ramips: ralink-eth: fix device struct passed to dma functions
[openwrt/staging/hauke.git] / target / linux / ramips / files / drivers / net / ethernet / ralink / mtk_eth_soc.c
1 /* This program is free software; you can redistribute it and/or modify
2 * it under the terms of the GNU General Public License as published by
3 * the Free Software Foundation; version 2 of the License
4 *
5 * This program is distributed in the hope that it will be useful,
6 * but WITHOUT ANY WARRANTY; without even the implied warranty of
7 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
8 * GNU General Public License for more details.
9 *
10 * Copyright (C) 2009-2015 John Crispin <blogic@openwrt.org>
11 * Copyright (C) 2009-2015 Felix Fietkau <nbd@nbd.name>
12 * Copyright (C) 2013-2015 Michael Lee <igvtee@gmail.com>
13 */
14
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/init.h>
20 #include <linux/skbuff.h>
21 #include <linux/etherdevice.h>
22 #include <linux/ethtool.h>
23 #include <linux/platform_device.h>
24 #include <linux/of_device.h>
25 #include <linux/clk.h>
26 #include <linux/of_net.h>
27 #include <linux/of_mdio.h>
28 #include <linux/if_vlan.h>
29 #include <linux/reset.h>
30 #include <linux/tcp.h>
31 #include <linux/io.h>
32 #include <linux/bug.h>
33 #include <linux/netfilter.h>
34 #include <net/netfilter/nf_flow_table.h>
35 #include <linux/of_gpio.h>
36 #include <linux/gpio.h>
37 #include <linux/gpio/consumer.h>
38
39 #include <asm/mach-ralink/ralink_regs.h>
40
41 #include "mtk_eth_soc.h"
42 #include "mdio.h"
43 #include "ethtool.h"
44
45 #define MAX_RX_LENGTH 1536
46 #define FE_RX_ETH_HLEN (VLAN_ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN)
47 #define FE_RX_HLEN (NET_SKB_PAD + FE_RX_ETH_HLEN + NET_IP_ALIGN)
48 #define DMA_DUMMY_DESC 0xffffffff
49 #define FE_DEFAULT_MSG_ENABLE \
50 (NETIF_MSG_DRV | \
51 NETIF_MSG_PROBE | \
52 NETIF_MSG_LINK | \
53 NETIF_MSG_TIMER | \
54 NETIF_MSG_IFDOWN | \
55 NETIF_MSG_IFUP | \
56 NETIF_MSG_RX_ERR | \
57 NETIF_MSG_TX_ERR)
58
59 #define TX_DMA_DESP2_DEF (TX_DMA_LS0 | TX_DMA_DONE)
60 #define TX_DMA_DESP4_DEF (TX_DMA_QN(3) | TX_DMA_PN(1))
61 #define NEXT_TX_DESP_IDX(X) (((X) + 1) & (ring->tx_ring_size - 1))
62 #define NEXT_RX_DESP_IDX(X) (((X) + 1) & (ring->rx_ring_size - 1))
63
64 #define SYSC_REG_RSTCTRL 0x34
65
66 static int fe_msg_level = -1;
67 module_param_named(msg_level, fe_msg_level, int, 0);
68 MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)");
69
70 static const u16 fe_reg_table_default[FE_REG_COUNT] = {
71 [FE_REG_PDMA_GLO_CFG] = FE_PDMA_GLO_CFG,
72 [FE_REG_PDMA_RST_CFG] = FE_PDMA_RST_CFG,
73 [FE_REG_DLY_INT_CFG] = FE_DLY_INT_CFG,
74 [FE_REG_TX_BASE_PTR0] = FE_TX_BASE_PTR0,
75 [FE_REG_TX_MAX_CNT0] = FE_TX_MAX_CNT0,
76 [FE_REG_TX_CTX_IDX0] = FE_TX_CTX_IDX0,
77 [FE_REG_TX_DTX_IDX0] = FE_TX_DTX_IDX0,
78 [FE_REG_RX_BASE_PTR0] = FE_RX_BASE_PTR0,
79 [FE_REG_RX_MAX_CNT0] = FE_RX_MAX_CNT0,
80 [FE_REG_RX_CALC_IDX0] = FE_RX_CALC_IDX0,
81 [FE_REG_RX_DRX_IDX0] = FE_RX_DRX_IDX0,
82 [FE_REG_FE_INT_ENABLE] = FE_FE_INT_ENABLE,
83 [FE_REG_FE_INT_STATUS] = FE_FE_INT_STATUS,
84 [FE_REG_FE_DMA_VID_BASE] = FE_DMA_VID0,
85 [FE_REG_FE_COUNTER_BASE] = FE_GDMA1_TX_GBCNT,
86 [FE_REG_FE_RST_GL] = FE_FE_RST_GL,
87 };
88
89 static const u16 *fe_reg_table = fe_reg_table_default;
90
91 struct fe_work_t {
92 int bitnr;
93 void (*action)(struct fe_priv *);
94 };
95
96 static void __iomem *fe_base;
97
98 void fe_w32(u32 val, unsigned reg)
99 {
100 __raw_writel(val, fe_base + reg);
101 }
102
103 u32 fe_r32(unsigned reg)
104 {
105 return __raw_readl(fe_base + reg);
106 }
107
108 void fe_reg_w32(u32 val, enum fe_reg reg)
109 {
110 fe_w32(val, fe_reg_table[reg]);
111 }
112
113 u32 fe_reg_r32(enum fe_reg reg)
114 {
115 return fe_r32(fe_reg_table[reg]);
116 }
117
118 void fe_m32(struct fe_priv *eth, u32 clear, u32 set, unsigned reg)
119 {
120 u32 val;
121
122 spin_lock(&eth->page_lock);
123 val = __raw_readl(fe_base + reg);
124 val &= ~clear;
125 val |= set;
126 __raw_writel(val, fe_base + reg);
127 spin_unlock(&eth->page_lock);
128 }
129
130 void fe_reset(u32 reset_bits)
131 {
132 u32 t;
133
134 t = rt_sysc_r32(SYSC_REG_RSTCTRL);
135 t |= reset_bits;
136 rt_sysc_w32(t, SYSC_REG_RSTCTRL);
137 usleep_range(10, 20);
138
139 t &= ~reset_bits;
140 rt_sysc_w32(t, SYSC_REG_RSTCTRL);
141 usleep_range(10, 20);
142 }
143
144 static inline void fe_int_disable(u32 mask)
145 {
146 fe_reg_w32(fe_reg_r32(FE_REG_FE_INT_ENABLE) & ~mask,
147 FE_REG_FE_INT_ENABLE);
148 /* flush write */
149 fe_reg_r32(FE_REG_FE_INT_ENABLE);
150 }
151
152 static inline void fe_int_enable(u32 mask)
153 {
154 fe_reg_w32(fe_reg_r32(FE_REG_FE_INT_ENABLE) | mask,
155 FE_REG_FE_INT_ENABLE);
156 /* flush write */
157 fe_reg_r32(FE_REG_FE_INT_ENABLE);
158 }
159
160 static inline void fe_hw_set_macaddr(struct fe_priv *priv, unsigned char *mac)
161 {
162 unsigned long flags;
163
164 spin_lock_irqsave(&priv->page_lock, flags);
165 fe_w32((mac[0] << 8) | mac[1], FE_GDMA1_MAC_ADRH);
166 fe_w32((mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5],
167 FE_GDMA1_MAC_ADRL);
168 spin_unlock_irqrestore(&priv->page_lock, flags);
169 }
170
171 static int fe_set_mac_address(struct net_device *dev, void *p)
172 {
173 int ret = eth_mac_addr(dev, p);
174
175 if (!ret) {
176 struct fe_priv *priv = netdev_priv(dev);
177
178 if (priv->soc->set_mac)
179 priv->soc->set_mac(priv, dev->dev_addr);
180 else
181 fe_hw_set_macaddr(priv, p);
182 }
183
184 return ret;
185 }
186
187 static inline int fe_max_frag_size(int mtu)
188 {
189 /* make sure buf_size will be at least MAX_RX_LENGTH */
190 if (mtu + FE_RX_ETH_HLEN < MAX_RX_LENGTH)
191 mtu = MAX_RX_LENGTH - FE_RX_ETH_HLEN;
192
193 return SKB_DATA_ALIGN(FE_RX_HLEN + mtu) +
194 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
195 }
196
197 static inline int fe_max_buf_size(int frag_size)
198 {
199 int buf_size = frag_size - NET_SKB_PAD - NET_IP_ALIGN -
