bmips: bcm6368-enetsw: Bump max MTU
[openwrt/staging/nbd.git] / target / linux / bmips / files / drivers / net / ethernet / broadcom / bcm6368-enetsw.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * BCM6368 Ethernet Switch Controller Driver
4 *
5 * Copyright (C) 2021 Álvaro Fernández Rojas <noltari@gmail.com>
6 * Copyright (C) 2015 Jonas Gorski <jonas.gorski@gmail.com>
7 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
8 */
9
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/ethtool.h>
15 #include <linux/if_vlan.h>
16 #include <linux/interrupt.h>
17 #include <linux/of_clk.h>
18 #include <linux/of_net.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_domain.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/reset.h>
23 #include <linux/version.h>
24
25 /* TODO: Bigger frames may work but we do not trust that they are safe on all
26 * platforms so more research is needed, a max frame size of 2048 has been
27 * tested. We use the safe frame size 1542 which is 1532 plus DSA and VLAN
28 * overhead.
29 */
30 #define ENETSW_MAX_FRAME 1542
31 #define ENETSW_DSA_TAG_SIZE 6
32 /* The MTU in Linux does not include ethernet or VLAN headers, but it DOES
33 * include the DSA overhead (the framework will increase the MTU to fit
34 * any DSA header).
35 */
36 #define ENETSW_MAX_MTU (ENETSW_MAX_FRAME - VLAN_ETH_HLEN - \
37 VLAN_HLEN)
38 #define ENETSW_FRAG_SIZE(x) (SKB_DATA_ALIGN(NET_SKB_PAD + x + \
39 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))))
40
41 /* default number of descriptor */
42 #define ENETSW_DEF_RX_DESC 64
43 #define ENETSW_DEF_TX_DESC 32
44 #define ENETSW_DEF_CPY_BREAK 128
45
46 /* maximum burst len for dma (4 bytes unit) */
47 #define ENETSW_DMA_MAXBURST 8
48
49 /* DMA channels */
50 #define DMA_CHAN_WIDTH 0x10
51
52 /* Controller Configuration Register */
53 #define DMA_CFG_REG 0x0
54 #define DMA_CFG_EN_SHIFT 0
55 #define DMA_CFG_EN_MASK (1 << DMA_CFG_EN_SHIFT)
56 #define DMA_CFG_FLOWCH_MASK(x) (1 << ((x >> 1) + 1))
57
58 /* Flow Control Descriptor Low Threshold register */
59 #define DMA_FLOWCL_REG(x) (0x4 + (x) * 6)
60
61 /* Flow Control Descriptor High Threshold register */
62 #define DMA_FLOWCH_REG(x) (0x8 + (x) * 6)
63
64 /* Flow Control Descriptor Buffer Alloca Threshold register */
65 #define DMA_BUFALLOC_REG(x) (0xc + (x) * 6)
66 #define DMA_BUFALLOC_FORCE_SHIFT 31
67 #define DMA_BUFALLOC_FORCE_MASK (1 << DMA_BUFALLOC_FORCE_SHIFT)
68
69 /* Channel Configuration register */
70 #define DMAC_CHANCFG_REG 0x0
71 #define DMAC_CHANCFG_EN_SHIFT 0
72 #define DMAC_CHANCFG_EN_MASK (1 << DMAC_CHANCFG_EN_SHIFT)
73 #define DMAC_CHANCFG_PKTHALT_SHIFT 1
74 #define DMAC_CHANCFG_PKTHALT_MASK (1 << DMAC_CHANCFG_PKTHALT_SHIFT)
75 #define DMAC_CHANCFG_BUFHALT_SHIFT 2
76 #define DMAC_CHANCFG_BUFHALT_MASK (1 << DMAC_CHANCFG_BUFHALT_SHIFT)
77 #define DMAC_CHANCFG_CHAINING_SHIFT 2
78 #define DMAC_CHANCFG_CHAINING_MASK (1 << DMAC_CHANCFG_CHAINING_SHIFT)
79 #define DMAC_CHANCFG_WRAP_EN_SHIFT 3
80 #define DMAC_CHANCFG_WRAP_EN_MASK (1 << DMAC_CHANCFG_WRAP_EN_SHIFT)
81 #define DMAC_CHANCFG_FLOWC_EN_SHIFT 4
82 #define DMAC_CHANCFG_FLOWC_EN_MASK (1 << DMAC_CHANCFG_FLOWC_EN_SHIFT)
83
84 /* Interrupt Control/Status register */
85 #define DMAC_IR_REG 0x4
86 #define DMAC_IR_BUFDONE_MASK (1 << 0)
87 #define DMAC_IR_PKTDONE_MASK (1 << 1)
88 #define DMAC_IR_NOTOWNER_MASK (1 << 2)
89
90 /* Interrupt Mask register */
91 #define DMAC_IRMASK_REG 0x8
92
93 /* Maximum Burst Length */
94 #define DMAC_MAXBURST_REG 0xc
95
96 /* Ring Start Address register */
97 #define DMAS_RSTART_REG 0x0
98
99 /* State Ram Word 2 */
100 #define DMAS_SRAM2_REG 0x4
101
102 /* State Ram Word 3 */
103 #define DMAS_SRAM3_REG 0x8
104
105 /* State Ram Word 4 */
106 #define DMAS_SRAM4_REG 0xc
107
108 struct bcm6368_enetsw_desc {
109 u32 len_stat;
110 u32 address;
111 };
112
113 /* control */
114 #define DMADESC_LENGTH_SHIFT 16
115 #define DMADESC_LENGTH_MASK (0xfff << DMADESC_LENGTH_SHIFT)
116 #define DMADESC_OWNER_MASK (1 << 15)
117 #define DMADESC_EOP_MASK (1 << 14)
118 #define DMADESC_SOP_MASK (1 << 13)
119 #define DMADESC_ESOP_MASK (DMADESC_EOP_MASK | DMADESC_SOP_MASK)
