bmips: bcm6368-enetsw: remove unneeded variables
[openwrt/staging/jow.git] / target / linux / bmips / files / drivers / net / ethernet / broadcom / bcm6368-enetsw.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * BCM6368 Ethernet Switch Controller Driver
4 *
5 * Copyright (C) 2021 Álvaro Fernández Rojas <noltari@gmail.com>
6 * Copyright (C) 2015 Jonas Gorski <jonas.gorski@gmail.com>
7 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
8 */
9
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/ethtool.h>
15 #include <linux/if_vlan.h>
16 #include <linux/interrupt.h>
17 #include <linux/of_clk.h>
18 #include <linux/of_net.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_domain.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/reset.h>
23
24 /* MTU */
25 #define ENETSW_TAG_SIZE (6 + VLAN_HLEN)
26 #define ENETSW_MTU_OVERHEAD (VLAN_ETH_HLEN + VLAN_HLEN + \
27 ENETSW_TAG_SIZE)
28 #define ENETSW_FRAG_SIZE(x) (SKB_DATA_ALIGN(NET_SKB_PAD + x + \
29 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))))
30
31 /* default number of descriptor */
32 #define ENETSW_DEF_RX_DESC 64
33 #define ENETSW_DEF_TX_DESC 32
34 #define ENETSW_DEF_CPY_BREAK 128
35
36 /* maximum burst len for dma (4 bytes unit) */
37 #define ENETSW_DMA_MAXBURST 8
38
39 /* DMA channels */
40 #define DMA_CHAN_WIDTH 0x10
41
42 /* Controller Configuration Register */
43 #define DMA_CFG_REG 0x0
44 #define DMA_CFG_EN_SHIFT 0
45 #define DMA_CFG_EN_MASK (1 << DMA_CFG_EN_SHIFT)
46 #define DMA_CFG_FLOWCH_MASK(x) (1 << ((x >> 1) + 1))
47
48 /* Flow Control Descriptor Low Threshold register */
49 #define DMA_FLOWCL_REG(x) (0x4 + (x) * 6)
50
51 /* Flow Control Descriptor High Threshold register */
52 #define DMA_FLOWCH_REG(x) (0x8 + (x) * 6)
53
54 /* Flow Control Descriptor Buffer Alloca Threshold register */
55 #define DMA_BUFALLOC_REG(x) (0xc + (x) * 6)
56 #define DMA_BUFALLOC_FORCE_SHIFT 31
57 #define DMA_BUFALLOC_FORCE_MASK (1 << DMA_BUFALLOC_FORCE_SHIFT)
58
59 /* Channel Configuration register */
60 #define DMAC_CHANCFG_REG 0x0
61 #define DMAC_CHANCFG_EN_SHIFT 0
62 #define DMAC_CHANCFG_EN_MASK (1 << DMAC_CHANCFG_EN_SHIFT)
63 #define DMAC_CHANCFG_PKTHALT_SHIFT 1
64 #define DMAC_CHANCFG_PKTHALT_MASK (1 << DMAC_CHANCFG_PKTHALT_SHIFT)
65 #define DMAC_CHANCFG_BUFHALT_SHIFT 2
66 #define DMAC_CHANCFG_BUFHALT_MASK (1 << DMAC_CHANCFG_BUFHALT_SHIFT)
67 #define DMAC_CHANCFG_CHAINING_SHIFT 2
68 #define DMAC_CHANCFG_CHAINING_MASK (1 << DMAC_CHANCFG_CHAINING_SHIFT)
69 #define DMAC_CHANCFG_WRAP_EN_SHIFT 3
70 #define DMAC_CHANCFG_WRAP_EN_MASK (1 << DMAC_CHANCFG_WRAP_EN_SHIFT)
71 #define DMAC_CHANCFG_FLOWC_EN_SHIFT 4
72 #define DMAC_CHANCFG_FLOWC_EN_MASK (1 << DMAC_CHANCFG_FLOWC_EN_SHIFT)
73
74 /* Interrupt Control/Status register */
75 #define DMAC_IR_REG 0x4
76 #define DMAC_IR_BUFDONE_MASK (1 << 0)
77 #define DMAC_IR_PKTDONE_MASK (1 << 1)
78 #define DMAC_IR_NOTOWNER_MASK (1 << 2)
79
80 /* Interrupt Mask register */
81 #define DMAC_IRMASK_REG 0x8
82
83 /* Maximum Burst Length */
84 #define DMAC_MAXBURST_REG 0xc
85
86 /* Ring Start Address register */
87 #define DMAS_RSTART_REG 0x0
88
89 /* State Ram Word 2 */
90 #define DMAS_SRAM2_REG 0x4
91
92 /* State Ram Word 3 */
93 #define DMAS_SRAM3_REG 0x8
94
95 /* State Ram Word 4 */
96 #define DMAS_SRAM4_REG 0xc
97
98 struct bcm6368_enetsw_desc {
99 u32 len_stat;
100 u32 address;
101 };
102
103 /* control */
104 #define DMADESC_LENGTH_SHIFT 16
105 #define DMADESC_LENGTH_MASK (0xfff << DMADESC_LENGTH_SHIFT)
106 #define DMADESC_OWNER_MASK (1 << 15)
107 #define DMADESC_EOP_MASK (1 << 14)
108 #define DMADESC_SOP_MASK (1 << 13)
109 #define DMADESC_ESOP_MASK (DMADESC_EOP_MASK | DMADESC_SOP_MASK)
110 #define DMADESC_WRAP_MASK (1 << 12)
111 #define DMADESC_USB_NOZERO_MASK (1 << 1)
112 #define DMADESC_USB_ZERO_MASK (1 << 0)
113
114 /* status */
115 #define DMADESC_UNDER_MASK (1 << 9)
116 #define DMADESC_APPEND_CRC (1 << 8)
117 #define DMADESC_OVSIZE_MASK (1 << 4)
118 #define DMADESC_RXER_MASK (1 << 2)
119 #define DMADESC_CRC_MASK (1 << 1)