200 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
201
202 BUG_ON(buf_size < MAX_RX_LENGTH);
203 return buf_size;
204 }
205
206 static inline void fe_get_rxd(struct fe_rx_dma *rxd, struct fe_rx_dma *dma_rxd)
207 {
208 rxd->rxd1 = dma_rxd->rxd1;
209 rxd->rxd2 = dma_rxd->rxd2;
210 rxd->rxd3 = dma_rxd->rxd3;
211 rxd->rxd4 = dma_rxd->rxd4;
212 }
213
214 static inline void fe_set_txd(struct fe_tx_dma *txd, struct fe_tx_dma *dma_txd)
215 {
216 dma_txd->txd1 = txd->txd1;
217 dma_txd->txd3 = txd->txd3;
218 dma_txd->txd4 = txd->txd4;
219 /* clean dma done flag last */
220 dma_txd->txd2 = txd->txd2;
221 }
222
223 static void fe_clean_rx(struct fe_priv *priv)
224 {
225 struct fe_rx_ring *ring = &priv->rx_ring;
226 struct page *page;
227 int i;
228
229 if (ring->rx_data) {
230 for (i = 0; i < ring->rx_ring_size; i++)
231 if (ring->rx_data[i]) {
232 if (ring->rx_dma && ring->rx_dma[i].rxd1)
233 dma_unmap_single(&priv->netdev->dev,
234 ring->rx_dma[i].rxd1,
235 ring->rx_buf_size,
236 DMA_FROM_DEVICE);
237 skb_free_frag(ring->rx_data[i]);
238 }
239
240 kfree(ring->rx_data);
241 ring->rx_data = NULL;
242 }
243
244 if (ring->rx_dma) {
245 dma_free_coherent(priv->dev,
246 ring->rx_ring_size * sizeof(*ring->rx_dma),
247 ring->rx_dma,
248 ring->rx_phys);
249 ring->rx_dma = NULL;
250 }
251
252 if (!ring->frag_cache.va)
253 return;
254
255 page = virt_to_page(ring->frag_cache.va);
256 __page_frag_cache_drain(page, ring->frag_cache.pagecnt_bias);
257 memset(&ring->frag_cache, 0, sizeof(ring->frag_cache));
258 }
259
260 static int fe_alloc_rx(struct fe_priv *priv)
261 {
262 struct fe_rx_ring *ring = &priv->rx_ring;
263 int i, pad;
264
265 ring->rx_data = kcalloc(ring->rx_ring_size, sizeof(*ring->rx_data),
266 GFP_KERNEL);
267 if (!ring->rx_data)
268 goto no_rx_mem;
269
270 for (i = 0; i < ring->rx_ring_size; i++) {
271 ring->rx_data[i] = page_frag_alloc(&ring->frag_cache,
272 ring->frag_size,
273 GFP_KERNEL);
274 if (!ring->rx_data[i])
275 goto no_rx_mem;
276 }
277
278 ring->rx_dma = dma_alloc_coherent(priv->dev,
279 ring->rx_ring_size * sizeof(*ring->rx_dma),
280 &ring->rx_phys,
281 GFP_ATOMIC | __GFP_ZERO);
282 if (!ring->rx_dma)
283 goto no_rx_mem;
284
285 if (priv->flags & FE_FLAG_RX_2B_OFFSET)
286 pad = 0;
287 else
288 pad = NET_IP_ALIGN;
289 for (i = 0; i < ring->rx_ring_size; i++) {
290 dma_addr_t dma_addr = dma_map_single(priv->dev,
291 ring->rx_data[i] + NET_SKB_PAD + pad,
292 ring->rx_buf_size,
293 DMA_FROM_DEVICE);
294 if (unlikely(dma_mapping_error(priv->dev, dma_addr)))
295 goto no_rx_mem;
296 ring->rx_dma[i].rxd1 = (unsigned int)dma_addr;
297
298 if (priv->flags & FE_FLAG_RX_SG_DMA)
299 ring->rx_dma[i].rxd2 = RX_DMA_PLEN0(ring->rx_buf_size);
300 else
301 ring->rx_dma[i].rxd2 = RX_DMA_LSO;
302 }
303 ring->rx_calc_idx = ring->rx_ring_size - 1;
304 /* make sure that all changes to the dma ring are flushed before we
305 * continue
306 */
307 wmb();
308
309 fe_reg_w32(ring->rx_phys, FE_REG_RX_BASE_PTR0);
310 fe_reg_w32(ring->rx_ring_size, FE_REG_RX_MAX_CNT0);
311 fe_reg_w32(ring->rx_calc_idx, FE_REG_RX_CALC_IDX0);
312 fe_reg_w32(FE_PST_DRX_IDX0, FE_REG_PDMA_RST_CFG);
313
314 return 0;
315
316 no_rx_mem:
317 return -ENOMEM;
318 }
319
320 static void fe_txd_unmap(struct device *dev, struct fe_tx_buf *tx_buf)
321 {
322 if (dma_unmap_len(tx_buf, dma_len0))
323 dma_unmap_page(dev,
324 dma_unmap_addr(tx_buf, dma_addr0),
325 dma_unmap_len(tx_buf, dma_len0),
326 DMA_TO_DEVICE);
327
328 if (dma_unmap_len(tx_buf, dma_len1))
329 dma_unmap_page(dev,
330 dma_unmap_addr(tx_buf, dma_addr1),
331 dma_unmap_len(tx_buf, dma_len1),
332 DMA_TO_DEVICE);
333
334 dma_unmap_len_set(tx_buf, dma_addr0, 0);
335 dma_unmap_len_set(tx_buf, dma_addr1, 0);
336 if (tx_buf->skb && (tx_buf->skb != (struct sk_buff *)DMA_DUMMY_DESC))
337 dev_kfree_skb_any(tx_buf->skb);
338 tx_buf->skb = NULL;
339 }
340
341 static void fe_clean_tx(struct fe_priv *priv)
342 {
343 int i;
344 struct device *dev = priv->dev;
345 struct fe_tx_ring *ring = &priv->tx_ring;
346
347 if (ring->tx_buf) {
348 for (i = 0; i < ring->tx_ring_size; i++)
349 fe_txd_unmap(dev, &ring->tx_buf[i]);
350 kfree(ring->tx_buf);
351 ring->tx_buf = NULL;
352 }
353
354 if (ring->tx_dma) {
355 dma_free_coherent(dev,
356 ring->tx_ring_size * sizeof(*ring->tx_dma),
357 ring->tx_dma,
358 ring->tx_phys);
359 ring->tx_dma = NULL;
360 }
361
362 netdev_reset_queue(priv->netdev);
363 }
364
365 static int fe_alloc_tx(struct fe_priv *priv)
366 {
367 int i;
368 struct fe_tx_ring *ring = &priv->tx_ring;
369
370 ring->tx_free_idx = 0;
371 ring->tx_next_idx = 0;
372 ring->tx_thresh = max((unsigned long)ring->tx_ring_size >> 2,
373 MAX_SKB_FRAGS);
374
375 ring->tx_buf = kcalloc(ring->tx_ring_size, sizeof(*ring->tx_buf),
376 GFP_KERNEL);
377 if (!ring->tx_buf)
378 goto no_tx_mem;
379
380 ring->tx_dma = dma_alloc_coherent(priv->dev,
381 ring->tx_ring_size * sizeof(*ring->tx_dma),
382 &ring->tx_phys,
383 GFP_ATOMIC | __GFP_ZERO);
384 if (!ring->tx_dma)
385 goto no_tx_mem;
386
387 for (i = 0; i < ring->tx_ring_size; i++) {
388 if (priv->soc->tx_dma)
389 priv->soc->tx_dma(&ring->tx_dma[i]);
390 ring->tx_dma[i].txd2 = TX_DMA_DESP2_DEF;
391 }
392 /* make sure that all changes to the dma ring are flushed before we
393 * continue
394 */
395 wmb();
396
397 fe_reg_w32(ring->tx_phys, FE_REG_TX_BASE_PTR0);
398 fe_reg_w32(ring->tx_ring_size, FE_REG_TX_MAX_CNT0);
399 fe_reg_w32(0, FE_REG_TX_CTX_IDX0);
400 fe_reg_w32(FE_PST_DTX_IDX0, FE_REG_PDMA_RST_CFG);
401
402 return 0;
403
404 no_tx_mem:
405 return -ENOMEM;
406 }
407
408 static int fe_init_dma(struct fe_priv *priv)
409 {
410 int err;
411
412 err = fe_alloc_tx(priv);
413 if (err)
414 return err;
415
416 err = fe_alloc_rx(priv);
417 if (err)
418 return err;
419
420 return 0;
421 }
422
423 static void fe_free_dma(struct fe_priv *priv)
424 {
425 fe_clean_tx(priv);
426 fe_clean_rx(priv);
427 }
428
429 void fe_stats_update(struct fe_priv *priv)
430 {
431 struct fe_hw_stats *hwstats = priv->hw_stats;