120 #define DMADESC_WRAP_MASK (1 << 12)
121 #define DMADESC_USB_NOZERO_MASK (1 << 1)
122 #define DMADESC_USB_ZERO_MASK (1 << 0)
123
124 /* status */
125 #define DMADESC_UNDER_MASK (1 << 9)
126 #define DMADESC_APPEND_CRC (1 << 8)
127 #define DMADESC_OVSIZE_MASK (1 << 4)
128 #define DMADESC_RXER_MASK (1 << 2)
129 #define DMADESC_CRC_MASK (1 << 1)
130 #define DMADESC_OV_MASK (1 << 0)
131 #define DMADESC_ERR_MASK (DMADESC_UNDER_MASK | \
132 DMADESC_OVSIZE_MASK | \
133 DMADESC_RXER_MASK | \
134 DMADESC_CRC_MASK | \
135 DMADESC_OV_MASK)
136
137 struct bcm6368_enetsw {
138 void __iomem *dma_base;
139 void __iomem *dma_chan;
140 void __iomem *dma_sram;
141
142 struct device **pm;
143 struct device_link **link_pm;
144 int num_pms;
145
146 struct clk **clock;
147 unsigned int num_clocks;
148
149 struct reset_control **reset;
150 unsigned int num_resets;
151
152 int copybreak;
153
154 int irq_rx;
155 int irq_tx;
156
157 /* hw view of rx & tx dma ring */
158 dma_addr_t rx_desc_dma;
159 dma_addr_t tx_desc_dma;
160
161 /* allocated size (in bytes) for rx & tx dma ring */
162 unsigned int rx_desc_alloc_size;
163 unsigned int tx_desc_alloc_size;
164
165 struct napi_struct napi;
166
167 /* dma channel id for rx */
168 int rx_chan;
169
170 /* number of dma desc in rx ring */
171 int rx_ring_size;
172
173 /* cpu view of rx dma ring */
174 struct bcm6368_enetsw_desc *rx_desc_cpu;
175
176 /* current number of armed descriptor given to hardware for rx */
177 int rx_desc_count;
178
179 /* next rx descriptor to fetch from hardware */
180 int rx_curr_desc;
181
182 /* next dirty rx descriptor to refill */
183 int rx_dirty_desc;
184
185 /* size of allocated rx buffer */
186 unsigned int rx_buf_size;
187
188 /* size of allocated rx frag */
189 unsigned int rx_frag_size;
190
191 /* list of buffer given to hw for rx */
192 unsigned char **rx_buf;
193
194 /* used when rx buffer allocation failed, so we defer rx queue
195 * refill */
196 struct timer_list rx_timeout;
197
198 /* lock rx_timeout against rx normal operation */
199 spinlock_t rx_lock;
200
201 /* dma channel id for tx */
202 int tx_chan;
203
204 /* number of dma desc in tx ring */
205 int tx_ring_size;
206
207 /* cpu view of rx dma ring */
208 struct bcm6368_enetsw_desc *tx_desc_cpu;
209
210 /* number of available descriptor for tx */
211 int tx_desc_count;
212
213 /* next tx descriptor avaiable */
214 int tx_curr_desc;
215
216 /* next dirty tx descriptor to reclaim */
217 int tx_dirty_desc;
218
219 /* list of skb given to hw for tx */
220 struct sk_buff **tx_skb;
221
222 /* lock used by tx reclaim and xmit */
223 spinlock_t tx_lock;
224
225 /* network device reference */
226 struct net_device *net_dev;
227
228 /* platform device reference */
229 struct platform_device *pdev;
230 };
231
232 static inline void dma_writel(struct bcm6368_enetsw *priv, u32 val, u32 off)
233 {
234 __raw_writel(val, priv->dma_base + off);
235 }
236
237 static inline u32 dma_readl(struct bcm6368_enetsw *priv, u32 off, int chan)
238 {
239 return __raw_readl(priv->dma_chan + off + chan * DMA_CHAN_WIDTH);
240 }
241
242 static inline void dmac_writel(struct bcm6368_enetsw *priv, u32 val, u32 off,
243 int chan)
244 {
245 __raw_writel(val, priv->dma_chan + off + chan * DMA_CHAN_WIDTH);
246 }
247
248 static inline void dmas_writel(struct bcm6368_enetsw *priv, u32 val,
249 u32 off, int chan)
250 {
251 __raw_writel(val, priv->dma_sram + off + chan * DMA_CHAN_WIDTH);
252 }
253
254 /*
255 * refill rx queue
256 */
257 static int bcm6368_enetsw_refill_rx(struct net_device *ndev, bool napi_mode)
258 {
259 struct bcm6368_enetsw *priv = netdev_priv(ndev);
260 struct platform_device *pdev = priv->pdev;
261 struct device *dev = &pdev->dev;
262
263 while (priv->rx_desc_count < priv->rx_ring_size) {
264 struct bcm6368_enetsw_desc *desc;
265 int desc_idx;
266 u32 len_stat;
267
268 desc_idx = priv->rx_dirty_desc;
269 desc = &priv->rx_desc_cpu[desc_idx];
270
271 if (!priv->rx_buf[desc_idx]) {
272 unsigned char *buf;
273 dma_addr_t p;
274
275 if (likely(napi_mode))
276 buf = napi_alloc_frag(priv->rx_frag_size);
277 else
278 buf = netdev_alloc_frag(priv->rx_frag_size);