120 #define DMADESC_OV_MASK (1 << 0)
121 #define DMADESC_ERR_MASK (DMADESC_UNDER_MASK | \
122 DMADESC_OVSIZE_MASK | \
123 DMADESC_RXER_MASK | \
124 DMADESC_CRC_MASK | \
125 DMADESC_OV_MASK)
126
127 struct bcm6368_enetsw {
128 void __iomem *dma_base;
129 void __iomem *dma_chan;
130 void __iomem *dma_sram;
131
132 struct device **pm;
133 struct device_link **link_pm;
134 int num_pms;
135
136 struct clk **clock;
137 unsigned int num_clocks;
138
139 struct reset_control **reset;
140 unsigned int num_resets;
141
142 int copybreak;
143
144 int irq_rx;
145 int irq_tx;
146
147 /* hw view of rx & tx dma ring */
148 dma_addr_t rx_desc_dma;
149 dma_addr_t tx_desc_dma;
150
151 /* allocated size (in bytes) for rx & tx dma ring */
152 unsigned int rx_desc_alloc_size;
153 unsigned int tx_desc_alloc_size;
154
155 struct napi_struct napi;
156
157 /* dma channel id for rx */
158 int rx_chan;
159
160 /* number of dma desc in rx ring */
161 int rx_ring_size;
162
163 /* cpu view of rx dma ring */
164 struct bcm6368_enetsw_desc *rx_desc_cpu;
165
166 /* current number of armed descriptor given to hardware for rx */
167 int rx_desc_count;
168
169 /* next rx descriptor to fetch from hardware */
170 int rx_curr_desc;
171
172 /* next dirty rx descriptor to refill */
173 int rx_dirty_desc;
174
175 /* size of allocated rx buffer */
176 unsigned int rx_buf_size;
177
178 /* size of allocated rx frag */
179 unsigned int rx_frag_size;
180
181 /* list of buffer given to hw for rx */
182 unsigned char **rx_buf;
183
184 /* used when rx buffer allocation failed, so we defer rx queue
185 * refill */
186 struct timer_list rx_timeout;
187
188 /* lock rx_timeout against rx normal operation */
189 spinlock_t rx_lock;
190
191 /* dma channel id for tx */
192 int tx_chan;
193
194 /* number of dma desc in tx ring */
195 int tx_ring_size;
196
197 /* cpu view of rx dma ring */
198 struct bcm6368_enetsw_desc *tx_desc_cpu;
199
200 /* number of available descriptor for tx */
201 int tx_desc_count;
202
203 /* next tx descriptor avaiable */
204 int tx_curr_desc;
205
206 /* next dirty tx descriptor to reclaim */
207 int tx_dirty_desc;
208
209 /* list of skb given to hw for tx */
210 struct sk_buff **tx_skb;
211
212 /* lock used by tx reclaim and xmit */
213 spinlock_t tx_lock;
214
215 /* network device reference */
216 struct net_device *net_dev;
217
218 /* platform device reference */
219 struct platform_device *pdev;
220 };
221
222 static inline void dma_writel(struct bcm6368_enetsw *priv, u32 val, u32 off)
223 {
224 __raw_writel(val, priv->dma_base + off);
225 }
226
227 static inline u32 dma_readl(struct bcm6368_enetsw *priv, u32 off, int chan)
228 {
229 return __raw_readl(priv->dma_chan + off + chan * DMA_CHAN_WIDTH);
230 }
231
232 static inline void dmac_writel(struct bcm6368_enetsw *priv, u32 val, u32 off,
233 int chan)
234 {
235 __raw_writel(val, priv->dma_chan + off + chan * DMA_CHAN_WIDTH);
236 }
237
238 static inline void dmas_writel(struct bcm6368_enetsw *priv, u32 val,
239 u32 off, int chan)
240 {
241 __raw_writel(val, priv->dma_sram + off + chan * DMA_CHAN_WIDTH);
242 }
243
244 /*
245 * refill rx queue
246 */
247 static int bcm6368_enetsw_refill_rx(struct net_device *ndev, bool napi_mode)
248 {
249 struct bcm6368_enetsw *priv = netdev_priv(ndev);
250 struct platform_device *pdev = priv->pdev;
251 struct device *dev = &pdev->dev;
252
253 while (priv->rx_desc_count < priv->rx_ring_size) {
254 struct bcm6368_enetsw_desc *desc;
255 int desc_idx;
256 u32 len_stat;
257
258 desc_idx = priv->rx_dirty_desc;
259 desc = &priv->rx_desc_cpu[desc_idx];
260
261 if (!priv->rx_buf[desc_idx]) {
262 unsigned char *buf;
263 dma_addr_t p;
264
265 if (likely(napi_mode))
266 buf = napi_alloc_frag(priv->rx_frag_size);
267 else
268 buf = netdev_alloc_frag(priv->rx_frag_size);
269
270 if (unlikely(!buf))
271 break;
272
273 p = dma_map_single(dev, buf + NET_SKB_PAD,
274 priv->rx_buf_size, DMA_FROM_DEVICE);
275 if (unlikely(dma_mapping_error(dev, p))) {
276 skb_free_frag(buf);
