netfilter: drop bridge nf reset from nf_reset
[openwrt/staging/blogic.git] / include / linux / skbuff.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43
44 /* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
89 *
90 * CHECKSUM_NONE:
91 *
92 * Device did not checksum this packet e.g. due to lack of capabilities.
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
112 * FCOE: indicates the CRC in FC frame has been validated.
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134 *
135 * CHECKSUM_PARTIAL:
136 *
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
146 *
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
149 *
150 * CHECKSUM_PARTIAL:
151 *
152 * The driver is required to checksum the packet as seen by hard_start_xmit()
153 * from skb->csum_start up to the end, and to record/write the checksum at
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
173 *
174 * CHECKSUM_NONE:
175 *
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
182 * output.
183 *
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
217 */
218
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE 0
221 #define CHECKSUM_UNNECESSARY 1
222 #define CHECKSUM_COMPLETE 2
223 #define CHECKSUM_PARTIAL 3
224
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL 3
227
228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X) \
230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 struct bpf_prog;
247 union bpf_attr;
248 struct skb_ext;
249
250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
251 struct nf_bridge_info {
252 enum {
253 BRNF_PROTO_UNCHANGED,
254 BRNF_PROTO_8021Q,
255 BRNF_PROTO_PPPOE
256 } orig_proto:8;
257 u8 pkt_otherhost:1;
258 u8 in_prerouting:1;
259 u8 bridged_dnat:1;
260 __u16 frag_max_size;
261 struct net_device *physindev;
262
263 /* always valid & non-NULL from FORWARD on, for physdev match */
264 struct net_device *physoutdev;
265 union {
266 /* prerouting: detect dnat in orig/reply direction */
267 __be32 ipv4_daddr;
268 struct in6_addr ipv6_daddr;
269
270 /* after prerouting + nat detected: store original source
271 * mac since neigh resolution overwrites it, only used while
272 * skb is out in neigh layer.
273 */
274 char neigh_header[8];
275 };
276 };
277 #endif
278
279 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
280 /* Chain in tc_skb_ext will be used to share the tc chain with
281 * ovs recirc_id. It will be set to the current chain by tc
282 * and read by ovs to recirc_id.
283 */
284 struct tc_skb_ext {
285 __u32 chain;
286 };
287 #endif
288
289 struct sk_buff_head {
290 /* These two members must be first. */
291 struct sk_buff *next;
292 struct sk_buff *prev;
293
294 __u32 qlen;
295 spinlock_t lock;
296 };
297
298 struct sk_buff;
299
300 /* To allow 64K frame to be packed as single skb without frag_list we
301 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
302 * buffers which do not start on a page boundary.
303 *
304 * Since GRO uses frags we allocate at least 16 regardless of page
305 * size.
306 */
307 #if (65536/PAGE_SIZE + 1) < 16
308 #define MAX_SKB_FRAGS 16UL
309 #else
310 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
311 #endif
312 extern int sysctl_max_skb_frags;
313
314 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
315 * segment using its current segmentation instead.
316 */
317 #define GSO_BY_FRAGS 0xFFFF
318
319 typedef struct bio_vec skb_frag_t;
320
321 /**
322 * skb_frag_size() - Returns the size of a skb fragment
323 * @frag: skb fragment
324 */
325 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
326 {
327 return frag->bv_len;
328 }
329
330 /**
331 * skb_frag_size_set() - Sets the size of a skb fragment
332 * @frag: skb fragment
333 * @size: size of fragment
334 */
335 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
336 {
337 frag->bv_len = size;
338 }
339
340 /**
341 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
342 * @frag: skb fragment
343 * @delta: value to add
344 */
345 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
346 {
347 frag->bv_len += delta;
348 }
349
350 /**
351 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
352 * @frag: skb fragment
353 * @delta: value to subtract
354 */
355 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
356 {
357 frag->bv_len -= delta;
358 }
359
360 /**
361 * skb_frag_must_loop - Test if %p is a high memory page
362 * @p: fragment's page
363 */
364 static inline bool skb_frag_must_loop(struct page *p)
365 {
366 #if defined(CONFIG_HIGHMEM)
367 if (PageHighMem(p))
368 return true;
369 #endif
370 return false;
371 }
372
373 /**
374 * skb_frag_foreach_page - loop over pages in a fragment
375 *
376 * @f: skb frag to operate on
377 * @f_off: offset from start of f->bv_page
378 * @f_len: length from f_off to loop over
379 * @p: (temp var) current page
380 * @p_off: (temp var) offset from start of current page,
381 * non-zero only on first page.
382 * @p_len: (temp var) length in current page,
383 * < PAGE_SIZE only on first and last page.
384 * @copied: (temp var) length so far, excluding current p_len.
385 *
386 * A fragment can hold a compound page, in which case per-page
387 * operations, notably kmap_atomic, must be called for each
388 * regular page.
389 */
390 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
391 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
392 p_off = (f_off) & (PAGE_SIZE - 1), \
393 p_len = skb_frag_must_loop(p) ? \
394 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
395 copied = 0; \
396 copied < f_len; \
397 copied += p_len, p++, p_off = 0, \
398 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
399
400 #define HAVE_HW_TIME_STAMP
401
402 /**
403 * struct skb_shared_hwtstamps - hardware time stamps
404 * @hwtstamp: hardware time stamp transformed into duration
405 * since arbitrary point in time
406 *
407 * Software time stamps generated by ktime_get_real() are stored in
408 * skb->tstamp.
409 *
410 * hwtstamps can only be compared against other hwtstamps from
411 * the same device.