432 unsigned int base = fe_reg_table[FE_REG_FE_COUNTER_BASE];
433 u64 stats;
434
435 u64_stats_update_begin(&hwstats->syncp);
436
437 if (IS_ENABLED(CONFIG_SOC_MT7621)) {
438 hwstats->rx_bytes += fe_r32(base);
439 stats = fe_r32(base + 0x04);
440 if (stats)
441 hwstats->rx_bytes += (stats << 32);
442 hwstats->rx_packets += fe_r32(base + 0x08);
443 hwstats->rx_overflow += fe_r32(base + 0x10);
444 hwstats->rx_fcs_errors += fe_r32(base + 0x14);
445 hwstats->rx_short_errors += fe_r32(base + 0x18);
446 hwstats->rx_long_errors += fe_r32(base + 0x1c);
447 hwstats->rx_checksum_errors += fe_r32(base + 0x20);
448 hwstats->rx_flow_control_packets += fe_r32(base + 0x24);
449 hwstats->tx_skip += fe_r32(base + 0x28);
450 hwstats->tx_collisions += fe_r32(base + 0x2c);
451 hwstats->tx_bytes += fe_r32(base + 0x30);
452 stats = fe_r32(base + 0x34);
453 if (stats)
454 hwstats->tx_bytes += (stats << 32);
455 hwstats->tx_packets += fe_r32(base + 0x38);
456 } else {
457 hwstats->tx_bytes += fe_r32(base);
458 hwstats->tx_packets += fe_r32(base + 0x04);
459 hwstats->tx_skip += fe_r32(base + 0x08);
460 hwstats->tx_collisions += fe_r32(base + 0x0c);
461 hwstats->rx_bytes += fe_r32(base + 0x20);
462 hwstats->rx_packets += fe_r32(base + 0x24);
463 hwstats->rx_overflow += fe_r32(base + 0x28);
464 hwstats->rx_fcs_errors += fe_r32(base + 0x2c);
465 hwstats->rx_short_errors += fe_r32(base + 0x30);
466 hwstats->rx_long_errors += fe_r32(base + 0x34);
467 hwstats->rx_checksum_errors += fe_r32(base + 0x38);
468 hwstats->rx_flow_control_packets += fe_r32(base + 0x3c);
469 }
470
471 u64_stats_update_end(&hwstats->syncp);
472 }
473
474 static void fe_get_stats64(struct net_device *dev,
475 struct rtnl_link_stats64 *storage)
476 {
477 struct fe_priv *priv = netdev_priv(dev);
478 struct fe_hw_stats *hwstats = priv->hw_stats;
479 unsigned int base = fe_reg_table[FE_REG_FE_COUNTER_BASE];
480 unsigned int start;
481
482 if (!base) {
483 netdev_stats_to_stats64(storage, &dev->stats);
484 return;
485 }
486
487 if (netif_running(dev) && netif_device_present(dev)) {
488 if (spin_trylock_bh(&hwstats->stats_lock)) {
489 fe_stats_update(priv);
490 spin_unlock_bh(&hwstats->stats_lock);
491 }
492 }
493
494 do {
495 start = u64_stats_fetch_begin_irq(&hwstats->syncp);
496 storage->rx_packets = hwstats->rx_packets;
497 storage->tx_packets = hwstats->tx_packets;
498 storage->rx_bytes = hwstats->rx_bytes;
499 storage->tx_bytes = hwstats->tx_bytes;
500 storage->collisions = hwstats->tx_collisions;
501 storage->rx_length_errors = hwstats->rx_short_errors +
502 hwstats->rx_long_errors;
503 storage->rx_over_errors = hwstats->rx_overflow;
504 storage->rx_crc_errors = hwstats->rx_fcs_errors;
505 storage->rx_errors = hwstats->rx_checksum_errors;
506 storage->tx_aborted_errors = hwstats->tx_skip;
507 } while (u64_stats_fetch_retry_irq(&hwstats->syncp, start));
508
509 storage->tx_errors = priv->netdev->stats.tx_errors;
510 storage->rx_dropped = priv->netdev->stats.rx_dropped;
511 storage->tx_dropped = priv->netdev->stats.tx_dropped;
512 }
513
514 static int fe_vlan_rx_add_vid(struct net_device *dev,
515 __be16 proto, u16 vid)
516 {
517 struct fe_priv *priv = netdev_priv(dev);
518 u32 idx = (vid & 0xf);
519 u32 vlan_cfg;
520
521 if (!((fe_reg_table[FE_REG_FE_DMA_VID_BASE]) &&
522 (dev->features & NETIF_F_HW_VLAN_CTAG_TX)))
523 return 0;
524
525 if (test_bit(idx, &priv->vlan_map)) {
526 netdev_warn(dev, "disable tx vlan offload\n");
527 dev->wanted_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
528 netdev_update_features(dev);
529 } else {
530 vlan_cfg = fe_r32(fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
531 ((idx >> 1) << 2));
532 if (idx & 0x1) {
533 vlan_cfg &= 0xffff;
534 vlan_cfg |= (vid << 16);
535 } else {
536 vlan_cfg &= 0xffff0000;
537 vlan_cfg |= vid;
538 }
539 fe_w32(vlan_cfg, fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
540 ((idx >> 1) << 2));
541 set_bit(idx, &priv->vlan_map);
542 }
543
544 return 0;
545 }
546
547 static int fe_vlan_rx_kill_vid(struct net_device *dev,
548 __be16 proto, u16 vid)
549 {
550 struct fe_priv *priv = netdev_priv(dev);
551 u32 idx = (vid & 0xf);
552
553 if (!((fe_reg_table[FE_REG_FE_DMA_VID_BASE]) &&
554 (dev->features & NETIF_F_HW_VLAN_CTAG_TX)))
555 return 0;
556
557 clear_bit(idx, &priv->vlan_map);
558
559 return 0;
560 }
561
562 static inline u32 fe_empty_txd(struct fe_tx_ring *ring)
563 {
564 barrier();
565 return (u32)(ring->tx_ring_size -
566 ((ring->tx_next_idx - ring->tx_free_idx) &
567 (ring->tx_ring_size - 1)));
568 }
569
570 struct fe_map_state {
571 struct device *dev;
572 struct fe_tx_dma txd;
573 u32 def_txd4;
574 int ring_idx;
575 int i;
576 };
577
578 static void fe_tx_dma_write_desc(struct fe_tx_ring *ring, struct fe_map_state *st)
579 {
580 fe_set_txd(&st->txd, &ring->tx_dma[st->ring_idx]);
581 memset(&st->txd, 0, sizeof(st->txd));
582 st->txd.txd4 = st->def_txd4;
583 st->ring_idx = NEXT_TX_DESP_IDX(st->ring_idx);
584 }
585
586 static int __fe_tx_dma_map_page(struct fe_tx_ring *ring, struct fe_map_state *st,
587 struct page *page, size_t offset, size_t size)
588 {
589 struct device *dev = st->dev;
590 struct fe_tx_buf *tx_buf;
591 dma_addr_t mapped_addr;
592
593 mapped_addr = dma_map_page(dev, page, offset, size, DMA_TO_DEVICE);
594 if (unlikely(dma_mapping_error(dev, mapped_addr)))
595 return -EIO;
596
597 if (st->i && !(st->i & 1))
598 fe_tx_dma_write_desc(ring, st);
599
600 tx_buf = &ring->tx_buf[st->ring_idx];
601 if (st->i & 1) {
602 st->txd.txd3 = mapped_addr;
603 st->txd.txd2 |= TX_DMA_PLEN1(size);
604 dma_unmap_addr_set(tx_buf, dma_addr1, mapped_addr);
605 dma_unmap_len_set(tx_buf, dma_len1, size);
606 } else {
607 tx_buf->skb = (struct sk_buff *)DMA_DUMMY_DESC;
608 st->txd.txd1 = mapped_addr;
609 st->txd.txd2 = TX_DMA_PLEN0(size);
610 dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
611 dma_unmap_len_set(tx_buf, dma_len0, size);