279
280 if (unlikely(!buf))
281 break;
282
283 p = dma_map_single(dev, buf + NET_SKB_PAD,
284 priv->rx_buf_size, DMA_FROM_DEVICE);
285 if (unlikely(dma_mapping_error(dev, p))) {
286 skb_free_frag(buf);
287 break;
288 }
289
290 priv->rx_buf[desc_idx] = buf;
291 desc->address = p;
292 }
293
294 len_stat = priv->rx_buf_size << DMADESC_LENGTH_SHIFT;
295 len_stat |= DMADESC_OWNER_MASK;
296 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
297 len_stat |= DMADESC_WRAP_MASK;
298 priv->rx_dirty_desc = 0;
299 } else {
300 priv->rx_dirty_desc++;
301 }
302 wmb();
303 desc->len_stat = len_stat;
304
305 priv->rx_desc_count++;
306
307 /* tell dma engine we allocated one buffer */
308 dma_writel(priv, 1, DMA_BUFALLOC_REG(priv->rx_chan));
309 }
310
311 /* If rx ring is still empty, set a timer to try allocating
312 * again at a later time. */
313 if (priv->rx_desc_count == 0 && netif_running(ndev)) {
314 dev_warn(dev, "unable to refill rx ring\n");
315 priv->rx_timeout.expires = jiffies + HZ;
316 add_timer(&priv->rx_timeout);
317 }
318
319 return 0;
320 }
321
322 /*
323 * timer callback to defer refill rx queue in case we're OOM
324 */
325 static void bcm6368_enetsw_refill_rx_timer(struct timer_list *t)
326 {
327 struct bcm6368_enetsw *priv = from_timer(priv, t, rx_timeout);
328 struct net_device *ndev = priv->net_dev;
329
330 spin_lock(&priv->rx_lock);
331 bcm6368_enetsw_refill_rx(ndev, false);
332 spin_unlock(&priv->rx_lock);
333 }
334
335 /*
336 * extract packet from rx queue
337 */
338 static int bcm6368_enetsw_receive_queue(struct net_device *ndev, int budget)
339 {
340 struct bcm6368_enetsw *priv = netdev_priv(ndev);
341 struct platform_device *pdev = priv->pdev;
342 struct device *dev = &pdev->dev;
343 struct list_head rx_list;
344 struct sk_buff *skb;
345 int processed = 0;
346
347 INIT_LIST_HEAD(&rx_list);
348
349 /* don't scan ring further than number of refilled
350 * descriptor */
351 if (budget > priv->rx_desc_count)
352 budget = priv->rx_desc_count;
353
354 do {
355 struct bcm6368_enetsw_desc *desc;
356 unsigned int frag_size;
357 unsigned char *buf;
358 int desc_idx;
359 u32 len_stat;
360 unsigned int len;
361
362 desc_idx = priv->rx_curr_desc;
363 desc = &priv->rx_desc_cpu[desc_idx];
364
365 /* make sure we actually read the descriptor status at
366 * each loop */
367 rmb();
368
369 len_stat = desc->len_stat;
370
371 /* break if dma ownership belongs to hw */
372 if (len_stat & DMADESC_OWNER_MASK)
373 break;
374
375 processed++;
376 priv->rx_curr_desc++;
377 if (priv->rx_curr_desc == priv->rx_ring_size)
378 priv->rx_curr_desc = 0;
379
380 /* if the packet does not have start of packet _and_
381 * end of packet flag set, then just recycle it */
382 if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
383 ndev->stats.rx_dropped++;
384 continue;
385 }
386
387 /* valid packet */
388 buf = priv->rx_buf[desc_idx];
389 len = (len_stat & DMADESC_LENGTH_MASK)
390 >> DMADESC_LENGTH_SHIFT;
391 /* don't include FCS */
392 len -= 4;
393
394 if (len < priv->copybreak) {
395 unsigned int nfrag_size = ENETSW_FRAG_SIZE(len);
396 unsigned char *nbuf = napi_alloc_frag(nfrag_size);
397
398 if (unlikely(!nbuf)) {
399 /* forget packet, just rearm desc */
400 ndev->stats.rx_dropped++;
401 continue;
402 }
403
404 dma_sync_single_for_cpu(dev, desc->address,
405 len, DMA_FROM_DEVICE);
406 memcpy(nbuf + NET_SKB_PAD, buf + NET_SKB_PAD, len);
407 dma_sync_single_for_device(dev, desc->address,
408 len, DMA_FROM_DEVICE);
409 buf = nbuf;
410 frag_size = nfrag_size;
411 } else {
412 dma_unmap_single(dev, desc->address,
413 priv->rx_buf_size, DMA_FROM_DEVICE);
414 priv->rx_buf[desc_idx] = NULL;
415 frag_size = priv->rx_frag_size;
416 }
417
418 skb = napi_build_skb(buf, frag_size);
419 if (unlikely(!skb)) {
420 skb_free_frag(buf);
421 ndev->stats.rx_dropped++;
422 continue;
423 }
424
425 skb_reserve(skb, NET_SKB_PAD);
426 skb_put(skb, len);
427 ndev->stats.rx_packets++;
428 ndev->stats.rx_bytes += len;
429 list_add_tail(&skb->list, &rx_list);
430 } while (processed < budget);
431
432 list_for_each_entry(skb, &rx_list, list)
433 skb->protocol = eth_type_trans(skb, ndev);
