12 | vid;
217 }
218
219 /*
220 * Applies the same hash algorithm as the one used currently by the ASIC to the seed
221 * and returns a key into the L2 hash table
222 */
223 static u32 rtl838x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed)
224 {
225 u32 h1, h2, h3, h;
226
227 if (sw_r32(priv->r->l2_ctrl_0) & 1) {
228 h1 = (seed >> 11) & 0x7ff;
229 h1 = ((h1 & 0x1f) << 6) | ((h1 >> 5) & 0x3f);
230
231 h2 = (seed >> 33) & 0x7ff;
232 h2 = ((h2 & 0x3f) << 5) | ((h2 >> 6) & 0x1f);
233
234 h3 = (seed >> 44) & 0x7ff;
235 h3 = ((h3 & 0x7f) << 4) | ((h3 >> 7) & 0xf);
236
237 h = h1 ^ h2 ^ h3 ^ ((seed >> 55) & 0x1ff);
238 h ^= ((seed >> 22) & 0x7ff) ^ (seed & 0x7ff);
239 } else {
240 h = ((seed >> 55) & 0x1ff) ^ ((seed >> 44) & 0x7ff)
241 ^ ((seed >> 33) & 0x7ff) ^ ((seed >> 22) & 0x7ff)
242 ^ ((seed >> 11) & 0x7ff) ^ (seed & 0x7ff);
243 }
244
245 return h;
246 }
247
248 static inline int rtl838x_mac_force_mode_ctrl(int p)
249 {
250 return RTL838X_MAC_FORCE_MODE_CTRL + (p << 2);
251 }
252
253 static inline int rtl838x_mac_port_ctrl(int p)
254 {
255 return RTL838X_MAC_PORT_CTRL(p);
256 }
257
258 static inline int rtl838x_l2_port_new_salrn(int p)
259 {
260 return RTL838X_L2_PORT_NEW_SALRN(p);
261 }
262
263 static inline int rtl838x_l2_port_new_sa_fwd(int p)
264 {
265 return RTL838X_L2_PORT_NEW_SA_FWD(p);
266 }
267
268 static inline int rtl838x_mac_link_spd_sts(int p)
269 {
270 return RTL838X_MAC_LINK_SPD_STS(p);
271 }
272
273 inline static int rtl838x_trk_mbr_ctr(int group)
274 {
275 return RTL838X_TRK_MBR_CTR + (group << 2);
276 }
277
278 /*
279 * Fills an L2 entry structure from the SoC registers
280 */
281 static void rtl838x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
282 {
283 /* Table contains different entry types, we need to identify the right one:
284 * Check for MC entries, first
285 * In contrast to the RTL93xx SoCs, there is no valid bit, use heuristics to
286 * identify valid entries
287 */
288 e->is_ip_mc = !!(r[0] & BIT(22));
289 e->is_ipv6_mc = !!(r[0] & BIT(21));
290 e->type = L2_INVALID;
291
292 if (!e->is_ip_mc && !e->is_ipv6_mc) {
293 e->mac[0] = (r[1] >> 20);
294 e->mac[1] = (r[1] >> 12);
295 e->mac[2] = (r[1] >> 4);
296 e->mac[3] = (r[1] & 0xf) << 4 | (r[2] >> 28);
297 e->mac[4] = (r[2] >> 20);
298 e->mac[5] = (r[2] >> 12);
299
300 e->rvid = r[2] & 0xfff;
301 e->vid = r[0] & 0xfff;
302
303 /* Is it a unicast entry? check multicast bit */
304 if (!(e->mac[0] & 1)) {
305 e->is_static = !!((r[0] >> 19) & 1);
306 e->port = (r[0] >> 12) & 0x1f;
307 e->block_da = !!(r[1] & BIT(30));
308 e->block_sa = !!(r[1] & BIT(31));
309 e->suspended = !!(r[1] & BIT(29));
310 e->next_hop = !!(r[1] & BIT(28));
311 if (e->next_hop) {
312 pr_debug("Found next hop entry, need to read extra data\n");
313 e->nh_vlan_target = !!(r[0] & BIT(9));
314 e->nh_route_id = r[0] & 0x1ff;
315 e->vid = e->rvid;
316 }
317 e->age = (r[0] >> 17) & 0x3;
318 e->valid = true;
319
320 /* A valid entry has one of mutli-cast, aging, sa/da-blocking,
321 * next-hop or static entry bit set */
322 if (!(r[0] & 0x007c0000) && !(r[1] & 0xd0000000))
323 e->valid = false;
324 else
325 e->type = L2_UNICAST;
326 } else { // L2 multicast
327 pr_debug("Got L2 MC entry: %08x %08x %08x\n", r[0], r[1], r[2]);
328 e->valid = true;
329 e->type = L2_MULTICAST;
330 e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
331 }
332 } else { // IPv4 and IPv6 multicast
333 e->valid = true;
334 e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
335 e->mc_gip = (r[1] << 20) | (r[2] >> 12);
336 e->rvid = r[2] & 0xfff;
337 }
338 if (e->is_ip_mc)
339 e->type = IP4_MULTICAST;
340 if (e->is_ipv6_mc)
341 e->type = IP6_MULTICAST;
342 }
343
344 /*
345 * Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry
346 */
347 static void rtl838x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
348 {
349 u64 mac = ether_addr_to_u64(e->mac);
350
351 if (!e->valid) {
352 r[0] = r[1] = r[2] = 0;
353 return;
354 }
355
356 r[0] = e->is_ip_mc ? BIT(22) : 0;
357 r[0] |= e->is_ipv6_mc ? BIT(21) : 0;
358
359 if (!e->is_ip_mc && !e->is_ipv6_mc) {
360 r[1] = mac >> 20;
361 r[2] = (mac & 0xfffff) << 12;
362
363 /* Is it a unicast entry? check multicast bit */
364 if (!(e->mac[0] & 1)) {
365 r[0] |= e->is_static ? BIT(19) : 0;
366 r[0] |= (e->port & 0x3f) << 12;
367 r[0] |= e->vid;
368 r[1] |= e->block_da ? BIT(30) : 0;
369 r[1] |= e->block_sa ? BIT(31) : 0;
370 r[1] |= e->suspended ? BIT(29) : 0;
371 r[2] |= e->rvid & 0xfff;
372 if (e->next_hop) {
373 r[1] |= BIT(28);
374 r[0] |= e->nh_vlan_target ? BIT(9) : 0;
375 r[0] |= e->nh_route_id & 0x1ff;
376 }
377 r[0] |= (e->age & 0x3) << 17;
378 } else { // L2 Multicast
379 r[0] |= (e->mc_portmask_index & 0x1ff) << 12;
380 r[2] |= e->rvid & 0xfff;
381 r[0] |= e->vid & 0xfff;
382 pr_debug("FILL MC: %08x %08x %08x\n", r[0], r[1], r[2]);
383 }
384 } else { // IPv4 and IPv6 multicast
385 r[0] |= (e->mc_portmask_index & 0x1ff) << 12;
386 r[1] = e->mc_gip >> 20;
387 r[2] = e->mc_gip << 12;
388 r[2] |= e->rvid;
389 }
390 }
391
392 /*
393 * Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table
394 * hash is the id of the bucket and pos is the position of the entry in that bucket
395 * The data read from the SoC is filled into rtl838x_l2_entry
396 */
397 static u64 rtl838x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
398 {
399 u64 entry;
400 u32 r[3];
401 struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 0); // Access L2 Table 0
402 u32 idx = (0 << 14) | (hash << 2) | pos; // Search SRAM, with hash and at pos in bucket
403 int i;
404
405 rtl_table_read(q, idx);
406 for (i= 0; i < 3; i++)
407 r[i] = sw_r32(rtl_table_data(q, i));
408
409 rtl_table_release(q);
410
411 rtl838x_fill_l2_entry(r, e);
412 if (!e->valid)
413 return 0;
414
415 entry = (((u64) r[1]) << 32) | (r[2]); // mac and vid concatenated as hash seed
416 return entry;
417 }
418
419 static void rtl838x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
420 {
421 u32 r[3];
422 struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 0);
423 int i;
424
425 u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket
426
427 rtl838x_fill_l2_row(r, e);
428
429 for (i= 0; i < 3; i++)
430 sw_w32(r[i], rtl_table_data(q, i));
431
432 rtl_table_write(q, idx);
433 rtl_table_release(q);
434 }
435
436 static u64 rtl838x_read_cam(int idx, struct rtl838x_l2_entry *e)
437 {
438 u64 entry;
439 u32 r[3];
440 struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 1); // Access L2 Table 1
441 int i;
442
443 rtl_table_read(q, idx);
444 for (i= 0; i < 3; i++)
445 r[i] = sw_r32(rtl_table_data(q, i));
446
447 rtl_table_release(q);
448
449 rtl838x_fill_l2_entry(r, e);
450 if (!e->valid)
451 return 0;
452
453 pr_debug("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);
454
455 // Return MAC with concatenated VID ac concatenated ID
456 entry = (((u64) r[1]) << 32) | r[2];
457 return entry;
458 }
459
460 static void rtl838x_write_cam(int idx, struct rtl838x_l2_entry *e)
461 {
462 u32 r[3];
463 struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 1); // Access L2 Table 1
464 int i;
465
466 rtl838x_fill_l2_row(r, e);
467
468 for (i= 0; i < 3; i++)
469 sw_w32(r[i], rtl_table_data(q, i));
470
471 rtl_table_write(q, idx);
472 rtl_table_release(q);
473 }
474
475 static u64 rtl838x_read_mcast_pmask(int idx)
476 {
477 u32 portmask;
478 // Read MC_PMSK (2) via register RTL8380_TBL_L2
479 struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 2);
480
481 rtl_table_read(q, idx);
482 portmask = sw_r32(rtl_table_data(q, 0));
483 rtl_table_release(q);
484
485 return portmask;