277 break;
278 }
279
280 priv->rx_buf[desc_idx] = buf;
281 desc->address = p;
282 }
283
284 len_stat = priv->rx_buf_size << DMADESC_LENGTH_SHIFT;
285 len_stat |= DMADESC_OWNER_MASK;
286 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
287 len_stat |= DMADESC_WRAP_MASK;
288 priv->rx_dirty_desc = 0;
289 } else {
290 priv->rx_dirty_desc++;
291 }
292 wmb();
293 desc->len_stat = len_stat;
294
295 priv->rx_desc_count++;
296
297 /* tell dma engine we allocated one buffer */
298 dma_writel(priv, 1, DMA_BUFALLOC_REG(priv->rx_chan));
299 }
300
301 /* If rx ring is still empty, set a timer to try allocating
302 * again at a later time. */
303 if (priv->rx_desc_count == 0 && netif_running(ndev)) {
304 dev_warn(dev, "unable to refill rx ring\n");
305 priv->rx_timeout.expires = jiffies + HZ;
306 add_timer(&priv->rx_timeout);
307 }
308
309 return 0;
310 }
311
312 /*
313 * timer callback to defer refill rx queue in case we're OOM
314 */
315 static void bcm6368_enetsw_refill_rx_timer(struct timer_list *t)
316 {
317 struct bcm6368_enetsw *priv = from_timer(priv, t, rx_timeout);
318 struct net_device *ndev = priv->net_dev;
319
320 spin_lock(&priv->rx_lock);
321 bcm6368_enetsw_refill_rx(ndev, false);
322 spin_unlock(&priv->rx_lock);
323 }
324
325 /*
326 * extract packet from rx queue
327 */
328 static int bcm6368_enetsw_receive_queue(struct net_device *ndev, int budget)
329 {
330 struct bcm6368_enetsw *priv = netdev_priv(ndev);
331 struct platform_device *pdev = priv->pdev;
332 struct device *dev = &pdev->dev;
333 struct list_head rx_list;
334 struct sk_buff *skb;
335 int processed = 0;
336
337 INIT_LIST_HEAD(&rx_list);
338
339 /* don't scan ring further than number of refilled
340 * descriptor */
341 if (budget > priv->rx_desc_count)
342 budget = priv->rx_desc_count;
343
344 do {
345 struct bcm6368_enetsw_desc *desc;
346 unsigned int frag_size;
347 unsigned char *buf;
348 int desc_idx;
349 u32 len_stat;
350 unsigned int len;
351
352 desc_idx = priv->rx_curr_desc;
353 desc = &priv->rx_desc_cpu[desc_idx];
354
355 /* make sure we actually read the descriptor status at
356 * each loop */
357 rmb();
358
359 len_stat = desc->len_stat;
360
361 /* break if dma ownership belongs to hw */
362 if (len_stat & DMADESC_OWNER_MASK)
363 break;
364
365 processed++;
366 priv->rx_curr_desc++;
367 if (priv->rx_curr_desc == priv->rx_ring_size)
368 priv->rx_curr_desc = 0;
369
370 /* if the packet does not have start of packet _and_
371 * end of packet flag set, then just recycle it */
372 if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
373 ndev->stats.rx_dropped++;
374 continue;
375 }
376
377 /* valid packet */
378 buf = priv->rx_buf[desc_idx];
379 len = (len_stat & DMADESC_LENGTH_MASK)
380 >> DMADESC_LENGTH_SHIFT;
381 /* don't include FCS */
382 len -= 4;
383
384 if (len < priv->copybreak) {
385 unsigned int nfrag_size = ENETSW_FRAG_SIZE(len);
386 unsigned char *nbuf = napi_alloc_frag(nfrag_size);
387
388 if (unlikely(!nbuf)) {
389 /* forget packet, just rearm desc */
390 ndev->stats.rx_dropped++;
391 continue;
392 }
393
394 dma_sync_single_for_cpu(dev, desc->address,
395 len, DMA_FROM_DEVICE);
396 memcpy(nbuf + NET_SKB_PAD, buf + NET_SKB_PAD, len);
397 dma_sync_single_for_device(dev, desc->address,
398 len, DMA_FROM_DEVICE);
399 buf = nbuf;
400 frag_size = nfrag_size;
401 } else {
402 dma_unmap_single(dev, desc->address,
403 priv->rx_buf_size, DMA_FROM_DEVICE);
404 priv->rx_buf[desc_idx] = NULL;
405 frag_size = priv->rx_frag_size;
406 }
407
408 skb = napi_build_skb(buf, frag_size);
409 if (unlikely(!skb)) {
410 skb_free_frag(buf);
411 ndev->stats.rx_dropped++;
412 continue;
413 }
414
415 skb_reserve(skb, NET_SKB_PAD);
416 skb_put(skb, len);
417 ndev->stats.rx_packets++;
418 ndev->stats.rx_bytes += len;
419 list_add_tail(&skb->list, &rx_list);
420 } while (processed < budget);
421
422 list_for_each_entry(skb, &rx_list, list)
423 skb->protocol = eth_type_trans(skb, ndev);
424 netif_receive_skb_list(&rx_list);
425 priv->rx_desc_count -= processed;