434 netif_receive_skb_list(&rx_list);
435 priv->rx_desc_count -= processed;
436
437 if (processed || !priv->rx_desc_count) {
438 bcm6368_enetsw_refill_rx(ndev, true);
439
440 /* kick rx dma */
441 dmac_writel(priv, DMAC_CHANCFG_EN_MASK,
442 DMAC_CHANCFG_REG, priv->rx_chan);
443 }
444
445 return processed;
446 }
447
448 /*
449 * try to or force reclaim of transmitted buffers
450 */
451 static int bcm6368_enetsw_tx_reclaim(struct net_device *ndev, int force,
452 int budget)
453 {
454 struct bcm6368_enetsw *priv = netdev_priv(ndev);
455 struct platform_device *pdev = priv->pdev;
456 struct device *dev = &pdev->dev;
457 unsigned int bytes = 0;
458 int released = 0;
459
460 while (priv->tx_desc_count < priv->tx_ring_size) {
461 struct bcm6368_enetsw_desc *desc;
462 struct sk_buff *skb;
463
464 /* We run in a bh and fight against start_xmit, which
465 * is called with bh disabled */
466 spin_lock(&priv->tx_lock);
467
468 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
469
470 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
471 spin_unlock(&priv->tx_lock);
472 break;
473 }
474
475 /* ensure other field of the descriptor were not read
476 * before we checked ownership */
477 rmb();
478
479 skb = priv->tx_skb[priv->tx_dirty_desc];
480 priv->tx_skb[priv->tx_dirty_desc] = NULL;
481 dma_unmap_single(dev, desc->address, skb->len,
482 DMA_TO_DEVICE);
483
484 priv->tx_dirty_desc++;
485 if (priv->tx_dirty_desc == priv->tx_ring_size)
486 priv->tx_dirty_desc = 0;
487 priv->tx_desc_count++;
488
489 spin_unlock(&priv->tx_lock);
490
491 if (desc->len_stat & DMADESC_UNDER_MASK)
492 ndev->stats.tx_errors++;
493
494 bytes += skb->len;
495 napi_consume_skb(skb, budget);
496 released++;
497 }
498
499 netdev_completed_queue(ndev, released, bytes);
500
501 if (netif_queue_stopped(ndev) && released)
502 netif_wake_queue(ndev);
503
504 return released;
505 }
506
507 /*
508 * poll func, called by network core
509 */
510 static int bcm6368_enetsw_poll(struct napi_struct *napi, int budget)
511 {
512 struct bcm6368_enetsw *priv = container_of(napi, struct bcm6368_enetsw, napi);
513 struct net_device *ndev = priv->net_dev;
514 int rx_work_done;
515
516 /* ack interrupts */
517 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
518 DMAC_IR_REG, priv->rx_chan);
519 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
520 DMAC_IR_REG, priv->tx_chan);
521
522 /* reclaim sent skb */
523 bcm6368_enetsw_tx_reclaim(ndev, 0, budget);
524
525 spin_lock(&priv->rx_lock);
526 rx_work_done = bcm6368_enetsw_receive_queue(ndev, budget);
527 spin_unlock(&priv->rx_lock);
528
529 if (rx_work_done >= budget) {
530 /* rx queue is not yet empty/clean */
531 return rx_work_done;
532 }
533
534 /* no more packet in rx/tx queue, remove device from poll
535 * queue */
536 napi_complete_done(napi, rx_work_done);
537
538 /* restore rx/tx interrupt */
539 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
540 DMAC_IRMASK_REG, priv->rx_chan);
541 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
542 DMAC_IRMASK_REG, priv->tx_chan);
543
544 return rx_work_done;
545 }
546
547 /*
548 * rx/tx dma interrupt handler
549 */
550 static irqreturn_t bcm6368_enetsw_isr_dma(int irq, void *dev_id)
551 {
552 struct net_device *ndev = dev_id;
553 struct bcm6368_enetsw *priv = netdev_priv(ndev);
554
555 /* mask rx/tx interrupts */
556 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
557 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
558
559 napi_schedule(&priv->napi);
560
561 return IRQ_HANDLED;
562 }
563
564 /*
565 * tx request callback
566 */
567 static netdev_tx_t
568 bcm6368_enetsw_start_xmit(struct sk_buff *skb, struct net_device *ndev)
569 {
570 struct bcm6368_enetsw *priv = netdev_priv(ndev);
571 struct platform_device *pdev = priv->pdev;
572 struct device *dev = &pdev->dev;
573 struct bcm6368_enetsw_desc *desc;
574 u32 len_stat;
575 netdev_tx_t ret;
576 dma_addr_t p;
577
578 /* lock against tx reclaim */
579 spin_lock(&priv->tx_lock);
580
581 /* make sure the tx hw queue is not full, should not happen
582 * since we stop queue before it's the case */
583 if (unlikely(!priv->tx_desc_count)) {