486 }
487
488 static void rtl838x_write_mcast_pmask(int idx, u64 portmask)
489 {
490 // Access MC_PMSK (2) via register RTL8380_TBL_L2
491 struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 2);
492
493 sw_w32(((u32)portmask) & 0x1fffffff, rtl_table_data(q, 0));
494 rtl_table_write(q, idx);
495 rtl_table_release(q);
496 }
497
498 static void rtl838x_vlan_profile_setup(int profile)
499 {
500 u32 pmask_id = UNKNOWN_MC_PMASK;
501 // Enable L2 Learning BIT 0, portmask UNKNOWN_MC_PMASK for unknown MC traffic flooding
502 u32 p = 1 | pmask_id << 1 | pmask_id << 10 | pmask_id << 19;
503
504 sw_w32(p, RTL838X_VLAN_PROFILE(profile));
505
506 /* RTL8380 and RTL8390 use an index into the portmask table to set the
507 * unknown multicast portmask, setup a default at a safe location
508 * On RTL93XX, the portmask is directly set in the profile,
509 * see e.g. rtl9300_vlan_profile_setup
510 */
511 rtl838x_write_mcast_pmask(UNKNOWN_MC_PMASK, 0x1fffffff);
512 }
513
514 static void rtl838x_l2_learning_setup(void)
515 {
516 /* Set portmask for broadcast traffic and unknown unicast address flooding
517 * to the reserved entry in the portmask table used also for
518 * multicast flooding */
519 sw_w32(UNKNOWN_MC_PMASK << 12 | UNKNOWN_MC_PMASK, RTL838X_L2_FLD_PMSK);
520
521 /* Enable learning constraint system-wide (bit 0), per-port (bit 1)
522 * and per vlan (bit 2) */
523 sw_w32(0x7, RTL838X_L2_LRN_CONSTRT_EN);
524
525 // Limit learning to maximum: 16k entries, after that just flood (bits 0-1)
526 sw_w32((0x3fff << 2) | 0, RTL838X_L2_LRN_CONSTRT);
527
528 // Do not trap ARP packets to CPU_PORT
529 sw_w32(0, RTL838X_SPCL_TRAP_ARP_CTRL);
530 }
531
532 static void rtl838x_enable_learning(int port, bool enable)
533 {
534 // Limit learning to maximum: 16k entries
535
536 sw_w32_mask(0x3fff << 2, enable ? (0x3fff << 2) : 0,
537 RTL838X_L2_PORT_LRN_CONSTRT + (port << 2));
538 }
539
540 static void rtl838x_enable_flood(int port, bool enable)
541 {
542 /*
543 * 0: Forward
544 * 1: Disable
545 * 2: to CPU
546 * 3: Copy to CPU
547 */
548 sw_w32_mask(0x3, enable ? 0 : 1,
549 RTL838X_L2_PORT_LRN_CONSTRT + (port << 2));
550 }
551
552 static void rtl838x_enable_mcast_flood(int port, bool enable)
553 {
554
555 }
556
557 static void rtl838x_enable_bcast_flood(int port, bool enable)
558 {
559
560 }
561
562 static void rtl838x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
563 {
564 int i;
565 u32 cmd = 1 << 15 /* Execute cmd */
566 | 1 << 14 /* Read */
567 | 2 << 12 /* Table type 0b10 */
568 | (msti & 0xfff);
569 priv->r->exec_tbl0_cmd(cmd);
570
571 for (i = 0; i < 2; i++)
572 port_state[i] = sw_r32(priv->r->tbl_access_data_0(i));
573 }
574
575 static void rtl838x_stp_set(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
576 {
577 int i;
578 u32 cmd = 1 << 15 /* Execute cmd */
579 | 0 << 14 /* Write */
580 | 2 << 12 /* Table type 0b10 */
581 | (msti & 0xfff);
582
583 for (i = 0; i < 2; i++)
584 sw_w32(port_state[i], priv->r->tbl_access_data_0(i));
585 priv->r->exec_tbl0_cmd(cmd);
586 }
587
588 u64 rtl838x_traffic_get(int source)
589 {
590 return rtl838x_get_port_reg(rtl838x_port_iso_ctrl(source));
591 }
592
593 void rtl838x_traffic_set(int source, u64 dest_matrix)
594 {
595 rtl838x_set_port_reg(dest_matrix, rtl838x_port_iso_ctrl(source));
596 }
597
598 void rtl838x_traffic_enable(int source, int dest)
599 {
600 rtl838x_mask_port_reg(0, BIT(dest), rtl838x_port_iso_ctrl(source));
601 }
602
603 void rtl838x_traffic_disable(int source, int dest)
604 {
605 rtl838x_mask_port_reg(BIT(dest), 0, rtl838x_port_iso_ctrl(source));
606 }
607
608 /*
609 * Enables or disables the EEE/EEEP capability of a port
610 */
611 static void rtl838x_port_eee_set(struct rtl838x_switch_priv *priv, int port, bool enable)
612 {
613 u32 v;
614
615 // This works only for Ethernet ports, and on the RTL838X, ports from 24 are SFP
616 if (port >= 24)
617 return;
618
619 pr_debug("In %s: setting port %d to %d\n", __func__, port, enable);
620 v = enable ? 0x3 : 0x0;
621
622 // Set EEE state for 100 (bit 9) & 1000MBit (bit 10)
623 sw_w32_mask(0x3 << 9, v << 9, priv->r->mac_force_mode_ctrl(port));
624
625 // Set TX/RX EEE state
626 if (enable) {
627 sw_w32_mask(0, BIT(port), RTL838X_EEE_PORT_TX_EN);
628 sw_w32_mask(0, BIT(port), RTL838X_EEE_PORT_RX_EN);
629 } else {
630 sw_w32_mask(BIT(port), 0, RTL838X_EEE_PORT_TX_EN);
631 sw_w32_mask(BIT(port), 0, RTL838X_EEE_PORT_RX_EN);
632 }
633 priv->ports[port].eee_enabled = enable;
634 }
635
636
637 /*
638 * Get EEE own capabilities and negotiation result
639 */
640 static int rtl838x_eee_port_ability(struct rtl838x_switch_priv *priv,
641 struct ethtool_eee *e, int port)
642 {
643 u64 link;
644
645 if (port >= 24)
646 return 0;
647
648 link = rtl839x_get_port_reg_le(RTL838X_MAC_LINK_STS);
649 if (!(link & BIT(port)))
650 return 0;
651
652 if (sw_r32(rtl838x_mac_force_mode_ctrl(port)) & BIT(9))
653 e->advertised |= ADVERTISED_100baseT_Full;
654
655 if (sw_r32(rtl838x_mac_force_mode_ctrl(port)) & BIT(10))
656 e->advertised |= ADVERTISED_1000baseT_Full;
657
658 if (sw_r32(RTL838X_MAC_EEE_ABLTY) & BIT(port)) {
659 e->lp_advertised = ADVERTISED_100baseT_Full;
660 e->lp_advertised |= ADVERTISED_1000baseT_Full;
661 return 1;
662 }
663
664 return 0;
665 }
666
667 static void rtl838x_init_eee(struct rtl838x_switch_priv *priv, bool enable)
668 {
669 int i;
670
671 pr_info("Setting up EEE, state: %d\n", enable);
672 sw_w32_mask(0x4, 0, RTL838X_SMI_GLB_CTRL);
673
674 /* Set timers for EEE */
675 sw_w32(0x5001411, RTL838X_EEE_TX_TIMER_GIGA_CTRL);
676 sw_w32(0x5001417, RTL838X_EEE_TX_TIMER_GELITE_CTRL);
677
678 // Enable EEE MAC support on ports
679 for (i = 0; i < priv->cpu_port; i++) {
680 if (priv->ports[i].phy)
681 rtl838x_port_eee_set(priv, i, enable);
682 }
683 priv->eee_enabled = enable;
684 }
685
686 static void rtl838x_pie_lookup_enable(struct rtl838x_switch_priv *priv, int index)
687 {
688 int block = index / PIE_BLOCK_SIZE;
689 u32 block_state = sw_r32(RTL838X_ACL_BLK_LOOKUP_CTRL);
690
691 // Make sure rule-lookup is enabled in the block
692 if (!(block_state & BIT(block)))
693 sw_w32(block_state | BIT(block), RTL838X_ACL_BLK_LOOKUP_CTRL);
694 }
695
696 static void rtl838x_pie_rule_del(struct rtl838x_switch_priv *priv, int index_from, int index_to)
697 {
698 int block_from = index_from / PIE_BLOCK_SIZE;
699 int block_to = index_to / PIE_BLOCK_SIZE;
700 u32 v = (index_from << 1)| (index_to << 12 ) | BIT(0);
701 int block;
702 u32 block_state;
703
704 pr_debug("%s: from %d to %d\n", __func__, index_from, index_to);
705 mutex_lock(&priv->reg_mutex);
706
707 // Remember currently active blocks
708 block_state = sw_r32(RTL838X_ACL_BLK_LOOKUP_CTRL);
709
710 // Make sure rule-lookup is disabled in the relevant blocks
711 for (block = block_from; block <= block_to; block++) {
712 if (block_state & BIT(block))
713 sw_w32(block_state & (~BIT(block)), RTL838X_ACL_BLK_LOOKUP_CTRL);
714 }
715
716 // Write from-to and execute bit into control register
717 sw_w32(v, RTL838X_ACL_CLR_CTRL);
718
719 // Wait until command has completed
720 do {
721 } while (sw_r32(RTL838X_ACL_CLR_CTRL) & BIT(0));
722
723 // Re-enable rule lookup
724 for (block = block_from; block <= block_to; block++) {
725 if (!(block_state & BIT(block)))
726 sw_w32(block_state | BIT(block), RTL838X_ACL_BLK_LOOKUP_CTRL);
727 }
728
729 mutex_unlock(&priv->reg_mutex);
730 }
731
732 /*
733 * Reads the intermediate representation of the templated match-fields of the
734 * PIE rule in the pie_rule structure and fills in the raw data fields in the
735 * raw register space r[].