426
427 if (processed || !priv->rx_desc_count) {
428 bcm6368_enetsw_refill_rx(ndev, true);
429
430 /* kick rx dma */
431 dmac_writel(priv, DMAC_CHANCFG_EN_MASK,
432 DMAC_CHANCFG_REG, priv->rx_chan);
433 }
434
435 return processed;
436 }
437
438 /*
439 * try to or force reclaim of transmitted buffers
440 */
441 static int bcm6368_enetsw_tx_reclaim(struct net_device *ndev, int force,
442 int budget)
443 {
444 struct bcm6368_enetsw *priv = netdev_priv(ndev);
445 struct platform_device *pdev = priv->pdev;
446 struct device *dev = &pdev->dev;
447 unsigned int bytes = 0;
448 int released = 0;
449
450 while (priv->tx_desc_count < priv->tx_ring_size) {
451 struct bcm6368_enetsw_desc *desc;
452 struct sk_buff *skb;
453
454 /* We run in a bh and fight against start_xmit, which
455 * is called with bh disabled */
456 spin_lock(&priv->tx_lock);
457
458 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
459
460 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
461 spin_unlock(&priv->tx_lock);
462 break;
463 }
464
465 /* ensure other field of the descriptor were not read
466 * before we checked ownership */
467 rmb();
468
469 skb = priv->tx_skb[priv->tx_dirty_desc];
470 priv->tx_skb[priv->tx_dirty_desc] = NULL;
471 dma_unmap_single(dev, desc->address, skb->len,
472 DMA_TO_DEVICE);
473
474 priv->tx_dirty_desc++;
475 if (priv->tx_dirty_desc == priv->tx_ring_size)
476 priv->tx_dirty_desc = 0;
477 priv->tx_desc_count++;
478
479 spin_unlock(&priv->tx_lock);
480
481 if (desc->len_stat & DMADESC_UNDER_MASK)
482 ndev->stats.tx_errors++;
483
484 bytes += skb->len;
485 napi_consume_skb(skb, budget);
486 released++;
487 }
488
489 netdev_completed_queue(ndev, released, bytes);
490
491 if (netif_queue_stopped(ndev) && released)
492 netif_wake_queue(ndev);
493
494 return released;
495 }
496
497 /*
498 * poll func, called by network core
499 */
500 static int bcm6368_enetsw_poll(struct napi_struct *napi, int budget)
501 {
502 struct bcm6368_enetsw *priv = container_of(napi, struct bcm6368_enetsw, napi);
503 struct net_device *ndev = priv->net_dev;
504 int rx_work_done;
505
506 /* ack interrupts */
507 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
508 DMAC_IR_REG, priv->rx_chan);
509 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
510 DMAC_IR_REG, priv->tx_chan);
511
512 /* reclaim sent skb */
513 bcm6368_enetsw_tx_reclaim(ndev, 0, budget);
514
515 spin_lock(&priv->rx_lock);
516 rx_work_done = bcm6368_enetsw_receive_queue(ndev, budget);
517 spin_unlock(&priv->rx_lock);
518
519 if (rx_work_done >= budget) {
520 /* rx queue is not yet empty/clean */
521 return rx_work_done;
522 }
523
524 /* no more packet in rx/tx queue, remove device from poll
525 * queue */
526 napi_complete_done(napi, rx_work_done);
527
528 /* restore rx/tx interrupt */
529 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
530 DMAC_IRMASK_REG, priv->rx_chan);
531 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
532 DMAC_IRMASK_REG, priv->tx_chan);
533
534 return rx_work_done;
535 }
536
537 /*
538 * rx/tx dma interrupt handler
539 */
540 static irqreturn_t bcm6368_enetsw_isr_dma(int irq, void *dev_id)
541 {
542 struct net_device *ndev = dev_id;
543 struct bcm6368_enetsw *priv = netdev_priv(ndev);
544
545 /* mask rx/tx interrupts */
546 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
547 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
548
549 napi_schedule(&priv->napi);
550
551 return IRQ_HANDLED;
552 }
553
554 /*
555 * tx request callback
556 */
557 static netdev_tx_t
558 bcm6368_enetsw_start_xmit(struct sk_buff *skb, struct net_device *ndev)
559 {
560 struct bcm6368_enetsw *priv = netdev_priv(ndev);
561 struct platform_device *pdev = priv->pdev;
562 struct device *dev = &pdev->dev;
563 struct bcm6368_enetsw_desc *desc;
564 u32 len_stat;
565 netdev_tx_t ret;
566 dma_addr_t p;
567
568 /* lock against tx reclaim */
569 spin_lock(&priv->tx_lock);
570
571 /* make sure the tx hw queue is not full, should not happen