612 }
613 st->i++;
614
615 return 0;
616 }
617
618 static int fe_tx_dma_map_page(struct fe_tx_ring *ring, struct fe_map_state *st,
619 struct page *page, size_t offset, size_t size)
620 {
621 int cur_size;
622 int ret;
623
624 while (size > 0) {
625 cur_size = min_t(size_t, size, TX_DMA_BUF_LEN);
626
627 ret = __fe_tx_dma_map_page(ring, st, page, offset, cur_size);
628 if (ret)
629 return ret;
630
631 size -= cur_size;
632 offset += cur_size;
633 }
634
635 return 0;
636 }
637
638 static int fe_tx_dma_map_skb(struct fe_tx_ring *ring, struct fe_map_state *st,
639 struct sk_buff *skb)
640 {
641 struct page *page = virt_to_page(skb->data);
642 size_t offset = offset_in_page(skb->data);
643 size_t size = skb_headlen(skb);
644
645 return fe_tx_dma_map_page(ring, st, page, offset, size);
646 }
647
648 static inline struct sk_buff *
649 fe_next_frag(struct sk_buff *head, struct sk_buff *skb)
650 {
651 if (skb != head)
652 return skb->next;
653
654 if (skb_has_frag_list(skb))
655 return skb_shinfo(skb)->frag_list;
656
657 return NULL;
658 }
659
660
661 static int fe_tx_map_dma(struct sk_buff *skb, struct net_device *dev,
662 int tx_num, struct fe_tx_ring *ring)
663 {
664 struct fe_priv *priv = netdev_priv(dev);
665 struct fe_map_state st = {
666 .dev = priv->dev,
667 .ring_idx = ring->tx_next_idx,
668 };
669 struct sk_buff *head = skb;
670 struct fe_tx_buf *tx_buf;
671 unsigned int nr_frags;
672 int i, j;
673
674 /* init tx descriptor */
675 if (priv->soc->tx_dma)
676 priv->soc->tx_dma(&st.txd);
677 else
678 st.txd.txd4 = TX_DMA_DESP4_DEF;
679 st.def_txd4 = st.txd.txd4;
680
681 /* TX Checksum offload */
682 if (skb->ip_summed == CHECKSUM_PARTIAL)
683 st.txd.txd4 |= TX_DMA_CHKSUM;
684
685 /* VLAN header offload */
686 if (skb_vlan_tag_present(skb)) {
687 u16 tag = skb_vlan_tag_get(skb);
688
689 if (IS_ENABLED(CONFIG_SOC_MT7621))
690 st.txd.txd4 |= TX_DMA_INS_VLAN_MT7621 | tag;
691 else
692 st.txd.txd4 |= TX_DMA_INS_VLAN |
693 ((tag >> VLAN_PRIO_SHIFT) << 4) |
694 (tag & 0xF);
695 }
696
697 /* TSO: fill MSS info in tcp checksum field */
698 if (skb_is_gso(skb)) {
699 if (skb_cow_head(skb, 0)) {
700 netif_warn(priv, tx_err, dev,
701 "GSO expand head fail.\n");
702 goto err_out;
703 }
704 if (skb_shinfo(skb)->gso_type &
705 (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
706 st.txd.txd4 |= TX_DMA_TSO;
707 tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size);
708 }
709 }
710
711 next_frag:
712 if (skb_headlen(skb) && fe_tx_dma_map_skb(ring, &st, skb))
713 goto err_dma;
714
715 /* TX SG offload */
716 nr_frags = skb_shinfo(skb)->nr_frags;
717 for (i = 0; i < nr_frags; i++) {
718 struct skb_frag_struct *frag;
719
720 frag = &skb_shinfo(skb)->frags[i];
721 if (fe_tx_dma_map_page(ring, &st, skb_frag_page(frag),
722 frag->page_offset, skb_frag_size(frag)))
723 goto err_dma;
724 }
725
726 skb = fe_next_frag(head, skb);
727 if (skb)
728 goto next_frag;
729
730 /* set last segment */
731 if (st.i & 0x1)
732 st.txd.txd2 |= TX_DMA_LS0;
733 else
734 st.txd.txd2 |= TX_DMA_LS1;
735
736 /* store skb to cleanup */
737 tx_buf = &ring->tx_buf[st.ring_idx];
738 tx_buf->skb = head;
739
740 netdev_sent_queue(dev, head->len);
741 skb_tx_timestamp(head);
742
743 fe_tx_dma_write_desc(ring, &st);
744 ring->tx_next_idx = st.ring_idx;
745
746 /* make sure that all changes to the dma ring are flushed before we
747 * continue
748 */
749 wmb();
750 if (unlikely(fe_empty_txd(ring) <= ring->tx_thresh)) {
751 netif_stop_queue(dev);
752 smp_mb();
753 if (unlikely(fe_empty_txd(ring) > ring->tx_thresh))
754 netif_wake_queue(dev);
755 }
756
757 if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !head->xmit_more)
758 fe_reg_w32(ring->tx_next_idx, FE_REG_TX_CTX_IDX0);
759
760 return 0;
761
762 err_dma:
763 j = ring->tx_next_idx;
764 for (i = 0; i < tx_num; i++) {
765 /* unmap dma */
766 fe_txd_unmap(priv->dev, &ring->tx_buf[j]);
767 ring->tx_dma[j].txd2 = TX_DMA_DESP2_DEF;
768
769 j = NEXT_TX_DESP_IDX(j);
770 }
771 /* make sure that all changes to the dma ring are flushed before we
772 * continue
773 */
774 wmb();
775
776 err_out:
777 return -1;
778 }
779
780 static inline int fe_skb_padto(struct sk_buff *skb, struct fe_priv *priv)
781 {
782 unsigned int len;
783 int ret;
784
785 ret = 0;
786 if (unlikely(skb->len < VLAN_ETH_ZLEN)) {
787 if ((priv->flags & FE_FLAG_PADDING_64B) &&
788 !(priv->flags & FE_FLAG_PADDING_BUG))
789 return ret;
790
791 if (skb_vlan_tag_present(skb))
792 len = ETH_ZLEN;
793 else if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
794 len = VLAN_ETH_ZLEN;
795 else if (!(priv->flags & FE_FLAG_PADDING_64B))
796 len = ETH_ZLEN;
797 else
798 return ret;
799
800 if (skb->len < len) {
801 ret = skb_pad(skb, len - skb->len);
802 if (ret < 0)
803 return ret;
804 skb->len = len;
805 skb_set_tail_pointer(skb, len);
806 }
807 }
808
809 return ret;
810 }
811
812 static inline int fe_cal_txd_req(struct sk_buff *skb)
813 {
814 struct sk_buff *head = skb;
815 int i, nfrags = 0;
816 struct skb_frag_struct *frag;
817
818 next_frag:
819 nfrags++;
820 if (skb_is_gso(skb)) {
821 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
822 frag = &skb_shinfo(skb)->frags[i];
823 nfrags += DIV_ROUND_UP(frag->size, TX_DMA_BUF_LEN);
824 }
825 } else {
826 nfrags += skb_shinfo(skb)->nr_frags;
827 }
828
829 skb = fe_next_frag(head, skb);
830 if (skb)
831 goto next_frag;
832
833 return DIV_ROUND_UP(nfrags, 2);
834 }
835
836 static int fe_start_xmit(struct sk_buff *skb, struct net_device *dev)
837 {
838 struct fe_priv *priv = netdev_priv(dev);
839 struct fe_tx_ring *ring = &priv->tx_ring;
840 struct net_device_stats *stats = &dev->stats;
841 int tx_num;
842 int len = skb->len;
843
844 if (fe_skb_padto(skb, priv)) {
845 netif_warn(priv, tx_err, dev, "tx padding failed!\n");
846 return NETDEV_TX_OK;
847 }
848
849 tx_num = fe_cal_txd_req(skb);
850 if (unlikely(fe_empty_txd(ring) <= tx_num)) {
851 netif_stop_queue(dev);