584 netif_stop_queue(ndev);
585 dev_err(dev, "xmit called with no tx desc available?\n");
586 ret = NETDEV_TX_BUSY;
587 goto out_unlock;
588 }
589
590 /* pad small packets */
591 if (skb->len < (ETH_ZLEN + ETH_FCS_LEN)) {
592 int needed = (ETH_ZLEN + ETH_FCS_LEN) - skb->len;
593 char *data;
594
595 if (unlikely(skb_tailroom(skb) < needed)) {
596 struct sk_buff *nskb;
597
598 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
599 if (!nskb) {
600 ret = NETDEV_TX_BUSY;
601 goto out_unlock;
602 }
603
604 dev_kfree_skb(skb);
605 skb = nskb;
606 }
607 data = skb_put_zero(skb, needed);
608 }
609
610 /* fill descriptor */
611 p = dma_map_single(dev, skb->data, skb->len, DMA_TO_DEVICE);
612 if (unlikely(dma_mapping_error(dev, p))) {
613 dev_kfree_skb(skb);
614 ret = NETDEV_TX_OK;
615 goto out_unlock;
616 }
617
618 /* point to the next available desc */
619 desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
620 priv->tx_skb[priv->tx_curr_desc] = skb;
621 desc->address = p;
622
623 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
624 len_stat |= DMADESC_ESOP_MASK | DMADESC_APPEND_CRC |
625 DMADESC_OWNER_MASK;
626
627 priv->tx_curr_desc++;
628 if (priv->tx_curr_desc == priv->tx_ring_size) {
629 priv->tx_curr_desc = 0;
630 len_stat |= DMADESC_WRAP_MASK;
631 }
632 priv->tx_desc_count--;
633
634 /* dma might be already polling, make sure we update desc
635 * fields in correct order */
636 wmb();
637 desc->len_stat = len_stat;
638 wmb();
639
640 netdev_sent_queue(ndev, skb->len);
641
642 /* kick tx dma */
643 dmac_writel(priv, DMAC_CHANCFG_EN_MASK, DMAC_CHANCFG_REG,
644 priv->tx_chan);
645
646 /* stop queue if no more desc available */
647 if (!priv->tx_desc_count)
648 netif_stop_queue(ndev);
649
650 ndev->stats.tx_bytes += skb->len;
651 ndev->stats.tx_packets++;
652 ret = NETDEV_TX_OK;
653
654 out_unlock:
655 spin_unlock(&priv->tx_lock);
656 return ret;
657 }
658
659 /*
660 * disable dma in given channel
661 */
662 static void bcm6368_enetsw_disable_dma(struct bcm6368_enetsw *priv, int chan)
663 {
664 int limit = 1000;
665
666 dmac_writel(priv, 0, DMAC_CHANCFG_REG, chan);
667
668 do {
669 u32 val;
670
671 val = dma_readl(priv, DMAC_CHANCFG_REG, chan);
672 if (!(val & DMAC_CHANCFG_EN_MASK))
673 break;
674
675 udelay(1);
676 } while (limit--);
677 }
678
679 static int bcm6368_enetsw_open(struct net_device *ndev)
680 {
681 struct bcm6368_enetsw *priv = netdev_priv(ndev);
682 struct platform_device *pdev = priv->pdev;
683 struct device *dev = &pdev->dev;
684 int i, ret;
685 unsigned int size;
686 void *p;
687 u32 val;
688
689 /* mask all interrupts and request them */
690 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
691 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
692
693 ret = request_irq(priv->irq_rx, bcm6368_enetsw_isr_dma,
694 0, ndev->name, ndev);
695 if (ret)
696 goto out_freeirq;
697
698 if (priv->irq_tx != -1) {
699 ret = request_irq(priv->irq_tx, bcm6368_enetsw_isr_dma,
700 0, ndev->name, ndev);
701 if (ret)
702 goto out_freeirq_rx;
703 }
704
705 /* allocate rx dma ring */
706 size = priv->rx_ring_size * sizeof(struct bcm6368_enetsw_desc);
707 p = dma_alloc_coherent(dev, size, &priv->rx_desc_dma, GFP_KERNEL);
708 if (!p) {
709 dev_err(dev, "cannot allocate rx ring %u\n", size);
710 ret = -ENOMEM;
711 goto out_freeirq_tx;
712 }
713
714 memset(p, 0, size);
715 priv->rx_desc_alloc_size = size;
716 priv->rx_desc_cpu = p;
717
718 /* allocate tx dma ring */
719 size = priv->tx_ring_size * sizeof(struct bcm6368_enetsw_desc);
720 p = dma_alloc_coherent(dev, size, &priv->tx_desc_dma, GFP_KERNEL);
721 if (!p) {
722 dev_err(dev, "cannot allocate tx ring\n");
723 ret = -ENOMEM;
724 goto out_free_rx_ring;
725 }
726
727 memset(p, 0, size);
728 priv->tx_desc_alloc_size = size;
729 priv->tx_desc_cpu = p;
730
731 priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
732 GFP_KERNEL);
733 if (!priv->tx_skb) {
734 dev_err(dev, "cannot allocate tx skb queue\n");
735 ret = -ENOMEM;
736 goto out_free_tx_ring;
737 }
738
739 priv->tx_desc_count = priv->tx_ring_size;
740 priv->tx_dirty_desc = 0;
741 priv->tx_curr_desc = 0;
742 spin_lock_init(&priv->tx_lock);