572 * since we stop queue before it's the case */
573 if (unlikely(!priv->tx_desc_count)) {
574 netif_stop_queue(ndev);
575 dev_err(dev, "xmit called with no tx desc available?\n");
576 ret = NETDEV_TX_BUSY;
577 goto out_unlock;
578 }
579
580 /* pad small packets */
581 if (skb->len < (ETH_ZLEN + ETH_FCS_LEN)) {
582 int needed = (ETH_ZLEN + ETH_FCS_LEN) - skb->len;
583 char *data;
584
585 if (unlikely(skb_tailroom(skb) < needed)) {
586 struct sk_buff *nskb;
587
588 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
589 if (!nskb) {
590 ret = NETDEV_TX_BUSY;
591 goto out_unlock;
592 }
593
594 dev_kfree_skb(skb);
595 skb = nskb;
596 }
597 data = skb_put_zero(skb, needed);
598 }
599
600 /* fill descriptor */
601 p = dma_map_single(dev, skb->data, skb->len, DMA_TO_DEVICE);
602 if (unlikely(dma_mapping_error(dev, p))) {
603 dev_kfree_skb(skb);
604 ret = NETDEV_TX_OK;
605 goto out_unlock;
606 }
607
608 /* point to the next available desc */
609 desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
610 priv->tx_skb[priv->tx_curr_desc] = skb;
611 desc->address = p;
612
613 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
614 len_stat |= DMADESC_ESOP_MASK | DMADESC_APPEND_CRC |
615 DMADESC_OWNER_MASK;
616
617 priv->tx_curr_desc++;
618 if (priv->tx_curr_desc == priv->tx_ring_size) {
619 priv->tx_curr_desc = 0;
620 len_stat |= DMADESC_WRAP_MASK;
621 }
622 priv->tx_desc_count--;
623
624 /* dma might be already polling, make sure we update desc
625 * fields in correct order */
626 wmb();
627 desc->len_stat = len_stat;
628 wmb();
629
630 netdev_sent_queue(ndev, skb->len);
631
632 /* kick tx dma */
633 dmac_writel(priv, DMAC_CHANCFG_EN_MASK, DMAC_CHANCFG_REG,
634 priv->tx_chan);
635
636 /* stop queue if no more desc available */
637 if (!priv->tx_desc_count)
638 netif_stop_queue(ndev);
639
640 ndev->stats.tx_bytes += skb->len;
641 ndev->stats.tx_packets++;
642 ret = NETDEV_TX_OK;
643
644 out_unlock:
645 spin_unlock(&priv->tx_lock);
646 return ret;
647 }
648
649 /*
650 * disable dma in given channel
651 */
652 static void bcm6368_enetsw_disable_dma(struct bcm6368_enetsw *priv, int chan)
653 {
654 int limit = 1000;
655
656 dmac_writel(priv, 0, DMAC_CHANCFG_REG, chan);
657
658 do {
659 u32 val;
660
661 val = dma_readl(priv, DMAC_CHANCFG_REG, chan);
662 if (!(val & DMAC_CHANCFG_EN_MASK))
663 break;
664
665 udelay(1);
666 } while (limit--);
667 }
668
669 static int bcm6368_enetsw_open(struct net_device *ndev)
670 {
671 struct bcm6368_enetsw *priv = netdev_priv(ndev);
672 struct platform_device *pdev = priv->pdev;
673 struct device *dev = &pdev->dev;
674 int i, ret;
675 unsigned int size;
676 void *p;
677 u32 val;
678
679 /* mask all interrupts and request them */
680 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
681 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
682
683 ret = request_irq(priv->irq_rx, bcm6368_enetsw_isr_dma,
684 0, ndev->name, ndev);
685 if (ret)
686 goto out_freeirq;
687
688 if (priv->irq_tx != -1) {
689 ret = request_irq(priv->irq_tx, bcm6368_enetsw_isr_dma,
690 0, ndev->name, ndev);
691 if (ret)
692 goto out_freeirq_rx;
693 }
694
695 /* allocate rx dma ring */
696 size = priv->rx_ring_size * sizeof(struct bcm6368_enetsw_desc);
697 p = dma_alloc_coherent(dev, size, &priv->rx_desc_dma, GFP_KERNEL);
698 if (!p) {
699 dev_err(dev, "cannot allocate rx ring %u\n", size);
700 ret = -ENOMEM;
701 goto out_freeirq_tx;
702 }
703
704 memset(p, 0, size);
705 priv->rx_desc_alloc_size = size;
706 priv->rx_desc_cpu = p;
707
708 /* allocate tx dma ring */
709 size = priv->tx_ring_size * sizeof(struct bcm6368_enetsw_desc);
710 p = dma_alloc_coherent(dev, size, &priv->tx_desc_dma, GFP_KERNEL);
711 if (!p) {
712 dev_err(dev, "cannot allocate tx ring\n");
713 ret = -ENOMEM;
714 goto out_free_rx_ring;
715 }
716
717 memset(p, 0, size);
718 priv->tx_desc_alloc_size = size;
719 priv->tx_desc_cpu = p;
720
721 priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
722 GFP_KERNEL);
723 if (!priv->tx_skb) {