852 netif_err(priv, tx_queued, dev,
853 "Tx Ring full when queue awake!\n");
854 return NETDEV_TX_BUSY;
855 }
856
857 if (fe_tx_map_dma(skb, dev, tx_num, ring) < 0) {
858 stats->tx_dropped++;
859 } else {
860 stats->tx_packets++;
861 stats->tx_bytes += len;
862 }
863
864 return NETDEV_TX_OK;
865 }
866
867 static int fe_poll_rx(struct napi_struct *napi, int budget,
868 struct fe_priv *priv, u32 rx_intr)
869 {
870 struct net_device *netdev = priv->netdev;
871 struct net_device_stats *stats = &netdev->stats;
872 struct fe_soc_data *soc = priv->soc;
873 struct fe_rx_ring *ring = &priv->rx_ring;
874 int idx = ring->rx_calc_idx;
875 u32 checksum_bit;
876 struct sk_buff *skb;
877 u8 *data, *new_data;
878 struct fe_rx_dma *rxd, trxd;
879 int done = 0, pad;
880
881 if (netdev->features & NETIF_F_RXCSUM)
882 checksum_bit = soc->checksum_bit;
883 else
884 checksum_bit = 0;
885
886 if (priv->flags & FE_FLAG_RX_2B_OFFSET)
887 pad = 0;
888 else
889 pad = NET_IP_ALIGN;
890
891 while (done < budget) {
892 unsigned int pktlen;
893 dma_addr_t dma_addr;
894
895 idx = NEXT_RX_DESP_IDX(idx);
896 rxd = &ring->rx_dma[idx];
897 data = ring->rx_data[idx];
898
899 fe_get_rxd(&trxd, rxd);
900 if (!(trxd.rxd2 & RX_DMA_DONE))
901 break;
902
903 /* alloc new buffer */
904 new_data = page_frag_alloc(&ring->frag_cache, ring->frag_size,
905 GFP_ATOMIC);
906 if (unlikely(!new_data)) {
907 stats->rx_dropped++;
908 goto release_desc;
909 }
910 dma_addr = dma_map_single(priv->dev,
911 new_data + NET_SKB_PAD + pad,
912 ring->rx_buf_size,
913 DMA_FROM_DEVICE);
914 if (unlikely(dma_mapping_error(priv->dev, dma_addr))) {
915 skb_free_frag(new_data);
916 goto release_desc;
917 }
918
919 /* receive data */
920 skb = build_skb(data, ring->frag_size);
921 if (unlikely(!skb)) {
922 skb_free_frag(new_data);
923 goto release_desc;
924 }
925 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
926
927 dma_unmap_single(priv->dev, trxd.rxd1,
928 ring->rx_buf_size, DMA_FROM_DEVICE);
929 pktlen = RX_DMA_GET_PLEN0(trxd.rxd2);
930 skb->dev = netdev;
931 skb_put(skb, pktlen);
932 if (trxd.rxd4 & checksum_bit)
933 skb->ip_summed = CHECKSUM_UNNECESSARY;
934 else
935 skb_checksum_none_assert(skb);
936 skb->protocol = eth_type_trans(skb, netdev);
937
938 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX &&
939 RX_DMA_VID(trxd.rxd3))
940 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
941 RX_DMA_VID(trxd.rxd3));
942
943 #ifdef CONFIG_NET_RALINK_OFFLOAD
944 if (mtk_offload_check_rx(priv, skb, trxd.rxd4) == 0) {
945 #endif
946 stats->rx_packets++;
947 stats->rx_bytes += pktlen;
948
949 napi_gro_receive(napi, skb);
950 #ifdef CONFIG_NET_RALINK_OFFLOAD
951 } else {
952 dev_kfree_skb(skb);
953 }
954 #endif
955 ring->rx_data[idx] = new_data;
956 rxd->rxd1 = (unsigned int)dma_addr;
957
958 release_desc:
959 if (priv->flags & FE_FLAG_RX_SG_DMA)
960 rxd->rxd2 = RX_DMA_PLEN0(ring->rx_buf_size);
961 else
962 rxd->rxd2 = RX_DMA_LSO;
963
964 ring->rx_calc_idx = idx;
965 /* make sure that all changes to the dma ring are flushed before
966 * we continue
967 */
968 wmb();
969 fe_reg_w32(ring->rx_calc_idx, FE_REG_RX_CALC_IDX0);
970 done++;
971 }
972
973 if (done < budget)
974 fe_reg_w32(rx_intr, FE_REG_FE_INT_STATUS);
975
976 return done;
977 }
978
979 static int fe_poll_tx(struct fe_priv *priv, int budget, u32 tx_intr,
980 int *tx_again)
981 {
982 struct net_device *netdev = priv->netdev;
983 unsigned int bytes_compl = 0;
984 struct sk_buff *skb;
985 struct fe_tx_buf *tx_buf;
986 int done = 0;
987 u32 idx, hwidx;
988 struct fe_tx_ring *ring = &priv->tx_ring;
989
990 idx = ring->tx_free_idx;
991 hwidx = fe_reg_r32(FE_REG_TX_DTX_IDX0);
992
993 while ((idx != hwidx) && budget) {
994 tx_buf = &ring->tx_buf[idx];
995 skb = tx_buf->skb;
996
997 if (!skb)
998 break;
999
1000 if (skb != (struct sk_buff *)DMA_DUMMY_DESC) {
1001 bytes_compl += skb->len;
1002 done++;
1003 budget--;
1004 }
1005 fe_txd_unmap(priv->dev, tx_buf);
1006 idx = NEXT_TX_DESP_IDX(idx);
1007 }
1008 ring->tx_free_idx = idx;
1009
1010 if (idx == hwidx) {
1011 /* read hw index again make sure no new tx packet */
1012 hwidx = fe_reg_r32(FE_REG_TX_DTX_IDX0);
1013 if (idx == hwidx)
1014 fe_reg_w32(tx_intr, FE_REG_FE_INT_STATUS);
1015 else
1016 *tx_again = 1;
1017 } else {
1018 *tx_again = 1;
1019 }
1020
1021 if (done) {
1022 netdev_completed_queue(netdev, done, bytes_compl);
1023 smp_mb();
1024 if (unlikely(netif_queue_stopped(netdev) &&
1025 (fe_empty_txd(ring) > ring->tx_thresh)))
1026 netif_wake_queue(netdev);
1027 }
1028
1029 return done;
1030 }
1031
1032 static int fe_poll(struct napi_struct *napi, int budget)
1033 {
1034 struct fe_priv *priv = container_of(napi, struct fe_priv, rx_napi);
1035 struct fe_hw_stats *hwstat = priv->hw_stats;
1036 int tx_done, rx_done, tx_again;
1037 u32 status, fe_status, status_reg, mask;
1038 u32 tx_intr, rx_intr, status_intr;
1039
1040 status = fe_reg_r32(FE_REG_FE_INT_STATUS);
1041 fe_status = status;
1042 tx_intr = priv->soc->tx_int;
1043 rx_intr = priv->soc->rx_int;
1044 status_intr = priv->soc->status_int;
1045 tx_done = 0;
1046 rx_done = 0;
1047 tx_again = 0;
1048
1049 if (fe_reg_table[FE_REG_FE_INT_STATUS2]) {
1050 fe_status = fe_reg_r32(FE_REG_FE_INT_STATUS2);
1051 status_reg = FE_REG_FE_INT_STATUS2;
1052 } else {
1053 status_reg = FE_REG_FE_INT_STATUS;
1054 }
1055
1056 if (status & tx_intr)
1057 tx_done = fe_poll_tx(priv, budget, tx_intr, &tx_again);
1058
1059 if (status & rx_intr)
1060 rx_done = fe_poll_rx(napi, budget, priv, rx_intr);
1061
1062 if (unlikely(fe_status & status_intr)) {
1063 if (hwstat && spin_trylock(&hwstat->stats_lock)) {
1064 fe_stats_update(priv);
1065 spin_unlock(&hwstat->stats_lock);
1066 }
1067 fe_reg_w32(status_intr, status_reg);
1068 }
1069
1070 if (unlikely(netif_msg_intr(priv))) {
1071 mask = fe_reg_r32(FE_REG_FE_INT_ENABLE);
1072 netdev_info(priv->netdev,
1073 "done tx %d, rx %d, intr 0x%08x/0x%x\n",