743
744 /* init & fill rx ring with buffers */
745 priv->rx_buf = kzalloc(sizeof(unsigned char *) * priv->rx_ring_size,
746 GFP_KERNEL);
747 if (!priv->rx_buf) {
748 dev_err(dev, "cannot allocate rx buffer queue\n");
749 ret = -ENOMEM;
750 goto out_free_tx_skb;
751 }
752
753 priv->rx_desc_count = 0;
754 priv->rx_dirty_desc = 0;
755 priv->rx_curr_desc = 0;
756
757 /* initialize flow control buffer allocation */
758 dma_writel(priv, DMA_BUFALLOC_FORCE_MASK | 0,
759 DMA_BUFALLOC_REG(priv->rx_chan));
760
761 if (bcm6368_enetsw_refill_rx(ndev, false)) {
762 dev_err(dev, "cannot allocate rx buffer queue\n");
763 ret = -ENOMEM;
764 goto out;
765 }
766
767 /* write rx & tx ring addresses */
768 dmas_writel(priv, priv->rx_desc_dma,
769 DMAS_RSTART_REG, priv->rx_chan);
770 dmas_writel(priv, priv->tx_desc_dma,
771 DMAS_RSTART_REG, priv->tx_chan);
772
773 /* clear remaining state ram for rx & tx channel */
774 dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->rx_chan);
775 dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->tx_chan);
776 dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->rx_chan);
777 dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->tx_chan);
778 dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->rx_chan);
779 dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->tx_chan);
780
781 /* set dma maximum burst len */
782 dmac_writel(priv, ENETSW_DMA_MAXBURST,
783 DMAC_MAXBURST_REG, priv->rx_chan);
784 dmac_writel(priv, ENETSW_DMA_MAXBURST,
785 DMAC_MAXBURST_REG, priv->tx_chan);
786
787 /* set flow control low/high threshold to 1/3 / 2/3 */
788 val = priv->rx_ring_size / 3;
789 dma_writel(priv, val, DMA_FLOWCL_REG(priv->rx_chan));
790 val = (priv->rx_ring_size * 2) / 3;
791 dma_writel(priv, val, DMA_FLOWCH_REG(priv->rx_chan));
792
793 /* all set, enable mac and interrupts, start dma engine and
794 * kick rx dma channel
795 */
796 wmb();
797 dma_writel(priv, DMA_CFG_EN_MASK, DMA_CFG_REG);
798 dmac_writel(priv, DMAC_CHANCFG_EN_MASK,
799 DMAC_CHANCFG_REG, priv->rx_chan);
800
801 /* watch "packet transferred" interrupt in rx and tx */
802 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
803 DMAC_IR_REG, priv->rx_chan);
804 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
805 DMAC_IR_REG, priv->tx_chan);
806
807 /* make sure we enable napi before rx interrupt */
808 napi_enable(&priv->napi);
809
810 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
811 DMAC_IRMASK_REG, priv->rx_chan);
812 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
813 DMAC_IRMASK_REG, priv->tx_chan);
814
815 netif_carrier_on(ndev);
816 netif_start_queue(ndev);
817
818 return 0;
819
820 out:
821 for (i = 0; i < priv->rx_ring_size; i++) {
822 struct bcm6368_enetsw_desc *desc;
823
824 if (!priv->rx_buf[i])
825 continue;
826
827 desc = &priv->rx_desc_cpu[i];
828 dma_unmap_single(dev, desc->address, priv->rx_buf_size,
829 DMA_FROM_DEVICE);
830 skb_free_frag(priv->rx_buf[i]);
831 }
832 kfree(priv->rx_buf);
833
834 out_free_tx_skb:
835 kfree(priv->tx_skb);
836
837 out_free_tx_ring:
838 dma_free_coherent(dev, priv->tx_desc_alloc_size,
839 priv->tx_desc_cpu, priv->tx_desc_dma);
840
841 out_free_rx_ring:
842 dma_free_coherent(dev, priv->rx_desc_alloc_size,
843 priv->rx_desc_cpu, priv->rx_desc_dma);
844
845 out_freeirq_tx:
846 if (priv->irq_tx != -1)
847 free_irq(priv->irq_tx, ndev);
848
849 out_freeirq_rx:
850 free_irq(priv->irq_rx, ndev);
851
852 out_freeirq:
853 return ret;
854 }
855
856 static int bcm6368_enetsw_stop(struct net_device *ndev)
857 {
858 struct bcm6368_enetsw *priv = netdev_priv(ndev);
859 struct platform_device *pdev = priv->pdev;
860 struct device *dev = &pdev->dev;
861 int i;
862
863 netif_stop_queue(ndev);
864 napi_disable(&priv->napi);
865 del_timer_sync(&priv->rx_timeout);
866
867 /* mask all interrupts */
868 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
869 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
870
871 /* disable dma & mac */
872 bcm6368_enetsw_disable_dma(priv, priv->tx_chan);
873 bcm6368_enetsw_disable_dma(priv, priv->rx_chan);
874
875 /* force reclaim of all tx buffers */