736 * The register space configuration size is identical for the RTL8380/90 and RTL9300,
737 * however the RTL9310 has 2 more registers / fields and the physical field-ids
738 * are specific to every platform.
739 */
740 static void rtl838x_write_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
741 {
742 int i;
743 enum template_field_id field_type;
744 u16 data, data_m;
745
746 for (i = 0; i < N_FIXED_FIELDS; i++) {
747 field_type = t[i];
748 data = data_m = 0;
749
750 switch (field_type) {
751 case TEMPLATE_FIELD_SPM0:
752 data = pr->spm;
753 data_m = pr->spm_m;
754 break;
755 case TEMPLATE_FIELD_SPM1:
756 data = pr->spm >> 16;
757 data_m = pr->spm_m >> 16;
758 break;
759 case TEMPLATE_FIELD_OTAG:
760 data = pr->otag;
761 data_m = pr->otag_m;
762 break;
763 case TEMPLATE_FIELD_SMAC0:
764 data = pr->smac[4];
765 data = (data << 8) | pr->smac[5];
766 data_m = pr->smac_m[4];
767 data_m = (data_m << 8) | pr->smac_m[5];
768 break;
769 case TEMPLATE_FIELD_SMAC1:
770 data = pr->smac[2];
771 data = (data << 8) | pr->smac[3];
772 data_m = pr->smac_m[2];
773 data_m = (data_m << 8) | pr->smac_m[3];
774 break;
775 case TEMPLATE_FIELD_SMAC2:
776 data = pr->smac[0];
777 data = (data << 8) | pr->smac[1];
778 data_m = pr->smac_m[0];
779 data_m = (data_m << 8) | pr->smac_m[1];
780 break;
781 case TEMPLATE_FIELD_DMAC0:
782 data = pr->dmac[4];
783 data = (data << 8) | pr->dmac[5];
784 data_m = pr->dmac_m[4];
785 data_m = (data_m << 8) | pr->dmac_m[5];
786 break;
787 case TEMPLATE_FIELD_DMAC1:
788 data = pr->dmac[2];
789 data = (data << 8) | pr->dmac[3];
790 data_m = pr->dmac_m[2];
791 data_m = (data_m << 8) | pr->dmac_m[3];
792 break;
793 case TEMPLATE_FIELD_DMAC2:
794 data = pr->dmac[0];
795 data = (data << 8) | pr->dmac[1];
796 data_m = pr->dmac_m[0];
797 data_m = (data_m << 8) | pr->dmac_m[1];
798 break;
799 case TEMPLATE_FIELD_ETHERTYPE:
800 data = pr->ethertype;
801 data_m = pr->ethertype_m;
802 break;
803 case TEMPLATE_FIELD_ITAG:
804 data = pr->itag;
805 data_m = pr->itag_m;
806 break;
807 case TEMPLATE_FIELD_RANGE_CHK:
808 data = pr->field_range_check;
809 data_m = pr->field_range_check_m;
810 break;
811 case TEMPLATE_FIELD_SIP0:
812 if (pr->is_ipv6) {
813 data = pr->sip6.s6_addr16[7];
814 data_m = pr->sip6_m.s6_addr16[7];
815 } else {
816 data = pr->sip;
817 data_m = pr->sip_m;
818 }
819 break;
820 case TEMPLATE_FIELD_SIP1:
821 if (pr->is_ipv6) {
822 data = pr->sip6.s6_addr16[6];
823 data_m = pr->sip6_m.s6_addr16[6];
824 } else {
825 data = pr->sip >> 16;
826 data_m = pr->sip_m >> 16;
827 }
828 break;
829
830 case TEMPLATE_FIELD_SIP2:
831 case TEMPLATE_FIELD_SIP3:
832 case TEMPLATE_FIELD_SIP4:
833 case TEMPLATE_FIELD_SIP5:
834 case TEMPLATE_FIELD_SIP6:
835 case TEMPLATE_FIELD_SIP7:
836 data = pr->sip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
837 data_m = pr->sip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
838 break;
839
840 case TEMPLATE_FIELD_DIP0:
841 if (pr->is_ipv6) {
842 data = pr->dip6.s6_addr16[7];
843 data_m = pr->dip6_m.s6_addr16[7];
844 } else {
845 data = pr->dip;
846 data_m = pr->dip_m;
847 }
848 break;
849
850 case TEMPLATE_FIELD_DIP1:
851 if (pr->is_ipv6) {
852 data = pr->dip6.s6_addr16[6];
853 data_m = pr->dip6_m.s6_addr16[6];
854 } else {
855 data = pr->dip >> 16;
856 data_m = pr->dip_m >> 16;
857 }
858 break;
859
860 case TEMPLATE_FIELD_DIP2:
861 case TEMPLATE_FIELD_DIP3:
862 case TEMPLATE_FIELD_DIP4:
863 case TEMPLATE_FIELD_DIP5:
864 case TEMPLATE_FIELD_DIP6:
865 case TEMPLATE_FIELD_DIP7:
866 data = pr->dip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
867 data_m = pr->dip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
868 break;
869
870 case TEMPLATE_FIELD_IP_TOS_PROTO:
871 data = pr->tos_proto;
872 data_m = pr->tos_proto_m;
873 break;
874 case TEMPLATE_FIELD_L4_SPORT:
875 data = pr->sport;
876 data_m = pr->sport_m;
877 break;
878 case TEMPLATE_FIELD_L4_DPORT:
879 data = pr->dport;
880 data_m = pr->dport_m;
881 break;
882 case TEMPLATE_FIELD_ICMP_IGMP:
883 data = pr->icmp_igmp;
884 data_m = pr->icmp_igmp_m;
885 break;
886 default:
887 pr_info("%s: unknown field %d\n", __func__, field_type);
888 continue;
889 }
890 if (!(i % 2)) {
891 r[5 - i / 2] = data;
892 r[12 - i / 2] = data_m;
893 } else {
894 r[5 - i / 2] |= ((u32)data) << 16;
895 r[12 - i / 2] |= ((u32)data_m) << 16;
896 }
897 }
898 }
899
900 /*
901 * Creates the intermediate representation of the templated match-fields of the
902 * PIE rule in the pie_rule structure by reading the raw data fields in the
903 * raw register space r[].