1074 tx_done, rx_done, status, mask);
1075 }
1076
1077 if (!tx_again && (rx_done < budget)) {
1078 status = fe_reg_r32(FE_REG_FE_INT_STATUS);
1079 if (status & (tx_intr | rx_intr)) {
1080 /* let napi poll again */
1081 rx_done = budget;
1082 goto poll_again;
1083 }
1084
1085 napi_complete_done(napi, rx_done);
1086 fe_int_enable(tx_intr | rx_intr);
1087 } else {
1088 rx_done = budget;
1089 }
1090
1091 poll_again:
1092 return rx_done;
1093 }
1094
1095 static void fe_tx_timeout(struct net_device *dev)
1096 {
1097 struct fe_priv *priv = netdev_priv(dev);
1098 struct fe_tx_ring *ring = &priv->tx_ring;
1099
1100 priv->netdev->stats.tx_errors++;
1101 netif_err(priv, tx_err, dev,
1102 "transmit timed out\n");
1103 netif_info(priv, drv, dev, "dma_cfg:%08x\n",
1104 fe_reg_r32(FE_REG_PDMA_GLO_CFG));
1105 netif_info(priv, drv, dev, "tx_ring=%d, "
1106 "base=%08x, max=%u, ctx=%u, dtx=%u, fdx=%hu, next=%hu\n",
1107 0, fe_reg_r32(FE_REG_TX_BASE_PTR0),
1108 fe_reg_r32(FE_REG_TX_MAX_CNT0),
1109 fe_reg_r32(FE_REG_TX_CTX_IDX0),
1110 fe_reg_r32(FE_REG_TX_DTX_IDX0),
1111 ring->tx_free_idx,
1112 ring->tx_next_idx);
1113 netif_info(priv, drv, dev,
1114 "rx_ring=%d, base=%08x, max=%u, calc=%u, drx=%u\n",
1115 0, fe_reg_r32(FE_REG_RX_BASE_PTR0),
1116 fe_reg_r32(FE_REG_RX_MAX_CNT0),
1117 fe_reg_r32(FE_REG_RX_CALC_IDX0),
1118 fe_reg_r32(FE_REG_RX_DRX_IDX0));
1119
1120 if (!test_and_set_bit(FE_FLAG_RESET_PENDING, priv->pending_flags))
1121 schedule_work(&priv->pending_work);
1122 }
1123
1124 static irqreturn_t fe_handle_irq(int irq, void *dev)
1125 {
1126 struct fe_priv *priv = netdev_priv(dev);
1127 u32 status, int_mask;
1128
1129 status = fe_reg_r32(FE_REG_FE_INT_STATUS);
1130
1131 if (unlikely(!status))
1132 return IRQ_NONE;
1133
1134 int_mask = (priv->soc->rx_int | priv->soc->tx_int);
1135 if (likely(status & int_mask)) {
1136 if (likely(napi_schedule_prep(&priv->rx_napi))) {
1137 fe_int_disable(int_mask);
1138 __napi_schedule(&priv->rx_napi);
1139 }
1140 } else {
1141 fe_reg_w32(status, FE_REG_FE_INT_STATUS);
1142 }
1143
1144 return IRQ_HANDLED;
1145 }
1146
1147 #ifdef CONFIG_NET_POLL_CONTROLLER
1148 static void fe_poll_controller(struct net_device *dev)
1149 {
1150 struct fe_priv *priv = netdev_priv(dev);
1151 u32 int_mask = priv->soc->tx_int | priv->soc->rx_int;
1152
1153 fe_int_disable(int_mask);
1154 fe_handle_irq(dev->irq, dev);
1155 fe_int_enable(int_mask);
1156 }
1157 #endif
1158
1159 int fe_set_clock_cycle(struct fe_priv *priv)
1160 {
1161 unsigned long sysclk = priv->sysclk;
1162
1163 sysclk /= FE_US_CYC_CNT_DIVISOR;
1164 sysclk <<= FE_US_CYC_CNT_SHIFT;
1165
1166 fe_w32((fe_r32(FE_FE_GLO_CFG) &
1167 ~(FE_US_CYC_CNT_MASK << FE_US_CYC_CNT_SHIFT)) |
1168 sysclk,
1169 FE_FE_GLO_CFG);
1170 return 0;
1171 }
1172
1173 void fe_fwd_config(struct fe_priv *priv)
1174 {
1175 u32 fwd_cfg;
1176
1177 fwd_cfg = fe_r32(FE_GDMA1_FWD_CFG);
1178
1179 /* disable jumbo frame */
1180 if (priv->flags & FE_FLAG_JUMBO_FRAME)
1181 fwd_cfg &= ~FE_GDM1_JMB_EN;
1182
1183 /* set unicast/multicast/broadcast frame to cpu */
1184 fwd_cfg &= ~0xffff;
1185
1186 fe_w32(fwd_cfg, FE_GDMA1_FWD_CFG);
1187 }
1188
1189 static void fe_rxcsum_config(bool enable)
1190 {
1191 if (enable)
1192 fe_w32(fe_r32(FE_GDMA1_FWD_CFG) | (FE_GDM1_ICS_EN |
1193 FE_GDM1_TCS_EN | FE_GDM1_UCS_EN),
1194 FE_GDMA1_FWD_CFG);
1195 else
1196 fe_w32(fe_r32(FE_GDMA1_FWD_CFG) & ~(FE_GDM1_ICS_EN |
1197 FE_GDM1_TCS_EN | FE_GDM1_UCS_EN),
1198 FE_GDMA1_FWD_CFG);
1199 }
1200
1201 static void fe_txcsum_config(bool enable)
1202 {
1203 if (enable)
1204 fe_w32(fe_r32(FE_CDMA_CSG_CFG) | (FE_ICS_GEN_EN |
1205 FE_TCS_GEN_EN | FE_UCS_GEN_EN),
1206 FE_CDMA_CSG_CFG);
1207 else
1208 fe_w32(fe_r32(FE_CDMA_CSG_CFG) & ~(FE_ICS_GEN_EN |
1209 FE_TCS_GEN_EN | FE_UCS_GEN_EN),
1210 FE_CDMA_CSG_CFG);
1211 }
1212
1213 void fe_csum_config(struct fe_priv *priv)
1214 {
1215 struct net_device *dev = priv_netdev(priv);
1216
1217 fe_txcsum_config((dev->features & NETIF_F_IP_CSUM));
1218 fe_rxcsum_config((dev->features & NETIF_F_RXCSUM));
1219 }
1220
1221 static int fe_hw_init(struct net_device *dev)
1222 {
1223 struct fe_priv *priv = netdev_priv(dev);
1224 int i, err;
1225
1226 err = devm_request_irq(priv->dev, dev->irq, fe_handle_irq, 0,
1227 dev_name(priv->dev), dev);
1228 if (err)
1229 return err;
1230
1231 if (priv->soc->set_mac)
1232 priv->soc->set_mac(priv, dev->dev_addr);
1233 else
1234 fe_hw_set_macaddr(priv, dev->dev_addr);
1235
1236 /* disable delay interrupt */
1237 fe_reg_w32(0, FE_REG_DLY_INT_CFG);
1238
1239 fe_int_disable(priv->soc->tx_int | priv->soc->rx_int);
1240
1241 /* frame engine will push VLAN tag regarding to VIDX feild in Tx desc */
1242 if (fe_reg_table[FE_REG_FE_DMA_VID_BASE])
1243 for (i = 0; i < 16; i += 2)
1244 fe_w32(((i + 1) << 16) + i,
1245 fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
1246 (i * 2));
1247
1248 if (priv->soc->fwd_config(priv))
1249 netdev_err(dev, "unable to get clock\n");
1250
1251 if (fe_reg_table[FE_REG_FE_RST_GL]) {
1252 fe_reg_w32(1, FE_REG_FE_RST_GL);
1253 fe_reg_w32(0, FE_REG_FE_RST_GL);
1254 }
1255
1256 return 0;
1257 }
1258
1259 static int fe_open(struct net_device *dev)
1260 {
1261 struct fe_priv *priv = netdev_priv(dev);
1262 unsigned long flags;
1263 u32 val;
1264 int err;
1265
1266 err = fe_init_dma(priv);
1267 if (err) {
1268 fe_free_dma(priv);
1269 return err;
1270 }
1271
1272 spin_lock_irqsave(&priv->page_lock, flags);
1273
1274 val = FE_TX_WB_DDONE | FE_RX_DMA_EN | FE_TX_DMA_EN;
1275 if (priv->flags & FE_FLAG_RX_2B_OFFSET)
1276 val |= FE_RX_2B_OFFSET;
1277 val |= priv->soc->pdma_glo_cfg;
1278 fe_reg_w32(val, FE_REG_PDMA_GLO_CFG);
1279
1280 spin_unlock_irqrestore(&priv->page_lock, flags);
1281
1282 if (priv->phy)
1283 priv->phy->start(priv);
1284
1285 if (priv->soc->has_carrier && priv->soc->has_carrier(priv))
1286 netif_carrier_on(dev);
1287
1288 napi_enable(&priv->rx_napi);
1289 fe_int_enable(priv->soc->tx_int | priv->soc->rx_int);