876 bcm6368_enetsw_tx_reclaim(ndev, 1, 0);
877
878 /* free the rx buffer ring */
879 for (i = 0; i < priv->rx_ring_size; i++) {
880 struct bcm6368_enetsw_desc *desc;
881
882 if (!priv->rx_buf[i])
883 continue;
884
885 desc = &priv->rx_desc_cpu[i];
886 dma_unmap_single_attrs(dev, desc->address, priv->rx_buf_size,
887 DMA_FROM_DEVICE,
888 DMA_ATTR_SKIP_CPU_SYNC);
889 skb_free_frag(priv->rx_buf[i]);
890 }
891
892 /* free remaining allocated memory */
893 kfree(priv->rx_buf);
894 kfree(priv->tx_skb);
895 dma_free_coherent(dev, priv->rx_desc_alloc_size,
896 priv->rx_desc_cpu, priv->rx_desc_dma);
897 dma_free_coherent(dev, priv->tx_desc_alloc_size,
898 priv->tx_desc_cpu, priv->tx_desc_dma);
899 if (priv->irq_tx != -1)
900 free_irq(priv->irq_tx, ndev);
901 free_irq(priv->irq_rx, ndev);
902
903 netdev_reset_queue(ndev);
904
905 return 0;
906 }
907
908 static const struct net_device_ops bcm6368_enetsw_ops = {
909 .ndo_open = bcm6368_enetsw_open,
910 .ndo_stop = bcm6368_enetsw_stop,
911 .ndo_start_xmit = bcm6368_enetsw_start_xmit,
912 };
913
914 static int bcm6368_enetsw_probe(struct platform_device *pdev)
915 {
916 struct device *dev = &pdev->dev;
917 struct device_node *node = dev->of_node;
918 struct bcm6368_enetsw *priv;
919 struct net_device *ndev;
920 struct resource *res;
921 unsigned char dev_addr[ETH_ALEN];
922 unsigned i;
923 int num_resets;
924 int ret;
925
926 ndev = devm_alloc_etherdev(dev, sizeof(*priv));
927 if (!ndev)
928 return -ENOMEM;
929
930 platform_set_drvdata(pdev, ndev);
931 SET_NETDEV_DEV(ndev, dev);
932
933 priv = netdev_priv(ndev);
934 priv->pdev = pdev;
935 priv->net_dev = ndev;
936
937 priv->num_pms = of_count_phandle_with_args(node, "power-domains",
938 "#power-domain-cells");
939 if (priv->num_pms > 1) {
940 priv->pm = devm_kcalloc(dev, priv->num_pms,
941 sizeof(struct device *), GFP_KERNEL);
942 if (!priv->pm)
943 return -ENOMEM;
944
945 priv->link_pm = devm_kcalloc(dev, priv->num_pms,
946 sizeof(struct device_link *),
947 GFP_KERNEL);
948 if (!priv->link_pm)
949 return -ENOMEM;
950
951 for (i = 0; i < priv->num_pms; i++) {
952 priv->pm[i] = genpd_dev_pm_attach_by_id(dev, i);
953 if (IS_ERR(priv->pm[i])) {
954 dev_err(dev, "error getting pm %d\n", i);
955 return -EINVAL;
956 }
957
958 priv->link_pm[i] = device_link_add(dev, priv->pm[i],
959 DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME |
960 DL_FLAG_RPM_ACTIVE);
961 }
962 }
963
964 pm_runtime_enable(dev);
965 pm_runtime_no_callbacks(dev);
966 ret = pm_runtime_get_sync(dev);
967 if (ret < 0) {
968 pm_runtime_disable(dev);
969 dev_info(dev, "PM prober defer: ret=%d\n", ret);
970 return -EPROBE_DEFER;
971 }
972
973 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
974 priv->dma_base = devm_ioremap_resource(dev, res);
975 if (IS_ERR_OR_NULL(priv->dma_base))
976 return PTR_ERR(priv->dma_base);
977
978 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
979 "dma-channels");
980 priv->dma_chan = devm_ioremap_resource(dev, res);
981 if (IS_ERR_OR_NULL(priv->dma_chan))
982 return PTR_ERR(priv->dma_chan);
983
984 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma-sram");
985 priv->dma_sram = devm_ioremap_resource(dev, res);
986 if (IS_ERR_OR_NULL(priv->dma_sram))
987 return PTR_ERR(priv->dma_sram);
988
989 priv->irq_rx = platform_get_irq_byname(pdev, "rx");
990 if (!priv->irq_rx)
991 return -ENODEV;
992
993 priv->irq_tx = platform_get_irq_byname(pdev, "tx");
994 if (!priv->irq_tx)
995 return -ENODEV;
996 else if (priv->irq_tx < 0)
997 priv->irq_tx = -1;
998
999 if (device_property_read_u32(dev, "dma-rx", &priv->rx_chan))
1000 return -ENODEV;
1001
1002 if (device_property_read_u32(dev, "dma-tx", &priv->tx_chan))
1003 return -ENODEV;
1004
1005 priv->rx_ring_size = ENETSW_DEF_RX_DESC;
1006 priv->tx_ring_size = ENETSW_DEF_TX_DESC;
1007 priv->copybreak = ENETSW_DEF_CPY_BREAK;
1008
1009 of_get_mac_address(node, dev_addr);
1010 if (is_valid_ether_addr(dev_addr)) {
1011 dev_addr_set(ndev, dev_addr);
1012 dev_info(dev, "mtd mac %pM\n", dev_addr);
1013 } else {
1014 eth_hw_addr_random(ndev);
1015 dev_info(dev, "random mac\n");
1016 }
1017
1018 priv->rx_buf_size = ALIGN(ENETSW_MAX_FRAME,