904 * The register space configuration size is identical for the RTL8380/90 and RTL9300,
905 * however the RTL9310 has 2 more registers / fields and the physical field-ids
906 */
907 static void rtl838x_read_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
908 {
909 int i;
910 enum template_field_id field_type;
911 u16 data, data_m;
912
913 for (i = 0; i < N_FIXED_FIELDS; i++) {
914 field_type = t[i];
915 if (!(i % 2)) {
916 data = r[5 - i / 2];
917 data_m = r[12 - i / 2];
918 } else {
919 data = r[5 - i / 2] >> 16;
920 data_m = r[12 - i / 2] >> 16;
921 }
922
923 switch (field_type) {
924 case TEMPLATE_FIELD_SPM0:
925 pr->spm = (pr->spn << 16) | data;
926 pr->spm_m = (pr->spn << 16) | data_m;
927 break;
928 case TEMPLATE_FIELD_SPM1:
929 pr->spm = data;
930 pr->spm_m = data_m;
931 break;
932 case TEMPLATE_FIELD_OTAG:
933 pr->otag = data;
934 pr->otag_m = data_m;
935 break;
936 case TEMPLATE_FIELD_SMAC0:
937 pr->smac[4] = data >> 8;
938 pr->smac[5] = data;
939 pr->smac_m[4] = data >> 8;
940 pr->smac_m[5] = data;
941 break;
942 case TEMPLATE_FIELD_SMAC1:
943 pr->smac[2] = data >> 8;
944 pr->smac[3] = data;
945 pr->smac_m[2] = data >> 8;
946 pr->smac_m[3] = data;
947 break;
948 case TEMPLATE_FIELD_SMAC2:
949 pr->smac[0] = data >> 8;
950 pr->smac[1] = data;
951 pr->smac_m[0] = data >> 8;
952 pr->smac_m[1] = data;
953 break;
954 case TEMPLATE_FIELD_DMAC0:
955 pr->dmac[4] = data >> 8;
956 pr->dmac[5] = data;
957 pr->dmac_m[4] = data >> 8;
958 pr->dmac_m[5] = data;
959 break;
960 case TEMPLATE_FIELD_DMAC1:
961 pr->dmac[2] = data >> 8;
962 pr->dmac[3] = data;
963 pr->dmac_m[2] = data >> 8;
964 pr->dmac_m[3] = data;
965 break;
966 case TEMPLATE_FIELD_DMAC2:
967 pr->dmac[0] = data >> 8;
968 pr->dmac[1] = data;
969 pr->dmac_m[0] = data >> 8;
970 pr->dmac_m[1] = data;
971 break;
972 case TEMPLATE_FIELD_ETHERTYPE:
973 pr->ethertype = data;
974 pr->ethertype_m = data_m;
975 break;
976 case TEMPLATE_FIELD_ITAG:
977 pr->itag = data;
978 pr->itag_m = data_m;
979 break;
980 case TEMPLATE_FIELD_RANGE_CHK:
981 pr->field_range_check = data;
982 pr->field_range_check_m = data_m;
983 break;
984 case TEMPLATE_FIELD_SIP0:
985 pr->sip = data;
986 pr->sip_m = data_m;
987 break;
988 case TEMPLATE_FIELD_SIP1:
989 pr->sip = (pr->sip << 16) | data;
990 pr->sip_m = (pr->sip << 16) | data_m;
991 break;
992 case TEMPLATE_FIELD_SIP2:
993 pr->is_ipv6 = true;
994 // Make use of limitiations on the position of the match values
995 ipv6_addr_set(&pr->sip6, pr->sip, r[5 - i / 2],
996 r[4 - i / 2], r[3 - i / 2]);
997 ipv6_addr_set(&pr->sip6_m, pr->sip_m, r[5 - i / 2],
998 r[4 - i / 2], r[3 - i / 2]);
999 case TEMPLATE_FIELD_SIP3:
1000 case TEMPLATE_FIELD_SIP4:
1001 case TEMPLATE_FIELD_SIP5:
1002 case TEMPLATE_FIELD_SIP6:
1003 case TEMPLATE_FIELD_SIP7:
1004 break;
1005
1006 case TEMPLATE_FIELD_DIP0:
1007 pr->dip = data;
1008 pr->dip_m = data_m;
1009 break;
1010 case TEMPLATE_FIELD_DIP1:
1011 pr->dip = (pr->dip << 16) | data;
1012 pr->dip_m = (pr->dip << 16) | data_m;
1013 break;
1014 case TEMPLATE_FIELD_DIP2:
1015 pr->is_ipv6 = true;
1016 ipv6_addr_set(&pr->dip6, pr->dip, r[5 - i / 2],
1017 r[4 - i / 2], r[3 - i / 2]);
1018 ipv6_addr_set(&pr->dip6_m, pr->dip_m, r[5 - i / 2],
1019 r[4 - i / 2], r[3 - i / 2]);
1020 case TEMPLATE_FIELD_DIP3:
1021 case TEMPLATE_FIELD_DIP4:
1022 case TEMPLATE_FIELD_DIP5:
1023 case TEMPLATE_FIELD_DIP6:
1024 case TEMPLATE_FIELD_DIP7:
1025 break;
1026 case TEMPLATE_FIELD_IP_TOS_PROTO:
1027 pr->tos_proto = data;
1028 pr->tos_proto_m = data_m;
1029 break;
1030 case TEMPLATE_FIELD_L4_SPORT:
1031 pr->sport = data;
1032 pr->sport_m = data_m;
1033 break;
1034 case TEMPLATE_FIELD_L4_DPORT:
1035 pr->dport = data;
1036 pr->dport_m = data_m;
1037 break;
1038 case TEMPLATE_FIELD_ICMP_IGMP:
1039 pr->icmp_igmp = data;
1040 pr->icmp_igmp_m = data_m;
1041 break;
1042 default:
1043 pr_info("%s: unknown field %d\n", __func__, field_type);
1044 }
1045 }
1046 }
1047
1048 static void rtl838x_read_pie_fixed_fields(u32 r[], struct pie_rule *pr)
1049 {
1050 pr->spmmask_fix = (r[6] >> 22) & 0x3;
1051 pr->spn = (r[6] >> 16) & 0x3f;
1052 pr->mgnt_vlan = (r[6] >> 15) & 1;
1053 pr->dmac_hit_sw = (r[6] >> 14) & 1;
1054 pr->not_first_frag = (r[6] >> 13) & 1;
1055 pr->frame_type_l4 = (r[6] >> 10) & 7;
1056 pr->frame_type = (r[6] >> 8) & 3;
1057 pr->otag_fmt = (r[6] >> 7) & 1;
1058 pr->itag_fmt = (r[6] >> 6) & 1;
1059 pr->otag_exist = (r[6] >> 5) & 1;
1060 pr->itag_exist = (r[6] >> 4) & 1;
1061 pr->frame_type_l2 = (r[6] >> 2) & 3;
1062 pr->tid = r[6] & 3;
1063
1064 pr->spmmask_fix_m = (r[13] >> 22) & 0x3;
1065 pr->spn_m = (r[13] >> 16) & 0x3f;
1066 pr->mgnt_vlan_m = (r[13] >> 15) & 1;
1067 pr->dmac_hit_sw_m = (r[13] >> 14) & 1;
1068 pr->not_first_frag_m = (r[13] >> 13) & 1;
1069 pr->frame_type_l4_m = (r[13] >> 10) & 7;
1070 pr->frame_type_m = (r[13] >> 8) & 3;
1071 pr->otag_fmt_m = (r[13] >> 7) & 1;
1072 pr->itag_fmt_m = (r[13] >> 6) & 1;
1073 pr->otag_exist_m = (r[13] >> 5) & 1;
1074 pr->itag_exist_m = (r[13] >> 4) & 1;
1075 pr->frame_type_l2_m = (r[13] >> 2) & 3;
1076 pr->tid_m = r[13] & 3;
1077
1078 pr->valid = r[14] & BIT(31);
1079 pr->cond_not = r[14] & BIT(30);
1080 pr->cond_and1 = r[14] & BIT(29);
1081 pr->cond_and2 = r[14] & BIT(28);
1082 pr->ivalid = r[14] & BIT(27);
1083
1084 pr->drop = (r[17] >> 14) & 3;
1085 pr->fwd_sel = r[17] & BIT(13);
1086 pr->ovid_sel = r[17] & BIT(12);
1087 pr->ivid_sel = r[17] & BIT(11);
1088 pr->flt_sel = r[17] & BIT(10);
1089 pr->log_sel = r[17] & BIT(9);
1090 pr->rmk_sel = r[17] & BIT(8);
1091 pr->meter_sel = r[17] & BIT(7);
1092 pr->tagst_sel = r[17] & BIT(6);
1093 pr->mir_sel = r[17] & BIT(5);
1094 pr->nopri_sel = r[17] & BIT(4);
1095 pr->cpupri_sel = r[17] & BIT(3);
1096 pr->otpid_sel = r[17] & BIT(2);
1097 pr->itpid_sel = r[17] & BIT(1);
1098 pr->shaper_sel = r[17] & BIT(0);
1099 }
1100
1101 static void rtl838x_write_pie_fixed_fields(u32 r[], struct pie_rule *pr)
1102 {
1103 r[6] = ((u32) (pr->spmmask_fix & 0x3)) << 22;
1104 r[6] |= ((u32) (pr->spn & 0x3f)) << 16;
1105 r[6] |= pr->mgnt_vlan ? BIT(15) : 0;
1106 r[6] |= pr->dmac_hit_sw ? BIT(14) : 0;
1107 r[6] |= pr->not_first_frag ? BIT(13) : 0;
1108 r[6] |= ((u32) (pr->frame_type_l4 & 0x7)) << 10;
1109 r[6] |= ((u32) (pr->frame_type & 0x3)) << 8;
1110 r[6] |= pr->otag_fmt ? BIT(7) : 0;
1111 r[6] |= pr->itag_fmt ? BIT(6) : 0;
1112 r[6] |= pr->otag_exist ? BIT(5) : 0;
1113 r[6] |= pr->itag_exist ? BIT(4) : 0;
1114 r[6] |= ((u32) (pr->frame_type_l2 & 0x3)) << 2;
1115 r[6] |= ((u32) (pr->tid & 0x3));
1116
1117 r[13] = ((u32) (pr->spmmask_fix_m & 0x3)) << 22;
1118 r[13] |= ((u32) (pr->spn_m & 0x3f)) << 16;
1119 r[13] |= pr->mgnt_vlan_m ? BIT(15) : 0;
1120 r[13] |= pr->dmac_hit_sw_m ? BIT(14) : 0;
1121 r[13] |= pr->not_first_frag_m ? BIT(13) : 0;
1122 r[13] |= ((u32) (pr->frame_type_l4_m & 0x7)) << 10;
1123 r[13] |= ((u32) (pr->frame_type_m & 0x3)) << 8;
1124 r[13] |= pr->otag_fmt_m ? BIT(7) : 0;
1125 r[13] |= pr->itag_fmt_m ? BIT(6) : 0;
1126 r[13] |= pr->otag_exist_m ? BIT(5) : 0;
1127 r[13] |= pr->itag_exist_m ? BIT(4) : 0;
1128 r[13] |= ((u32) (pr->frame_type_l2_m & 0x3)) << 2;
1129 r[13] |= ((u32) (pr->tid_m & 0x3));
1130
1131 r[14] = pr->valid ? BIT(31) : 0;
1132 r[14] |= pr->cond_not ? BIT(30) : 0;