1290 netif_start_queue(dev);
1291 #ifdef CONFIG_NET_RALINK_OFFLOAD
1292 mtk_ppe_probe(priv);
1293 #endif
1294
1295 return 0;
1296 }
1297
1298 static int fe_stop(struct net_device *dev)
1299 {
1300 struct fe_priv *priv = netdev_priv(dev);
1301 unsigned long flags;
1302 int i;
1303
1304 netif_tx_disable(dev);
1305 fe_int_disable(priv->soc->tx_int | priv->soc->rx_int);
1306 napi_disable(&priv->rx_napi);
1307
1308 if (priv->phy)
1309 priv->phy->stop(priv);
1310
1311 spin_lock_irqsave(&priv->page_lock, flags);
1312
1313 fe_reg_w32(fe_reg_r32(FE_REG_PDMA_GLO_CFG) &
1314 ~(FE_TX_WB_DDONE | FE_RX_DMA_EN | FE_TX_DMA_EN),
1315 FE_REG_PDMA_GLO_CFG);
1316 spin_unlock_irqrestore(&priv->page_lock, flags);
1317
1318 /* wait dma stop */
1319 for (i = 0; i < 10; i++) {
1320 if (fe_reg_r32(FE_REG_PDMA_GLO_CFG) &
1321 (FE_TX_DMA_BUSY | FE_RX_DMA_BUSY)) {
1322 msleep(20);
1323 continue;
1324 }
1325 break;
1326 }
1327
1328 fe_free_dma(priv);
1329
1330 #ifdef CONFIG_NET_RALINK_OFFLOAD
1331 mtk_ppe_remove(priv);
1332 #endif
1333
1334 return 0;
1335 }
1336
1337 static void fe_reset_phy(struct fe_priv *priv)
1338 {
1339 int err, msec = 30;
1340 struct gpio_desc *phy_reset;
1341
1342 phy_reset = devm_gpiod_get_optional(priv->dev, "phy-reset",
1343 GPIOD_OUT_HIGH);
1344 if (!phy_reset)
1345 return;
1346
1347 if (IS_ERR(phy_reset)) {
1348 dev_err(priv->dev, "Error acquiring reset gpio pins: %ld\n",
1349 PTR_ERR(phy_reset));
1350 return;
1351 }
1352
1353 err = of_property_read_u32(priv->dev->of_node, "phy-reset-duration",
1354 &msec);
1355 if (!err && msec > 1000)
1356 msec = 30;
1357
1358 if (msec > 20)
1359 msleep(msec);
1360 else
1361 usleep_range(msec * 1000, msec * 1000 + 1000);
1362
1363 gpiod_set_value(phy_reset, 0);
1364 }
1365
1366 static int __init fe_init(struct net_device *dev)
1367 {
1368 struct fe_priv *priv = netdev_priv(dev);
1369 struct device_node *port;
1370 const char *mac_addr;
1371 int err;
1372
1373 priv->soc->reset_fe();
1374
1375 if (priv->soc->switch_init)
1376 if (priv->soc->switch_init(priv)) {
1377 netdev_err(dev, "failed to initialize switch core\n");
1378 return -ENODEV;
1379 }
1380
1381 fe_reset_phy(priv);
1382
1383 mac_addr = of_get_mac_address(priv->dev->of_node);
1384 if (mac_addr)
1385 ether_addr_copy(dev->dev_addr, mac_addr);
1386
1387 /* If the mac address is invalid, use random mac address */
1388 if (!is_valid_ether_addr(dev->dev_addr)) {
1389 eth_hw_addr_random(dev);
1390 dev_err(priv->dev, "generated random MAC address %pM\n",
1391 dev->dev_addr);
1392 }
1393
1394 err = fe_mdio_init(priv);
1395 if (err)
1396 return err;
1397
1398 if (priv->soc->port_init)
1399 for_each_child_of_node(priv->dev->of_node, port)
1400 if (of_device_is_compatible(port, "mediatek,eth-port") &&
1401 of_device_is_available(port))
1402 priv->soc->port_init(priv, port);
1403
1404 if (priv->phy) {
1405 err = priv->phy->connect(priv);
1406 if (err)
1407 goto err_phy_disconnect;
1408 }
1409
1410 err = fe_hw_init(dev);
1411 if (err)
1412 goto err_phy_disconnect;
1413
1414 if ((priv->flags & FE_FLAG_HAS_SWITCH) && priv->soc->switch_config)
1415 priv->soc->switch_config(priv);
1416
1417 return 0;
1418
1419 err_phy_disconnect:
1420 if (priv->phy)
1421 priv->phy->disconnect(priv);
1422 fe_mdio_cleanup(priv);
1423
1424 return err;
1425 }
1426
1427 static void fe_uninit(struct net_device *dev)
1428 {
1429 struct fe_priv *priv = netdev_priv(dev);
1430
1431 if (priv->phy)
1432 priv->phy->disconnect(priv);
1433 fe_mdio_cleanup(priv);
1434
1435 fe_reg_w32(0, FE_REG_FE_INT_ENABLE);
1436 free_irq(dev->irq, dev);
1437 }
1438
1439 static int fe_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1440 {
1441 struct fe_priv *priv = netdev_priv(dev);
1442
1443 if (!priv->phy_dev)
1444 return -ENODEV;
1445
1446
1447 return phy_mii_ioctl(priv->phy_dev, ifr, cmd);
1448 }
1449
1450 static int fe_change_mtu(struct net_device *dev, int new_mtu)
1451 {
1452 struct fe_priv *priv = netdev_priv(dev);
1453 int frag_size, old_mtu;
1454 u32 fwd_cfg;
1455
1456 old_mtu = dev->mtu;
1457 dev->mtu = new_mtu;
1458
1459 if (!(priv->flags & FE_FLAG_JUMBO_FRAME))
1460 return 0;
1461
1462 /* return early if the buffer sizes will not change */
1463 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1464 return 0;
1465 if (old_mtu > ETH_DATA_LEN && new_mtu > ETH_DATA_LEN)
1466 return 0;
1467
1468 if (new_mtu <= ETH_DATA_LEN)
1469 priv->rx_ring.frag_size = fe_max_frag_size(ETH_DATA_LEN);
1470 else
1471 priv->rx_ring.frag_size = PAGE_SIZE;
1472 priv->rx_ring.rx_buf_size = fe_max_buf_size(priv->rx_ring.frag_size);
1473
1474 if (!netif_running(dev))
1475 return 0;
1476
1477 fe_stop(dev);
1478 if (!IS_ENABLED(CONFIG_SOC_MT7621)) {
1479 fwd_cfg = fe_r32(FE_GDMA1_FWD_CFG);
1480 if (new_mtu <= ETH_DATA_LEN) {
1481 fwd_cfg &= ~FE_GDM1_JMB_EN;
1482 } else {
1483 frag_size = fe_max_frag_size(new_mtu);
1484 fwd_cfg &= ~(FE_GDM1_JMB_LEN_MASK << FE_GDM1_JMB_LEN_SHIFT);
1485 fwd_cfg |= (DIV_ROUND_UP(frag_size, 1024) <<
1486 FE_GDM1_JMB_LEN_SHIFT) | FE_GDM1_JMB_EN;
1487 }
1488 fe_w32(fwd_cfg, FE_GDMA1_FWD_CFG);
1489 }
1490
1491 return fe_open(dev);
1492 }
1493
1494 #ifdef CONFIG_NET_RALINK_OFFLOAD
1495 static int
1496 fe_flow_offload(enum flow_offload_type type, struct flow_offload *flow,
1497 struct flow_offload_hw_path *src,
1498 struct flow_offload_hw_path *dest)
1499 {
1500 struct fe_priv *priv;
1501
1502 if (src->dev != dest->dev)
1503 return -EINVAL;
1504
1505 priv = netdev_priv(src->dev);
1506
1507 return mtk_flow_offload(priv, type, flow, src, dest);
1508 }
1509 #endif
1510
1511 static const struct net_device_ops fe_netdev_ops = {
1512 .ndo_init = fe_init,
1513 .ndo_uninit = fe_uninit,
1514 .ndo_open = fe_open,
1515 .ndo_stop = fe_stop,
1516 .ndo_start_xmit = fe_start_xmit,
1517 .ndo_set_mac_address = fe_set_mac_address,
1518 .ndo_validate_addr = eth_validate_addr,
1519 .ndo_do_ioctl = fe_do_ioctl,
1520 .ndo_change_mtu = fe_change_mtu,
1521 .ndo_tx_timeout = fe_tx_timeout,