724 dev_err(dev, "cannot allocate tx skb queue\n");
725 ret = -ENOMEM;
726 goto out_free_tx_ring;
727 }
728
729 priv->tx_desc_count = priv->tx_ring_size;
730 priv->tx_dirty_desc = 0;
731 priv->tx_curr_desc = 0;
732 spin_lock_init(&priv->tx_lock);
733
734 /* init & fill rx ring with buffers */
735 priv->rx_buf = kzalloc(sizeof(unsigned char *) * priv->rx_ring_size,
736 GFP_KERNEL);
737 if (!priv->rx_buf) {
738 dev_err(dev, "cannot allocate rx buffer queue\n");
739 ret = -ENOMEM;
740 goto out_free_tx_skb;
741 }
742
743 priv->rx_desc_count = 0;
744 priv->rx_dirty_desc = 0;
745 priv->rx_curr_desc = 0;
746
747 /* initialize flow control buffer allocation */
748 dma_writel(priv, DMA_BUFALLOC_FORCE_MASK | 0,
749 DMA_BUFALLOC_REG(priv->rx_chan));
750
751 if (bcm6368_enetsw_refill_rx(ndev, false)) {
752 dev_err(dev, "cannot allocate rx buffer queue\n");
753 ret = -ENOMEM;
754 goto out;
755 }
756
757 /* write rx & tx ring addresses */
758 dmas_writel(priv, priv->rx_desc_dma,
759 DMAS_RSTART_REG, priv->rx_chan);
760 dmas_writel(priv, priv->tx_desc_dma,
761 DMAS_RSTART_REG, priv->tx_chan);
762
763 /* clear remaining state ram for rx & tx channel */
764 dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->rx_chan);
765 dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->tx_chan);
766 dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->rx_chan);
767 dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->tx_chan);
768 dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->rx_chan);
769 dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->tx_chan);
770
771 /* set dma maximum burst len */
772 dmac_writel(priv, ENETSW_DMA_MAXBURST,
773 DMAC_MAXBURST_REG, priv->rx_chan);
774 dmac_writel(priv, ENETSW_DMA_MAXBURST,
775 DMAC_MAXBURST_REG, priv->tx_chan);
776
777 /* set flow control low/high threshold to 1/3 / 2/3 */
778 val = priv->rx_ring_size / 3;
779 dma_writel(priv, val, DMA_FLOWCL_REG(priv->rx_chan));
780 val = (priv->rx_ring_size * 2) / 3;
781 dma_writel(priv, val, DMA_FLOWCH_REG(priv->rx_chan));
782
783 /* all set, enable mac and interrupts, start dma engine and
784 * kick rx dma channel
785 */
786 wmb();
787 dma_writel(priv, DMA_CFG_EN_MASK, DMA_CFG_REG);
788 dmac_writel(priv, DMAC_CHANCFG_EN_MASK,
789 DMAC_CHANCFG_REG, priv->rx_chan);
790
791 /* watch "packet transferred" interrupt in rx and tx */
792 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
793 DMAC_IR_REG, priv->rx_chan);
794 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
795 DMAC_IR_REG, priv->tx_chan);
796
797 /* make sure we enable napi before rx interrupt */
798 napi_enable(&priv->napi);
799
800 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
801 DMAC_IRMASK_REG, priv->rx_chan);
802 dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
803 DMAC_IRMASK_REG, priv->tx_chan);
804
805 netif_carrier_on(ndev);
806 netif_start_queue(ndev);
807
808 return 0;
809
810 out:
811 for (i = 0; i < priv->rx_ring_size; i++) {
812 struct bcm6368_enetsw_desc *desc;
813
814 if (!priv->rx_buf[i])
815 continue;
816
817 desc = &priv->rx_desc_cpu[i];
818 dma_unmap_single(dev, desc->address, priv->rx_buf_size,
819 DMA_FROM_DEVICE);
820 skb_free_frag(priv->rx_buf[i]);
821 }
822 kfree(priv->rx_buf);
823
824 out_free_tx_skb:
825 kfree(priv->tx_skb);
826
827 out_free_tx_ring:
828 dma_free_coherent(dev, priv->tx_desc_alloc_size,
829 priv->tx_desc_cpu, priv->tx_desc_dma);
830
831 out_free_rx_ring:
832 dma_free_coherent(dev, priv->rx_desc_alloc_size,
833 priv->rx_desc_cpu, priv->rx_desc_dma);
834
835 out_freeirq_tx:
836 if (priv->irq_tx != -1)
837 free_irq(priv->irq_tx, ndev);
838
839 out_freeirq_rx:
840 free_irq(priv->irq_rx, ndev);
841
842 out_freeirq:
843 return ret;
844 }
845
846 static int bcm6368_enetsw_stop(struct net_device *ndev)
847 {
848 struct bcm6368_enetsw *priv = netdev_priv(ndev);
849 struct platform_device *pdev = priv->pdev;
850 struct device *dev = &pdev->dev;
851 int i;
852
853 netif_stop_queue(ndev);
854 napi_disable(&priv->napi);
855 del_timer_sync(&priv->rx_timeout);