1133 r[14] |= pr->cond_and1 ? BIT(29) : 0;
1134 r[14] |= pr->cond_and2 ? BIT(28) : 0;
1135 r[14] |= pr->ivalid ? BIT(27) : 0;
1136
1137 if (pr->drop)
1138 r[17] = 0x1 << 14; // Standard drop action
1139 else
1140 r[17] = 0;
1141 r[17] |= pr->fwd_sel ? BIT(13) : 0;
1142 r[17] |= pr->ovid_sel ? BIT(12) : 0;
1143 r[17] |= pr->ivid_sel ? BIT(11) : 0;
1144 r[17] |= pr->flt_sel ? BIT(10) : 0;
1145 r[17] |= pr->log_sel ? BIT(9) : 0;
1146 r[17] |= pr->rmk_sel ? BIT(8) : 0;
1147 r[17] |= pr->meter_sel ? BIT(7) : 0;
1148 r[17] |= pr->tagst_sel ? BIT(6) : 0;
1149 r[17] |= pr->mir_sel ? BIT(5) : 0;
1150 r[17] |= pr->nopri_sel ? BIT(4) : 0;
1151 r[17] |= pr->cpupri_sel ? BIT(3) : 0;
1152 r[17] |= pr->otpid_sel ? BIT(2) : 0;
1153 r[17] |= pr->itpid_sel ? BIT(1) : 0;
1154 r[17] |= pr->shaper_sel ? BIT(0) : 0;
1155 }
1156
1157 static int rtl838x_write_pie_action(u32 r[], struct pie_rule *pr)
1158 {
1159 u16 *aif = (u16 *)&r[17];
1160 u16 data;
1161 int fields_used = 0;
1162
1163 aif--;
1164
1165 pr_debug("%s, at %08x\n", __func__, (u32)aif);
1166 /* Multiple actions can be linked to a match of a PIE rule,
1167 * they have different precedence depending on their type and this precedence
1168 * defines which Action Information Field (0-4) in the IACL table stores
1169 * the additional data of the action (like e.g. the port number a packet is
1170 * forwarded to) */
1171 // TODO: count bits in selectors to limit to a maximum number of actions
1172 if (pr->fwd_sel) { // Forwarding action
1173 data = pr->fwd_act << 13;
1174 data |= pr->fwd_data;
1175 data |= pr->bypass_all ? BIT(12) : 0;
1176 data |= pr->bypass_ibc_sc ? BIT(11) : 0;
1177 data |= pr->bypass_igr_stp ? BIT(10) : 0;
1178 *aif-- = data;
1179 fields_used++;
1180 }
1181
1182 if (pr->ovid_sel) { // Outer VID action
1183 data = (pr->ovid_act & 0x3) << 12;
1184 data |= pr->ovid_data;
1185 *aif-- = data;
1186 fields_used++;
1187 }
1188
1189 if (pr->ivid_sel) { // Inner VID action
1190 data = (pr->ivid_act & 0x3) << 12;
1191 data |= pr->ivid_data;
1192 *aif-- = data;
1193 fields_used++;
1194 }
1195
1196 if (pr->flt_sel) { // Filter action
1197 *aif-- = pr->flt_data;
1198 fields_used++;
1199 }
1200
1201 if (pr->log_sel) { // Log action
1202 if (fields_used >= 4)
1203 return -1;
1204 *aif-- = pr->log_data;
1205 fields_used++;
1206 }
1207
1208 if (pr->rmk_sel) { // Remark action
1209 if (fields_used >= 4)
1210 return -1;
1211 *aif-- = pr->rmk_data;
1212 fields_used++;
1213 }
1214
1215 if (pr->meter_sel) { // Meter action
1216 if (fields_used >= 4)
1217 return -1;
1218 *aif-- = pr->meter_data;
1219 fields_used++;
1220 }
1221
1222 if (pr->tagst_sel) { // Egress Tag Status action
1223 if (fields_used >= 4)
1224 return -1;
1225 *aif-- = pr->tagst_data;
1226 fields_used++;
1227 }
1228
1229 if (pr->mir_sel) { // Mirror action
1230 if (fields_used >= 4)
1231 return -1;
1232 *aif-- = pr->mir_data;
1233 fields_used++;
1234 }
1235
1236 if (pr->nopri_sel) { // Normal Priority action
1237 if (fields_used >= 4)
1238 return -1;
1239 *aif-- = pr->nopri_data;
1240 fields_used++;
1241 }
1242
1243 if (pr->cpupri_sel) { // CPU Priority action
1244 if (fields_used >= 4)
1245 return -1;
1246 *aif-- = pr->nopri_data;
1247 fields_used++;
1248 }
1249
1250 if (pr->otpid_sel) { // OTPID action
1251 if (fields_used >= 4)
1252 return -1;
1253 *aif-- = pr->otpid_data;
1254 fields_used++;
1255 }
1256
1257 if (pr->itpid_sel) { // ITPID action
1258 if (fields_used >= 4)
1259 return -1;
1260 *aif-- = pr->itpid_data;
1261 fields_used++;
1262 }
1263
1264 if (pr->shaper_sel) { // Traffic shaper action
1265 if (fields_used >= 4)
1266 return -1;
1267 *aif-- = pr->shaper_data;
1268 fields_used++;
1269 }
1270
1271 return 0;
1272 }
1273
1274 static void rtl838x_read_pie_action(u32 r[], struct pie_rule *pr)
1275 {
1276 u16 *aif = (u16 *)&r[17];
1277
1278 aif--;
1279
1280 pr_debug("%s, at %08x\n", __func__, (u32)aif);
1281 if (pr->drop)
1282 pr_debug("%s: Action Drop: %d", __func__, pr->drop);
1283
1284 if (pr->fwd_sel){ // Forwarding action
1285 pr->fwd_act = *aif >> 13;
1286 pr->fwd_data = *aif--;
1287 pr->bypass_all = pr->fwd_data & BIT(12);
1288 pr->bypass_ibc_sc = pr->fwd_data & BIT(11);
1289 pr->bypass_igr_stp = pr->fwd_data & BIT(10);
1290 if (pr->bypass_all || pr->bypass_ibc_sc || pr->bypass_igr_stp)
1291 pr->bypass_sel = true;
1292 }
1293 if (pr->ovid_sel) // Outer VID action
1294 pr->ovid_data = *aif--;
1295 if (pr->ivid_sel) // Inner VID action
1296 pr->ivid_data = *aif--;
1297 if (pr->flt_sel) // Filter action
1298 pr->flt_data = *aif--;
1299 if (pr->log_sel) // Log action
1300 pr->log_data = *aif--;
1301 if (pr->rmk_sel) // Remark action
1302 pr->rmk_data = *aif--;
1303 if (pr->meter_sel) // Meter action
1304 pr->meter_data = *aif--;
1305 if (pr->tagst_sel) // Egress Tag Status action
1306 pr->tagst_data = *aif--;
1307 if (pr->mir_sel) // Mirror action
1308 pr->mir_data = *aif--;
1309 if (pr->nopri_sel) // Normal Priority action
1310 pr->nopri_data = *aif--;
1311 if (pr->cpupri_sel) // CPU Priority action
1312 pr->nopri_data = *aif--;
1313 if (pr->otpid_sel) // OTPID action
1314 pr->otpid_data = *aif--;
1315 if (pr->itpid_sel) // ITPID action
1316 pr->itpid_data = *aif--;
1317 if (pr->shaper_sel) // Traffic shaper action
1318 pr->shaper_data = *aif--;
1319 }
1320
1321 static void rtl838x_pie_rule_dump_raw(u32 r[])
1322 {
1323 pr_info("Raw IACL table entry:\n");
1324 pr_info("Match : %08x %08x %08x %08x %08x %08x\n", r[0], r[1], r[2], r[3], r[4], r[5]);
1325 pr_info("Fixed : %08x\n", r[6]);
1326 pr_info("Match M: %08x %08x %08x %08x %08x %08x\n", r[7], r[8], r[9], r[10], r[11], r[12]);
1327 pr_info("Fixed M: %08x\n", r[13]);
1328 pr_info("AIF : %08x %08x %08x\n", r[14], r[15], r[16]);
1329 pr_info("Sel : %08x\n", r[17]);
1330 }
1331
1332 static void rtl838x_pie_rule_dump(struct pie_rule *pr)
1333 {
1334 pr_info("Drop: %d, fwd: %d, ovid: %d, ivid: %d, flt: %d, log: %d, rmk: %d, meter: %d tagst: %d, mir: %d, nopri: %d, cpupri: %d, otpid: %d, itpid: %d, shape: %d\n",
1335 pr->drop, pr->fwd_sel, pr->ovid_sel, pr->ivid_sel, pr->flt_sel, pr->log_sel, pr->rmk_sel, pr->log_sel, pr->tagst_sel, pr->mir_sel, pr->nopri_sel,
1336 pr->cpupri_sel, pr->otpid_sel, pr->itpid_sel, pr->shaper_sel);
1337 if (pr->fwd_sel)
1338 pr_info("FWD: %08x\n", pr->fwd_data);
1339 pr_info("TID: %x, %x\n", pr->tid, pr->tid_m);
1340 }
1341
1342 static int rtl838x_pie_rule_read(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
1343 {
1344 // Read IACL table (1) via register 0
1345 struct table_reg *q = rtl_table_get(RTL8380_TBL_0, 1);
1346 u32 r[18];
1347 int i;
1348 int block = idx / PIE_BLOCK_SIZE;
1349 u32 t_select = sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block));
1350
1351 memset(pr, 0, sizeof(*pr));
1352 rtl_table_read(q, idx);
1353 for (i = 0; i < 18; i++)
1354 r[i] = sw_r32(rtl_table_data(q, i));
1355
1356 rtl_table_release(q);
1357
1358 rtl838x_read_pie_fixed_fields(r, pr);
1359 if (!pr->valid)
1360 return 0;
1361
1362 pr_info("%s: template_selectors %08x, tid: %d\n", __func__, t_select, pr->tid);
1363 rtl838x_pie_rule_dump_raw(r);
1364
1365 rtl838x_read_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]);
1366
1367 rtl838x_read_pie_action(r, pr);
1368
1369 return 0;