1522 .ndo_get_stats64 = fe_get_stats64,
1523 .ndo_vlan_rx_add_vid = fe_vlan_rx_add_vid,
1524 .ndo_vlan_rx_kill_vid = fe_vlan_rx_kill_vid,
1525 #ifdef CONFIG_NET_POLL_CONTROLLER
1526 .ndo_poll_controller = fe_poll_controller,
1527 #endif
1528 #ifdef CONFIG_NET_RALINK_OFFLOAD
1529 .ndo_flow_offload = fe_flow_offload,
1530 #endif
1531 };
1532
1533 static void fe_reset_pending(struct fe_priv *priv)
1534 {
1535 struct net_device *dev = priv->netdev;
1536 int err;
1537
1538 rtnl_lock();
1539 fe_stop(dev);
1540
1541 err = fe_open(dev);
1542 if (err) {
1543 netif_alert(priv, ifup, dev,
1544 "Driver up/down cycle failed, closing device.\n");
1545 dev_close(dev);
1546 }
1547 rtnl_unlock();
1548 }
1549
1550 static const struct fe_work_t fe_work[] = {
1551 {FE_FLAG_RESET_PENDING, fe_reset_pending},
1552 };
1553
1554 static void fe_pending_work(struct work_struct *work)
1555 {
1556 struct fe_priv *priv = container_of(work, struct fe_priv, pending_work);
1557 int i;
1558 bool pending;
1559
1560 for (i = 0; i < ARRAY_SIZE(fe_work); i++) {
1561 pending = test_and_clear_bit(fe_work[i].bitnr,
1562 priv->pending_flags);
1563 if (pending)
1564 fe_work[i].action(priv);
1565 }
1566 }
1567
1568 static int fe_probe(struct platform_device *pdev)
1569 {
1570 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1571 const struct of_device_id *match;
1572 struct fe_soc_data *soc;
1573 struct net_device *netdev;
1574 struct fe_priv *priv;
1575 struct clk *sysclk;
1576 int err, napi_weight;
1577
1578 device_reset(&pdev->dev);
1579
1580 match = of_match_device(of_fe_match, &pdev->dev);
1581 soc = (struct fe_soc_data *)match->data;
1582
1583 if (soc->reg_table)
1584 fe_reg_table = soc->reg_table;
1585 else
1586 soc->reg_table = fe_reg_table;
1587
1588 fe_base = devm_ioremap_resource(&pdev->dev, res);
1589 if (IS_ERR(fe_base)) {
1590 err = -EADDRNOTAVAIL;
1591 goto err_out;
1592 }
1593
1594 netdev = alloc_etherdev(sizeof(*priv));
1595 if (!netdev) {
1596 dev_err(&pdev->dev, "alloc_etherdev failed\n");
1597 err = -ENOMEM;
1598 goto err_iounmap;
1599 }
1600
1601 SET_NETDEV_DEV(netdev, &pdev->dev);
1602 netdev->netdev_ops = &fe_netdev_ops;
1603 netdev->base_addr = (unsigned long)fe_base;
1604
1605 netdev->irq = platform_get_irq(pdev, 0);
1606 if (netdev->irq < 0) {
1607 dev_err(&pdev->dev, "no IRQ resource found\n");
1608 err = -ENXIO;
1609 goto err_free_dev;
1610 }
1611
1612 if (soc->init_data)
1613 soc->init_data(soc, netdev);
1614 netdev->vlan_features = netdev->hw_features &
1615 ~(NETIF_F_HW_VLAN_CTAG_TX |
1616 NETIF_F_HW_VLAN_CTAG_RX);
1617 netdev->features |= netdev->hw_features;
1618
1619 if (IS_ENABLED(CONFIG_SOC_MT7621))
1620 netdev->max_mtu = 2048;
1621
1622 /* fake rx vlan filter func. to support tx vlan offload func */
1623 if (fe_reg_table[FE_REG_FE_DMA_VID_BASE])
1624 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1625
1626 priv = netdev_priv(netdev);
1627 spin_lock_init(&priv->page_lock);
1628 if (fe_reg_table[FE_REG_FE_COUNTER_BASE]) {
1629 priv->hw_stats = kzalloc(sizeof(*priv->hw_stats), GFP_KERNEL);
1630 if (!priv->hw_stats) {
1631 err = -ENOMEM;
1632 goto err_free_dev;
1633 }
1634 spin_lock_init(&priv->hw_stats->stats_lock);
1635 }
1636
1637 sysclk = devm_clk_get(&pdev->dev, NULL);
1638 if (!IS_ERR(sysclk)) {
1639 priv->sysclk = clk_get_rate(sysclk);
1640 } else if ((priv->flags & FE_FLAG_CALIBRATE_CLK)) {
1641 dev_err(&pdev->dev, "this soc needs a clk for calibration\n");
1642 err = -ENXIO;
1643 goto err_free_dev;
1644 }
1645
1646 priv->switch_np = of_parse_phandle(pdev->dev.of_node, "mediatek,switch", 0);
1647 if ((priv->flags & FE_FLAG_HAS_SWITCH) && !priv->switch_np) {
1648 dev_err(&pdev->dev, "failed to read switch phandle\n");
1649 err = -ENODEV;
1650 goto err_free_dev;
1651 }
1652
1653 priv->netdev = netdev;
1654 priv->dev = &pdev->dev;
1655 priv->soc = soc;
1656 priv->msg_enable = netif_msg_init(fe_msg_level, FE_DEFAULT_MSG_ENABLE);
1657 priv->rx_ring.frag_size = fe_max_frag_size(ETH_DATA_LEN);
1658 priv->rx_ring.rx_buf_size = fe_max_buf_size(priv->rx_ring.frag_size);
1659 priv->tx_ring.tx_ring_size = NUM_DMA_DESC;
1660 priv->rx_ring.rx_ring_size = NUM_DMA_DESC;
1661 INIT_WORK(&priv->pending_work, fe_pending_work);
1662 u64_stats_init(&priv->hw_stats->syncp);
1663
1664 napi_weight = 16;
1665 if (priv->flags & FE_FLAG_NAPI_WEIGHT) {
1666 napi_weight *= 4;
1667 priv->tx_ring.tx_ring_size *= 4;
1668 priv->rx_ring.rx_ring_size *= 4;
1669 }
1670 netif_napi_add(netdev, &priv->rx_napi, fe_poll, napi_weight);
1671 fe_set_ethtool_ops(netdev);
1672
1673 err = register_netdev(netdev);
1674 if (err) {
1675 dev_err(&pdev->dev, "error bringing up device\n");
1676 goto err_free_dev;
1677 }
1678
1679 platform_set_drvdata(pdev, netdev);
1680
1681 netif_info(priv, probe, netdev, "mediatek frame engine at 0x%08lx, irq %d\n",
1682 netdev->base_addr, netdev->irq);
1683
1684 return 0;
1685
1686 err_free_dev:
1687 free_netdev(netdev);
1688 err_iounmap:
1689 devm_iounmap(&pdev->dev, fe_base);
1690 err_out:
1691 return err;
1692 }
1693
1694 static int fe_remove(struct platform_device *pdev)
1695 {
1696 struct net_device *dev = platform_get_drvdata(pdev);
1697 struct fe_priv *priv = netdev_priv(dev);
1698
1699 netif_napi_del(&priv->rx_napi);
1700 kfree(priv->hw_stats);
1701
1702 cancel_work_sync(&priv->pending_work);
1703
1704 unregister_netdev(dev);
1705 free_netdev(dev);
1706 platform_set_drvdata(pdev, NULL);
1707
1708 return 0;
1709 }
1710
1711 static struct platform_driver fe_driver = {
1712 .probe = fe_probe,
1713 .remove = fe_remove,
1714 .driver = {
1715 .name = "mtk_soc_eth",
1716 .owner = THIS_MODULE,
1717 .of_match_table = of_fe_match,
1718 },
1719 };
1720
1721 module_platform_driver(fe_driver);
1722
1723 MODULE_LICENSE("GPL");
1724 MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
1725 MODULE_DESCRIPTION("Ethernet driver for Ralink SoC");
1726 MODULE_VERSION(MTK_FE_DRV_VERSION);