856
857 /* mask all interrupts */
858 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
859 dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
860
861 /* disable dma & mac */
862 bcm6368_enetsw_disable_dma(priv, priv->tx_chan);
863 bcm6368_enetsw_disable_dma(priv, priv->rx_chan);
864
865 /* force reclaim of all tx buffers */
866 bcm6368_enetsw_tx_reclaim(ndev, 1, 0);
867
868 /* free the rx buffer ring */
869 for (i = 0; i < priv->rx_ring_size; i++) {
870 struct bcm6368_enetsw_desc *desc;
871
872 if (!priv->rx_buf[i])
873 continue;
874
875 desc = &priv->rx_desc_cpu[i];
876 dma_unmap_single_attrs(dev, desc->address, priv->rx_buf_size,
877 DMA_FROM_DEVICE,
878 DMA_ATTR_SKIP_CPU_SYNC);
879 skb_free_frag(priv->rx_buf[i]);
880 }
881
882 /* free remaining allocated memory */
883 kfree(priv->rx_buf);
884 kfree(priv->tx_skb);
885 dma_free_coherent(dev, priv->rx_desc_alloc_size,
886 priv->rx_desc_cpu, priv->rx_desc_dma);
887 dma_free_coherent(dev, priv->tx_desc_alloc_size,
888 priv->tx_desc_cpu, priv->tx_desc_dma);
889 if (priv->irq_tx != -1)
890 free_irq(priv->irq_tx, ndev);
891 free_irq(priv->irq_rx, ndev);
892
893 netdev_reset_queue(ndev);
894
895 return 0;
896 }
897
898 static const struct net_device_ops bcm6368_enetsw_ops = {
899 .ndo_open = bcm6368_enetsw_open,
900 .ndo_stop = bcm6368_enetsw_stop,
901 .ndo_start_xmit = bcm6368_enetsw_start_xmit,
902 };
903
904 static int bcm6368_enetsw_probe(struct platform_device *pdev)
905 {
906 struct bcm6368_enetsw *priv;
907 struct device *dev = &pdev->dev;
908 struct device_node *node = dev->of_node;
909 struct net_device *ndev;
910 struct resource *res;
911 unsigned i;
912 int ret;
913
914 ndev = alloc_etherdev(sizeof(*priv));
915 if (!ndev)
916 return -ENOMEM;
917
918 priv = netdev_priv(ndev);
919
920 priv->num_pms = of_count_phandle_with_args(node, "power-domains",
921 "#power-domain-cells");
922 if (priv->num_pms > 1) {
923 priv->pm = devm_kcalloc(dev, priv->num_pms,
924 sizeof(struct device *), GFP_KERNEL);
925 if (!priv->pm)
926 return -ENOMEM;
927
928 priv->link_pm = devm_kcalloc(dev, priv->num_pms,
929 sizeof(struct device_link *),
930 GFP_KERNEL);
931 if (!priv->link_pm)
932 return -ENOMEM;
933
934 for (i = 0; i < priv->num_pms; i++) {
935 priv->pm[i] = genpd_dev_pm_attach_by_id(dev, i);
936 if (IS_ERR(priv->pm[i])) {
937 dev_err(dev, "error getting pm %d\n", i);
938 return -EINVAL;
939 }
940
941 priv->link_pm[i] = device_link_add(dev, priv->pm[i],
942 DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME |
943 DL_FLAG_RPM_ACTIVE);
944 }
945 }
946
947 pm_runtime_enable(dev);
948 pm_runtime_no_callbacks(dev);
949 ret = pm_runtime_get_sync(dev);
950 if (ret < 0) {
951 pm_runtime_disable(dev);
952 dev_info(dev, "PM prober defer: ret=%d\n", ret);
953 return -EPROBE_DEFER;
954 }
955
956 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
957 priv->dma_base = devm_ioremap_resource(dev, res);
958 if (IS_ERR(priv->dma_base))
959 return PTR_ERR(priv->dma_base);
960
961 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
962 "dma-channels");
963 priv->dma_chan = devm_ioremap_resource(dev, res);
964 if (IS_ERR(priv->dma_chan))
965 return PTR_ERR(priv->dma_chan);
966
967 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma-sram");
968 priv->dma_sram = devm_ioremap_resource(dev, res);
969 if (IS_ERR(priv->dma_sram))
970 return PTR_ERR(priv->dma_sram);
971
972 priv->irq_rx = platform_get_irq_byname(pdev, "rx");
973 if (!priv->irq_rx)
974 return -ENODEV;
975
976 priv->irq_tx = platform_get_irq_byname(pdev, "tx");
977 if (!priv->irq_tx)
978 return -ENODEV;
979 else if (priv->irq_tx < 0)
980 priv->irq_tx = -1;
981
982 if (device_property_read_u32(dev, "dma-rx", &priv->rx_chan))
983 return -ENODEV;
984
985 if (device_property_read_u32(dev, "dma-tx", &priv->tx_chan))
986 return -ENODEV;
987
988 priv->rx_ring_size = ENETSW_DEF_RX_DESC;
989 priv->tx_ring_size = ENETSW_DEF_TX_DESC;
990 priv->copybreak = ENETSW_DEF_CPY_BREAK;
991
992 of_get_mac_address(node, ndev->dev_addr);