1370 }
1371
1372 static int rtl838x_pie_rule_write(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
1373 {
1374 // Access IACL table (1) via register 0
1375 struct table_reg *q = rtl_table_get(RTL8380_TBL_0, 1);
1376 u32 r[18];
1377 int i, err = 0;
1378 int block = idx / PIE_BLOCK_SIZE;
1379 u32 t_select = sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block));
1380
1381 pr_debug("%s: %d, t_select: %08x\n", __func__, idx, t_select);
1382
1383 for (i = 0; i < 18; i++)
1384 r[i] = 0;
1385
1386 if (!pr->valid)
1387 goto err_out;
1388
1389 rtl838x_write_pie_fixed_fields(r, pr);
1390
1391 pr_debug("%s: template %d\n", __func__, (t_select >> (pr->tid * 3)) & 0x7);
1392 rtl838x_write_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]);
1393
1394 if (rtl838x_write_pie_action(r, pr)) {
1395 pr_err("Rule actions too complex\n");
1396 goto err_out;
1397 }
1398
1399 // rtl838x_pie_rule_dump_raw(r);
1400
1401 for (i = 0; i < 18; i++)
1402 sw_w32(r[i], rtl_table_data(q, i));
1403
1404 err_out:
1405 rtl_table_write(q, idx);
1406 rtl_table_release(q);
1407
1408 return err;
1409 }
1410
1411 static bool rtl838x_pie_templ_has(int t, enum template_field_id field_type)
1412 {
1413 int i;
1414 enum template_field_id ft;
1415
1416 for (i = 0; i < N_FIXED_FIELDS; i++) {
1417 ft = fixed_templates[t][i];
1418 if (field_type == ft)
1419 return true;
1420 }
1421
1422 return false;
1423 }
1424
1425 static int rtl838x_pie_verify_template(struct rtl838x_switch_priv *priv,
1426 struct pie_rule *pr, int t, int block)
1427 {
1428 int i;
1429
1430 if (!pr->is_ipv6 && pr->sip_m && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SIP0))
1431 return -1;
1432
1433 if (!pr->is_ipv6 && pr->dip_m && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DIP0))
1434 return -1;
1435
1436 if (pr->is_ipv6) {
1437 if ((pr->sip6_m.s6_addr32[0] || pr->sip6_m.s6_addr32[1]
1438 || pr->sip6_m.s6_addr32[2] || pr->sip6_m.s6_addr32[3])
1439 && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SIP2))
1440 return -1;
1441 if ((pr->dip6_m.s6_addr32[0] || pr->dip6_m.s6_addr32[1]
1442 || pr->dip6_m.s6_addr32[2] || pr->dip6_m.s6_addr32[3])
1443 && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DIP2))
1444 return -1;
1445 }
1446
1447 if (ether_addr_to_u64(pr->smac) && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SMAC0))
1448 return -1;
1449
1450 if (ether_addr_to_u64(pr->dmac) && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DMAC0))
1451 return -1;
1452
1453 // TODO: Check more
1454
1455 i = find_first_zero_bit(&priv->pie_use_bm[block * 4], PIE_BLOCK_SIZE);
1456
1457 if (i >= PIE_BLOCK_SIZE)
1458 return -1;
1459
1460 return i + PIE_BLOCK_SIZE * block;
1461 }
1462
1463 static int rtl838x_pie_rule_add(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
1464 {
1465 int idx, block, j, t;
1466
1467 pr_debug("In %s\n", __func__);
1468
1469 mutex_lock(&priv->pie_mutex);
1470
1471 for (block = 0; block < priv->n_pie_blocks; block++) {
1472 for (j = 0; j < 3; j++) {
1473 t = (sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block)) >> (j * 3)) & 0x7;
1474 pr_debug("Testing block %d, template %d, template id %d\n", block, j, t);
1475 idx = rtl838x_pie_verify_template(priv, pr, t, block);
1476 if (idx >= 0)
1477 break;
1478 }
1479 if (j < 3)
1480 break;
1481 }
1482
1483 if (block >= priv->n_pie_blocks) {
1484 mutex_unlock(&priv->pie_mutex);
1485 return -EOPNOTSUPP;
1486 }
1487
1488 pr_debug("Using block: %d, index %d, template-id %d\n", block, idx, j);
1489 set_bit(idx, priv->pie_use_bm);
1490
1491 pr->valid = true;
1492 pr->tid = j; // Mapped to template number
1493 pr->tid_m = 0x3;
1494 pr->id = idx;
1495
1496 rtl838x_pie_lookup_enable(priv, idx);
1497 rtl838x_pie_rule_write(priv, idx, pr);
1498
1499 mutex_unlock(&priv->pie_mutex);
1500 return 0;
1501 }
1502
1503 static void rtl838x_pie_rule_rm(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
1504 {
1505 int idx = pr->id;
1506
1507 rtl838x_pie_rule_del(priv, idx, idx);
1508 clear_bit(idx, priv->pie_use_bm);
1509 }
1510
1511 /*
1512 * Initializes the Packet Inspection Engine:
1513 * powers it up, enables default matching templates for all blocks
1514 * and clears all rules possibly installed by u-boot
1515 */
1516 static void rtl838x_pie_init(struct rtl838x_switch_priv *priv)
1517 {
1518 int i;
1519 u32 template_selectors;
1520
1521 mutex_init(&priv->pie_mutex);
1522
1523 // Enable ACL lookup on all ports, including CPU_PORT
1524 for (i = 0; i <= priv->cpu_port; i++)
1525 sw_w32(1, RTL838X_ACL_PORT_LOOKUP_CTRL(i));
1526
1527 // Power on all PIE blocks
1528 for (i = 0; i < priv->n_pie_blocks; i++)
1529 sw_w32_mask(0, BIT(i), RTL838X_ACL_BLK_PWR_CTRL);
1530
1531 // Include IPG in metering
1532 sw_w32(1, RTL838X_METER_GLB_CTRL);
1533
1534 // Delete all present rules
1535 rtl838x_pie_rule_del(priv, 0, priv->n_pie_blocks * PIE_BLOCK_SIZE - 1);
1536
1537 // Routing bypasses source port filter: disable write-protection, first
1538 sw_w32_mask(0, 3, RTL838X_INT_RW_CTRL);
1539 sw_w32_mask(0, 1, RTL838X_DMY_REG27);
1540 sw_w32_mask(3, 0, RTL838X_INT_RW_CTRL);
1541
1542 // Enable predefined templates 0, 1 and 2 for even blocks
1543 template_selectors = 0 | (1 << 3) | (2 << 6);
1544 for (i = 0; i < 6; i += 2)
1545 sw_w32(template_selectors, RTL838X_ACL_BLK_TMPLTE_CTRL(i));
1546
1547 // Enable predefined templates 0, 3 and 4 (IPv6 support) for odd blocks
1548 template_selectors = 0 | (3 << 3) | (4 << 6);
1549 for (i = 1; i < priv->n_pie_blocks; i += 2)
1550 sw_w32(template_selectors, RTL838X_ACL_BLK_TMPLTE_CTRL(i));
1551
1552 // Group each pair of physical blocks together to a logical block
1553 sw_w32(0b10101010101, RTL838X_ACL_BLK_GROUP_CTRL);
1554 }
1555
1556 static u32 rtl838x_packet_cntr_read(int counter)
1557 {
1558 u32 v;
1559
1560 // Read LOG table (3) via register RTL8380_TBL_0
1561 struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 3);
1562
1563 pr_debug("In %s, id %d\n", __func__, counter);
1564 rtl_table_read(r, counter / 2);
1565
1566 pr_debug("Registers: %08x %08x\n",
1567 sw_r32(rtl_table_data(r, 0)), sw_r32(rtl_table_data(r, 1)));
1568 // The table has a size of 2 registers
1569 if (counter % 2)
1570 v = sw_r32(rtl_table_data(r, 0));
1571 else
1572 v = sw_r32(rtl_table_data(r, 1));
1573
1574 rtl_table_release(r);
1575
1576 return v;
1577 }
1578
1579 static void rtl838x_packet_cntr_clear(int counter)
1580 {
1581 // Access LOG table (3) via register RTL8380_TBL_0
1582 struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 3);
1583
1584 pr_debug("In %s, id %d\n", __func__, counter);
1585 // The table has a size of 2 registers
1586 if (counter % 2)
1587 sw_w32(0, rtl_table_data(r, 0));
1588 else
1589 sw_w32(0, rtl_table_data(r, 1));
1590
1591 rtl_table_write(r, counter / 2);
1592
1593 rtl_table_release(r);
1594 }
1595
1596 static void rtl838x_route_read(int idx, struct rtl83xx_route *rt)
1597 {
1598 // Read ROUTING table (2) via register RTL8380_TBL_1
1599 struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 2);
1600
1601 pr_debug("In %s, id %d\n", __func__, idx);
1602 rtl_table_read(r, idx);
1603
1604 // The table has a size of 2 registers
1605 rt->nh.gw = sw_r32(rtl_table_data(r, 0));
1606 rt->nh.gw <<= 32;