1019 ENETSW_DMA_MAXBURST * 4);
1020
1021 priv->rx_frag_size = ENETSW_FRAG_SIZE(priv->rx_buf_size);
1022
1023 priv->num_clocks = of_clk_get_parent_count(node);
1024 if (priv->num_clocks) {
1025 priv->clock = devm_kcalloc(dev, priv->num_clocks,
1026 sizeof(struct clk *), GFP_KERNEL);
1027 if (IS_ERR_OR_NULL(priv->clock))
1028 return PTR_ERR(priv->clock);
1029 }
1030 for (i = 0; i < priv->num_clocks; i++) {
1031 priv->clock[i] = of_clk_get(node, i);
1032 if (IS_ERR(priv->clock[i])) {
1033 dev_err(dev, "error getting clock %d\n", i);
1034 return PTR_ERR(priv->clock[i]);
1035 }
1036
1037 ret = clk_prepare_enable(priv->clock[i]);
1038 if (ret) {
1039 dev_err(dev, "error enabling clock %d\n", i);
1040 return ret;
1041 }
1042 }
1043
1044 num_resets = of_count_phandle_with_args(node, "resets",
1045 "#reset-cells");
1046 if (num_resets > 0)
1047 priv->num_resets = num_resets;
1048 else
1049 priv->num_resets = 0;
1050 if (priv->num_resets) {
1051 priv->reset = devm_kcalloc(dev, priv->num_resets,
1052 sizeof(struct reset_control *),
1053 GFP_KERNEL);
1054 if (IS_ERR_OR_NULL(priv->reset))
1055 return PTR_ERR(priv->reset);
1056 }
1057 for (i = 0; i < priv->num_resets; i++) {
1058 priv->reset[i] = devm_reset_control_get_by_index(dev, i);
1059 if (IS_ERR(priv->reset[i])) {
1060 dev_err(dev, "error getting reset %d\n", i);
1061 return PTR_ERR(priv->reset[i]);
1062 }
1063
1064 ret = reset_control_reset(priv->reset[i]);
1065 if (ret) {
1066 dev_err(dev, "error performing reset %d\n", i);
1067 return ret;
1068 }
1069 }
1070
1071 spin_lock_init(&priv->rx_lock);
1072
1073 timer_setup(&priv->rx_timeout, bcm6368_enetsw_refill_rx_timer, 0);
1074
1075 /* register netdevice */
1076 ndev->netdev_ops = &bcm6368_enetsw_ops;
1077 ndev->min_mtu = ETH_ZLEN;
1078 ndev->mtu = ETH_DATA_LEN;
1079 ndev->max_mtu = ENETSW_MAX_MTU;
1080 #if LINUX_VERSION_CODE >= KERNEL_VERSION(6,1,0)
1081 netif_napi_add(ndev, &priv->napi, bcm6368_enetsw_poll);
1082 #else
1083 netif_napi_add(ndev, &priv->napi, bcm6368_enetsw_poll, 16);
1084 #endif
1085
1086 ret = devm_register_netdev(dev, ndev);
1087 if (ret) {
1088 netif_napi_del(&priv->napi);
1089 goto out_disable_clk;
1090 }
1091
1092 netif_carrier_off(ndev);
1093
1094 dev_info(dev, "%s at 0x%px, IRQ %d\n", ndev->name, priv->dma_base, ndev->irq);
1095
1096 return 0;
1097
1098 out_disable_clk:
1099 for (i = 0; i < priv->num_resets; i++)
1100 reset_control_assert(priv->reset[i]);
1101
1102 for (i = 0; i < priv->num_clocks; i++)
1103 clk_disable_unprepare(priv->clock[i]);
1104
1105 return ret;
1106 }
1107
1108 static int bcm6368_enetsw_remove(struct platform_device *pdev)
1109 {
1110 struct device *dev = &pdev->dev;
1111 struct net_device *ndev = platform_get_drvdata(pdev);
1112 struct bcm6368_enetsw *priv = netdev_priv(ndev);
1113 unsigned int i;
1114
1115 pm_runtime_put_sync(dev);
1116 for (i = 0; priv->pm && i < priv->num_pms; i++) {
1117 dev_pm_domain_detach(priv->pm[i], true);
1118 device_link_del(priv->link_pm[i]);
1119 }
1120
1121 for (i = 0; i < priv->num_resets; i++)
1122 reset_control_assert(priv->reset[i]);
1123
1124 for (i = 0; i < priv->num_clocks; i++)
1125 clk_disable_unprepare(priv->clock[i]);
1126
1127 return 0;
1128 }
1129
1130 static const struct of_device_id bcm6368_enetsw_of_match[] = {
1131 { .compatible = "brcm,bcm6318-enetsw", },
1132 { .compatible = "brcm,bcm6328-enetsw", },
1133 { .compatible = "brcm,bcm6362-enetsw", },
1134 { .compatible = "brcm,bcm6368-enetsw", },
1135 { .compatible = "brcm,bcm63268-enetsw", },
1136 { /* sentinel */ }
1137 };
1138 MODULE_DEVICE_TABLE(of, bcm6368_enetsw_of_match);
1139
1140 static struct platform_driver bcm6368_enetsw_driver = {
1141 .driver = {
1142 .name = "bcm6368-enetsw",
1143 .of_match_table = of_match_ptr(bcm6368_enetsw_of_match),
1144 },
1145 .probe = bcm6368_enetsw_probe,
1146 .remove = bcm6368_enetsw_remove,
1147 };
1148 module_platform_driver(bcm6368_enetsw_driver);
1149
1150 MODULE_AUTHOR("Álvaro Fernández Rojas <noltari@gmail.com>");
1151 MODULE_DESCRIPTION("BCM6368 Ethernet Switch Controller Driver");
1152 MODULE_LICENSE("GPL v2");
1153 MODULE_ALIAS("platform:bcm6368-enetsw");