993 if (is_valid_ether_addr(ndev->dev_addr)) {
994 dev_info(dev, "mtd mac %pM\n", ndev->dev_addr);
995 } else {
996 random_ether_addr(ndev->dev_addr);
997 dev_info(dev, "random mac %pM\n", ndev->dev_addr);
998 }
999
1000 priv->rx_buf_size = ALIGN(ndev->mtu + ENETSW_MTU_OVERHEAD,
1001 ENETSW_DMA_MAXBURST * 4);
1002
1003 priv->rx_frag_size = ENETSW_FRAG_SIZE(priv->rx_buf_size);
1004
1005 priv->num_clocks = of_clk_get_parent_count(node);
1006 if (priv->num_clocks) {
1007 priv->clock = devm_kcalloc(dev, priv->num_clocks,
1008 sizeof(struct clk *), GFP_KERNEL);
1009 if (!priv->clock)
1010 return -ENOMEM;
1011 }
1012 for (i = 0; i < priv->num_clocks; i++) {
1013 priv->clock[i] = of_clk_get(node, i);
1014 if (IS_ERR(priv->clock[i])) {
1015 dev_err(dev, "error getting clock %d\n", i);
1016 return -EINVAL;
1017 }
1018
1019 ret = clk_prepare_enable(priv->clock[i]);
1020 if (ret) {
1021 dev_err(dev, "error enabling clock %d\n", i);
1022 return ret;
1023 }
1024 }
1025
1026 priv->num_resets = of_count_phandle_with_args(node, "resets",
1027 "#reset-cells");
1028 if (priv->num_resets) {
1029 priv->reset = devm_kcalloc(dev, priv->num_resets,
1030 sizeof(struct reset_control *),
1031 GFP_KERNEL);
1032 if (!priv->reset)
1033 return -ENOMEM;
1034 }
1035 for (i = 0; i < priv->num_resets; i++) {
1036 priv->reset[i] = devm_reset_control_get_by_index(dev, i);
1037 if (IS_ERR(priv->reset[i])) {
1038 dev_err(dev, "error getting reset %d\n", i);
1039 return -EINVAL;
1040 }
1041
1042 ret = reset_control_reset(priv->reset[i]);
1043 if (ret) {
1044 dev_err(dev, "error performing reset %d\n", i);
1045 return ret;
1046 }
1047 }
1048
1049 spin_lock_init(&priv->rx_lock);
1050
1051 timer_setup(&priv->rx_timeout, bcm6368_enetsw_refill_rx_timer, 0);
1052
1053 /* register netdevice */
1054 ndev->netdev_ops = &bcm6368_enetsw_ops;
1055 ndev->min_mtu = ETH_ZLEN;
1056 ndev->mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
1057 ndev->max_mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
1058 netif_napi_add(ndev, &priv->napi, bcm6368_enetsw_poll, 16);
1059 SET_NETDEV_DEV(ndev, dev);
1060
1061 ret = register_netdev(ndev);
1062 if (ret)
1063 goto out_disable_clk;
1064
1065 netif_carrier_off(ndev);
1066 platform_set_drvdata(pdev, ndev);
1067 priv->pdev = pdev;
1068 priv->net_dev = ndev;
1069
1070 return 0;
1071
1072 out_disable_clk:
1073 for (i = 0; i < priv->num_resets; i++)
1074 reset_control_assert(priv->reset[i]);
1075
1076 for (i = 0; i < priv->num_clocks; i++)
1077 clk_disable_unprepare(priv->clock[i]);
1078
1079 return ret;
1080 }
1081
1082 static int bcm6368_enetsw_remove(struct platform_device *pdev)
1083 {
1084 struct device *dev = &pdev->dev;
1085 struct net_device *ndev = platform_get_drvdata(pdev);
1086 struct bcm6368_enetsw *priv = netdev_priv(ndev);
1087 unsigned int i;
1088
1089 unregister_netdev(ndev);
1090
1091 pm_runtime_put_sync(dev);
1092 for (i = 0; priv->pm && i < priv->num_pms; i++) {
1093 dev_pm_domain_detach(priv->pm[i], true);
1094 device_link_del(priv->link_pm[i]);
1095 }
1096
1097 for (i = 0; i < priv->num_resets; i++)
1098 reset_control_assert(priv->reset[i]);
1099
1100 for (i = 0; i < priv->num_clocks; i++)
1101 clk_disable_unprepare(priv->clock[i]);
1102
1103 free_netdev(ndev);
1104
1105 return 0;
1106 }
1107
1108 static const struct of_device_id bcm6368_enetsw_of_match[] = {
1109 { .compatible = "brcm,bcm6318-enetsw", },
1110 { .compatible = "brcm,bcm6328-enetsw", },
1111 { .compatible = "brcm,bcm6362-enetsw", },
1112 { .compatible = "brcm,bcm6368-enetsw", },
1113 { .compatible = "brcm,bcm63268-enetsw", },
1114 { /* sentinel */ }
1115 };
1116 MODULE_DEVICE_TABLE(of, bcm6368_enetsw_of_match);
1117
1118 static struct platform_driver bcm6368_enetsw_driver = {
1119 .driver = {
1120 .name = "bcm6368-enetsw",
1121 .of_match_table = of_match_ptr(bcm6368_enetsw_of_match),
1122 },
1123 .probe = bcm6368_enetsw_probe,
1124 .remove = bcm6368_enetsw_remove,
1125 };
1126 module_platform_driver(bcm6368_enetsw_driver);