1607 rt->nh.gw |= sw_r32(rtl_table_data(r, 1));
1608
1609 rtl_table_release(r);
1610 }
1611
1612 static void rtl838x_route_write(int idx, struct rtl83xx_route *rt)
1613 {
1614 // Access ROUTING table (2) via register RTL8380_TBL_1
1615 struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 2);
1616
1617 pr_debug("In %s, id %d, gw: %016llx\n", __func__, idx, rt->nh.gw);
1618 sw_w32(rt->nh.gw >> 32, rtl_table_data(r, 0));
1619 sw_w32(rt->nh.gw, rtl_table_data(r, 1));
1620 rtl_table_write(r, idx);
1621
1622 rtl_table_release(r);
1623 }
1624
1625 static int rtl838x_l3_setup(struct rtl838x_switch_priv *priv)
1626 {
1627 // Nothing to be done
1628 return 0;
1629 }
1630
1631 void rtl838x_vlan_port_keep_tag_set(int port, bool keep_outer, bool keep_inner)
1632 {
1633 sw_w32(FIELD_PREP(RTL838X_VLAN_PORT_TAG_STS_CTRL_OTAG_STS_MASK,
1634 keep_outer ? RTL838X_VLAN_PORT_TAG_STS_TAGGED : RTL838X_VLAN_PORT_TAG_STS_UNTAG) |
1635 FIELD_PREP(RTL838X_VLAN_PORT_TAG_STS_CTRL_ITAG_STS_MASK,
1636 keep_inner ? RTL838X_VLAN_PORT_TAG_STS_TAGGED : RTL838X_VLAN_PORT_TAG_STS_UNTAG),
1637 RTL838X_VLAN_PORT_TAG_STS_CTRL(port));
1638 }
1639
1640 void rtl838x_vlan_port_pvidmode_set(int port, enum pbvlan_type type, enum pbvlan_mode mode)
1641 {
1642 if (type == PBVLAN_TYPE_INNER)
1643 sw_w32_mask(0x3, mode, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
1644 else
1645 sw_w32_mask(0x3 << 14, mode << 14, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
1646 }
1647
1648 void rtl838x_vlan_port_pvid_set(int port, enum pbvlan_type type, int pvid)
1649 {
1650 if (type == PBVLAN_TYPE_INNER)
1651 sw_w32_mask(0xfff << 2, pvid << 2, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
1652 else
1653 sw_w32_mask(0xfff << 16, pvid << 16, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
1654 }
1655
1656 static int rtl838x_set_ageing_time(unsigned long msec)
1657 {
1658 int t = sw_r32(RTL838X_L2_CTRL_1);
1659
1660 t &= 0x7FFFFF;
1661 t = t * 128 / 625; /* Aging time in seconds. 0: L2 aging disabled */
1662 pr_debug("L2 AGING time: %d sec\n", t);
1663
1664 t = (msec * 625 + 127000) / 128000;
1665 t = t > 0x7FFFFF ? 0x7FFFFF : t;
1666 sw_w32_mask(0x7FFFFF, t, RTL838X_L2_CTRL_1);
1667 pr_debug("Dynamic aging for ports: %x\n", sw_r32(RTL838X_L2_PORT_AGING_OUT));
1668
1669 return 0;
1670 }
1671
1672 static void rtl838x_set_igr_filter(int port, enum igr_filter state)
1673 {
1674 sw_w32_mask(0x3 << ((port & 0xf)<<1), state << ((port & 0xf)<<1),
1675 RTL838X_VLAN_PORT_IGR_FLTR + (((port >> 4) << 2)));
1676 }
1677
1678 static void rtl838x_set_egr_filter(int port, enum egr_filter state)
1679 {
1680 sw_w32_mask(0x1 << (port % 0x1d), state << (port % 0x1d),
1681 RTL838X_VLAN_PORT_EGR_FLTR + (((port / 29) << 2)));
1682 }
1683
1684 void rtl838x_set_distribution_algorithm(int group, int algoidx, u32 algomsk)
1685 {
1686 algoidx &= 1; // RTL838X only supports 2 concurrent algorithms
1687 sw_w32_mask(1 << (group % 8), algoidx << (group % 8),
1688 RTL838X_TRK_HASH_IDX_CTRL + ((group >> 3) << 2));
1689 sw_w32(algomsk, RTL838X_TRK_HASH_CTRL + (algoidx << 2));
1690 }
1691
1692 void rtl838x_set_receive_management_action(int port, rma_ctrl_t type, action_type_t action)
1693 {
1694 switch(type) {
1695 case BPDU:
1696 sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
1697 RTL838X_RMA_BPDU_CTRL + ((port >> 4) << 2));
1698 break;
1699 case PTP:
1700 sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
1701 RTL838X_RMA_PTP_CTRL + ((port >> 4) << 2));
1702 break;
1703 case LLTP:
1704 sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
1705 RTL838X_RMA_LLTP_CTRL + ((port >> 4) << 2));
1706 break;
1707 default:
1708 break;
1709 }
1710 }
1711
1712 const struct rtl838x_reg rtl838x_reg = {
1713 .mask_port_reg_be = rtl838x_mask_port_reg,
1714 .set_port_reg_be = rtl838x_set_port_reg,
1715 .get_port_reg_be = rtl838x_get_port_reg,
1716 .mask_port_reg_le = rtl838x_mask_port_reg,
1717 .set_port_reg_le = rtl838x_set_port_reg,
1718 .get_port_reg_le = rtl838x_get_port_reg,
1719 .stat_port_rst = RTL838X_STAT_PORT_RST,
1720 .stat_rst = RTL838X_STAT_RST,
1721 .stat_port_std_mib = RTL838X_STAT_PORT_STD_MIB,
1722 .port_iso_ctrl = rtl838x_port_iso_ctrl,
1723 .traffic_enable = rtl838x_traffic_enable,
1724 .traffic_disable = rtl838x_traffic_disable,
1725 .traffic_get = rtl838x_traffic_get,
1726 .traffic_set = rtl838x_traffic_set,
1727 .l2_ctrl_0 = RTL838X_L2_CTRL_0,
1728 .l2_ctrl_1 = RTL838X_L2_CTRL_1,
1729 .l2_port_aging_out = RTL838X_L2_PORT_AGING_OUT,
1730 .set_ageing_time = rtl838x_set_ageing_time,
1731 .smi_poll_ctrl = RTL838X_SMI_POLL_CTRL,
1732 .l2_tbl_flush_ctrl = RTL838X_L2_TBL_FLUSH_CTRL,
1733 .exec_tbl0_cmd = rtl838x_exec_tbl0_cmd,
1734 .exec_tbl1_cmd = rtl838x_exec_tbl1_cmd,
1735 .tbl_access_data_0 = rtl838x_tbl_access_data_0,
1736 .isr_glb_src = RTL838X_ISR_GLB_SRC,
1737 .isr_port_link_sts_chg = RTL838X_ISR_PORT_LINK_STS_CHG,
1738 .imr_port_link_sts_chg = RTL838X_IMR_PORT_LINK_STS_CHG,
1739 .imr_glb = RTL838X_IMR_GLB,
1740 .vlan_tables_read = rtl838x_vlan_tables_read,
1741 .vlan_set_tagged = rtl838x_vlan_set_tagged,
1742 .vlan_set_untagged = rtl838x_vlan_set_untagged,
1743 .mac_force_mode_ctrl = rtl838x_mac_force_mode_ctrl,
1744 .vlan_profile_dump = rtl838x_vlan_profile_dump,
1745 .vlan_profile_setup = rtl838x_vlan_profile_setup,
1746 .vlan_fwd_on_inner = rtl838x_vlan_fwd_on_inner,
1747 .set_vlan_igr_filter = rtl838x_set_igr_filter,
1748 .set_vlan_egr_filter = rtl838x_set_egr_filter,
1749 .enable_learning = rtl838x_enable_learning,
1750 .enable_flood = rtl838x_enable_flood,
1751 .enable_mcast_flood = rtl838x_enable_mcast_flood,
1752 .enable_bcast_flood = rtl838x_enable_bcast_flood,
1753 .stp_get = rtl838x_stp_get,
1754 .stp_set = rtl838x_stp_set,
1755 .mac_port_ctrl = rtl838x_mac_port_ctrl,
1756 .l2_port_new_salrn = rtl838x_l2_port_new_salrn,
1757 .l2_port_new_sa_fwd = rtl838x_l2_port_new_sa_fwd,
1758 .mir_ctrl = RTL838X_MIR_CTRL,
1759 .mir_dpm = RTL838X_MIR_DPM_CTRL,
1760 .mir_spm = RTL838X_MIR_SPM_CTRL,
1761 .mac_link_sts = RTL838X_MAC_LINK_STS,
1762 .mac_link_dup_sts = RTL838X_MAC_LINK_DUP_STS,
1763 .mac_link_spd_sts = rtl838x_mac_link_spd_sts,
1764 .mac_rx_pause_sts = RTL838X_MAC_RX_PAUSE_STS,
1765 .mac_tx_pause_sts = RTL838X_MAC_TX_PAUSE_STS,
1766 .read_l2_entry_using_hash = rtl838x_read_l2_entry_using_hash,
1767 .write_l2_entry_using_hash = rtl838x_write_l2_entry_using_hash,
1768 .read_cam = rtl838x_read_cam,
1769 .write_cam = rtl838x_write_cam,
1770 .vlan_port_keep_tag_set = rtl838x_vlan_port_keep_tag_set,
1771 .vlan_port_pvidmode_set = rtl838x_vlan_port_pvidmode_set,
1772 .vlan_port_pvid_set = rtl838x_vlan_port_pvid_set,
1773 .trk_mbr_ctr = rtl838x_trk_mbr_ctr,
1774 .rma_bpdu_fld_pmask = RTL838X_RMA_BPDU_FLD_PMSK,
1775 .spcl_trap_eapol_ctrl = RTL838X_SPCL_TRAP_EAPOL_CTRL,
1776 .init_eee = rtl838x_init_eee,
1777 .port_eee_set = rtl838x_port_eee_set,
1778 .eee_port_ability = rtl838x_eee_port_ability,
1779 .l2_hash_seed = rtl838x_l2_hash_seed,
1780 .l2_hash_key = rtl838x_l2_hash_key,
1781 .read_mcast_pmask = rtl838x_read_mcast_pmask,
1782 .write_mcast_pmask = rtl838x_write_mcast_pmask,
1783 .pie_init = rtl838x_pie_init,
1784 .pie_rule_read = rtl838x_pie_rule_read,
1785 .pie_rule_write = rtl838x_pie_rule_write,
1786 .pie_rule_add = rtl838x_pie_rule_add,
1787 .pie_rule_rm = rtl838x_pie_rule_rm,
1788 .l2_learning_setup = rtl838x_l2_learning_setup,
1789 .packet_cntr_read = rtl838x_packet_cntr_read,
1790 .packet_cntr_clear = rtl838x_packet_cntr_clear,
1791 .route_read = rtl838x_route_read,
1792 .route_write = rtl838x_route_write,
1793 .l3_setup = rtl838x_l3_setup,
1794 .set_distribution_algorithm = rtl838x_set_distribution_algorithm,
1795 .set_receive_management_action = rtl838x_set_receive_management_action,
1796 };
1797
1798 irqreturn_t rtl838x_switch_irq(int irq, void *dev_id)
1799 {
1800 struct dsa_switch *ds = dev_id;
1801 u32 status = sw_r32(RTL838X_ISR_GLB_SRC);
1802 u32 ports = sw_r32(RTL838X_ISR_PORT_LINK_STS_CHG);
1803 u32 link;
1804 int i;
1805
1806 /* Clear status */
1807 sw_w32(ports, RTL838X_ISR_PORT_LINK_STS_CHG);
1808 pr_info("RTL8380 Link change: status: %x, ports %x\n", status, ports);
1809
1810 for (i = 0; i < 28; i++) {
1811 if (ports & BIT(i)) {
1812 link = sw_r32(RTL838X_MAC_LINK_STS);
1813 if (link & BIT(i))
1814 dsa_port_phylink_mac_change(ds, i, true);
1815 else
1816 dsa_port_phylink_mac_change(ds, i, false);
1817 }
1818 }
1819 return IRQ_HANDLED;
1820 }
1821
1822 int rtl838x_smi_wait_op(int timeout)
1823 {
1824 int ret = 0;
1825 u32 val;
1826
1827 ret = readx_poll_timeout(sw_r32, RTL838X_SMI_ACCESS_PHY_CTRL_1,
1828 val, !(val & 0x1), 20, timeout);
1829 if (ret)
1830 pr_err("%s: timeout\n", __func__);
1831
1832 return ret;
1833 }
1834
1835 /*
1836 * Reads a register in a page from the PHY
1837 */
1838 int rtl838x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
1839 {
1840 u32 v;
1841 u32 park_page;
1842
1843 if (port > 31) {
1844 *val = 0xffff;
1845 return 0;
1846 }
1847
1848 if (page > 4095 || reg > 31)
1849 return -ENOTSUPP;
1850
1851 mutex_lock(&smi_lock);
1852
1853 if (rtl838x_smi_wait_op(100000))
1854 goto timeout;
1855
1856 sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
1857
1858 park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
1859 v = reg << 20 | page << 3;
1860 sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
1861 sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);
1862
1863 if (rtl838x_smi_wait_op(100000))
1864 goto timeout;
1865
1866 *val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;
1867
1868 mutex_unlock(&smi_lock);
1869 return 0;
1870
1871 timeout:
1872 mutex_unlock(&smi_lock);
1873 return -ETIMEDOUT;
1874 }
1875
1876 /*
1877 * Write to a register in a page of the PHY
1878 */
1879 int rtl838x_write_phy(u32 port, u32 page, u32 reg, u32 val)
1880 {
1881 u32 v;
1882 u32 park_page;
1883
1884 val &= 0xffff;
1885 if (port > 31 || page > 4095 || reg > 31)
1886 return -ENOTSUPP;
1887
1888 mutex_lock(&smi_lock);
1889 if (rtl838x_smi_wait_op(100000))
1890 goto timeout;
1891
1892 sw_w32(BIT(port), RTL838X_SMI_ACCESS_PHY_CTRL_0);
1893 mdelay(10);
1894
1895 sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
1896
1897 park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
1898 v = reg << 20 | page << 3 | 0x4;
1899 sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
1900 sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);
1901
1902 if (rtl838x_smi_wait_op(100000))
1903 goto timeout;
1904
1905 mutex_unlock(&smi_lock);
1906 return 0;
1907
1908 timeout:
1909 mutex_unlock(&smi_lock);
1910 return -ETIMEDOUT;
1911 }
1912
1913 /*
1914 * Read an mmd register of a PHY
1915 */
1916 int rtl838x_read_mmd_phy(u32 port, u32 addr, u32 reg, u32 *val)
1917 {
1918 u32 v;
1919
1920 mutex_lock(&smi_lock);
1921
1922 if (rtl838x_smi_wait_op(100000))
1923 goto timeout;
1924
1925 sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
1926 mdelay(10);
1927
1928 sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
1929
1930 v = addr << 16 | reg;
1931 sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_3);
1932
1933 /* mmd-access | read | cmd-start */
1934 v = 1 << 1 | 0 << 2 | 1;
1935 sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1);
1936
1937 if (rtl838x_smi_wait_op(100000))
1938 goto timeout;
1939
1940 *val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;
1941
1942 mutex_unlock(&smi_lock);
1943 return 0;
1944
1945 timeout:
1946 mutex_unlock(&smi_lock);
1947 return -ETIMEDOUT;
1948 }
1949
1950 /*
1951 * Write to an mmd register of a PHY
1952 */
1953 int rtl838x_write_mmd_phy(u32 port, u32 addr, u32 reg, u32 val)
1954 {
1955 u32 v;
1956
1957 pr_debug("MMD write: port %d, dev %d, reg %d, val %x\n", port, addr, reg, val);
1958 val &= 0xffff;
1959 mutex_lock(&smi_lock);
1960
1961 if (rtl838x_smi_wait_op(100000))
1962 goto timeout;
1963
1964 sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
1965 mdelay(10);
1966
1967 sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
1968
1969 sw_w32_mask(0x1f << 16, addr << 16, RTL838X_SMI_ACCESS_PHY_CTRL_3);
1970 sw_w32_mask(0xffff, reg, RTL838X_SMI_ACCESS_PHY_CTRL_3);
1971 /* mmd-access | write | cmd-start */
1972 v = 1 << 1 | 1 << 2 | 1;
1973 sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1);
1974
1975 if (rtl838x_smi_wait_op(100000))
1976 goto timeout;
1977
1978 mutex_unlock(&smi_lock);
1979 return 0;
1980
1981 timeout:
1982 mutex_unlock(&smi_lock);
1983 return -ETIMEDOUT;
1984 }
1985
1986 void rtl8380_get_version(struct rtl838x_switch_priv *priv)
1987 {
1988 u32 rw_save, info_save;
1989 u32 info;
1990
1991 rw_save = sw_r32(RTL838X_INT_RW_CTRL);
1992 sw_w32(rw_save | 0x3, RTL838X_INT_RW_CTRL);
1993
1994 info_save = sw_r32(RTL838X_CHIP_INFO);
1995 sw_w32(info_save | 0xA0000000, RTL838X_CHIP_INFO);
1996
1997 info = sw_r32(RTL838X_CHIP_INFO);
1998 sw_w32(info_save, RTL838X_CHIP_INFO);
1999 sw_w32(rw_save, RTL838X_INT_RW_CTRL);
2000
2001 if ((info & 0xFFFF) == 0x6275) {
2002 if (((info >> 16) & 0x1F) == 0x1)
2003 priv->version = RTL8380_VERSION_A;
2004 else if (((info >> 16) & 0x1F) == 0x2)
2005 priv->version = RTL8380_VERSION_B;
2006 else
2007 priv->version = RTL8380_VERSION_B;
2008 } else {
2009 priv->version = '-';
2010 }
2011 }
2012
2013 void rtl838x_vlan_profile_dump(int profile)
2014 {
2015 u32 p;
2016
2017 if (profile < 0 || profile > 7)
2018 return;
2019
2020 p = sw_r32(RTL838X_VLAN_PROFILE(profile));
2021
2022 pr_info("VLAN profile %d: L2 learning: %d, UNKN L2MC FLD PMSK %d, \
2023 UNKN IPMC FLD PMSK %d, UNKN IPv6MC FLD PMSK: %d",
2024 profile, p & 1, (p >> 1) & 0x1ff, (p >> 10) & 0x1ff, (p >> 19) & 0x1ff);
2025 }
2026
2027 void rtl8380_sds_rst(int mac)
2028 {
2029 u32 offset = (mac == 24) ? 0 : 0x100;
2030
2031 sw_w32_mask(1 << 11, 0, RTL838X_SDS4_FIB_REG0 + offset);
2032 sw_w32_mask(0x3, 0, RTL838X_SDS4_REG28 + offset);
2033 sw_w32_mask(0x3, 0x3, RTL838X_SDS4_REG28 + offset);
2034 sw_w32_mask(0, 0x1 << 6, RTL838X_SDS4_DUMMY0 + offset);
2035 sw_w32_mask(0x1 << 6, 0, RTL838X_SDS4_DUMMY0 + offset);
2036 pr_debug("SERDES reset: %d\n", mac);
2037 }
2038
2039 int rtl8380_sds_power(int mac, int val)
2040 {
2041 u32 mode = (val == 1) ? 0x4 : 0x9;
2042 u32 offset = (mac == 24) ? 5 : 0;
2043
2044 if ((mac != 24) && (mac != 26)) {
2045 pr_err("%s: not a fibre port: %d\n", __func__, mac);
2046 return -1;
2047 }
2048
2049 sw_w32_mask(0x1f << offset, mode << offset, RTL838X_SDS_MODE_SEL);
2050
2051 rtl8380_sds_rst(mac);
2052
2053 return 0;
2054 }