412 *
413 * This structure is attached to packets as part of the
414 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
415 */
416 struct skb_shared_hwtstamps {
417 ktime_t hwtstamp;
418 };
419
420 /* Definitions for tx_flags in struct skb_shared_info */
421 enum {
422 /* generate hardware time stamp */
423 SKBTX_HW_TSTAMP = 1 << 0,
424
425 /* generate software time stamp when queueing packet to NIC */
426 SKBTX_SW_TSTAMP = 1 << 1,
427
428 /* device driver is going to provide hardware time stamp */
429 SKBTX_IN_PROGRESS = 1 << 2,
430
431 /* device driver supports TX zero-copy buffers */
432 SKBTX_DEV_ZEROCOPY = 1 << 3,
433
434 /* generate wifi status information (where possible) */
435 SKBTX_WIFI_STATUS = 1 << 4,
436
437 /* This indicates at least one fragment might be overwritten
438 * (as in vmsplice(), sendfile() ...)
439 * If we need to compute a TX checksum, we'll need to copy
440 * all frags to avoid possible bad checksum
441 */
442 SKBTX_SHARED_FRAG = 1 << 5,
443
444 /* generate software time stamp when entering packet scheduling */
445 SKBTX_SCHED_TSTAMP = 1 << 6,
446 };
447
448 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
449 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
450 SKBTX_SCHED_TSTAMP)
451 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
452
453 /*
454 * The callback notifies userspace to release buffers when skb DMA is done in
455 * lower device, the skb last reference should be 0 when calling this.
456 * The zerocopy_success argument is true if zero copy transmit occurred,
457 * false on data copy or out of memory error caused by data copy attempt.
458 * The ctx field is used to track device context.
459 * The desc field is used to track userspace buffer index.
460 */
461 struct ubuf_info {
462 void (*callback)(struct ubuf_info *, bool zerocopy_success);
463 union {
464 struct {
465 unsigned long desc;
466 void *ctx;
467 };
468 struct {
469 u32 id;
470 u16 len;
471 u16 zerocopy:1;
472 u32 bytelen;
473 };
474 };
475 refcount_t refcnt;
476
477 struct mmpin {
478 struct user_struct *user;
479 unsigned int num_pg;
480 } mmp;
481 };
482
483 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
484
485 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
486 void mm_unaccount_pinned_pages(struct mmpin *mmp);
487
488 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
489 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
490 struct ubuf_info *uarg);
491
492 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
493 {
494 refcount_inc(&uarg->refcnt);
495 }
496
497 void sock_zerocopy_put(struct ubuf_info *uarg);
498 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
499
500 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
501
502 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
503 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
504 struct msghdr *msg, int len,
505 struct ubuf_info *uarg);
506
507 /* This data is invariant across clones and lives at
508 * the end of the header data, ie. at skb->end.
509 */
510 struct skb_shared_info {
511 __u8 __unused;
512 __u8 meta_len;
513 __u8 nr_frags;
514 __u8 tx_flags;
515 unsigned short gso_size;
516 /* Warning: this field is not always filled in (UFO)! */
517 unsigned short gso_segs;
518 struct sk_buff *frag_list;
519 struct skb_shared_hwtstamps hwtstamps;
520 unsigned int gso_type;
521 u32 tskey;
522
523 /*
524 * Warning : all fields before dataref are cleared in __alloc_skb()
525 */
526 atomic_t dataref;
527
528 /* Intermediate layers must ensure that destructor_arg
529 * remains valid until skb destructor */
530 void * destructor_arg;
531
532 /* must be last field, see pskb_expand_head() */
533 skb_frag_t frags[MAX_SKB_FRAGS];
534 };
535
536 /* We divide dataref into two halves. The higher 16 bits hold references
537 * to the payload part of skb->data. The lower 16 bits hold references to
538 * the entire skb->data. A clone of a headerless skb holds the length of
539 * the header in skb->hdr_len.
540 *
541 * All users must obey the rule that the skb->data reference count must be
542 * greater than or equal to the payload reference count.
543 *
544 * Holding a reference to the payload part means that the user does not
545 * care about modifications to the header part of skb->data.
546 */
547 #define SKB_DATAREF_SHIFT 16
548 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
549
550
551 enum {
552 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
553 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
554 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
555 };
556
557 enum {
558 SKB_GSO_TCPV4 = 1 << 0,
559
560 /* This indicates the skb is from an untrusted source. */
561 SKB_GSO_DODGY = 1 << 1,
562
563 /* This indicates the tcp segment has CWR set. */
564 SKB_GSO_TCP_ECN = 1 << 2,
565
566 SKB_GSO_TCP_FIXEDID = 1 << 3,
567
568 SKB_GSO_TCPV6 = 1 << 4,
569
570 SKB_GSO_FCOE = 1 << 5,
571
572 SKB_GSO_GRE = 1 << 6,
573
574 SKB_GSO_GRE_CSUM = 1 << 7,
575
576 SKB_GSO_IPXIP4 = 1 << 8,
577
578 SKB_GSO_IPXIP6 = 1 << 9,
579
580 SKB_GSO_UDP_TUNNEL = 1 << 10,
581
582 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
583
584 SKB_GSO_PARTIAL = 1 << 12,
585
586 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
587
588 SKB_GSO_SCTP = 1 << 14,
589
590 SKB_GSO_ESP = 1 << 15,
591
592 SKB_GSO_UDP = 1 << 16,
593
594 SKB_GSO_UDP_L4 = 1 << 17,
595 };
596
597 #if BITS_PER_LONG > 32
598 #define NET_SKBUFF_DATA_USES_OFFSET 1
599 #endif
600
601 #ifdef NET_SKBUFF_DATA_USES_OFFSET
602 typedef unsigned int sk_buff_data_t;
603 #else
604 typedef unsigned char *sk_buff_data_t;
605 #endif
606
607 /**
608 * struct sk_buff - socket buffer
609 * @next: Next buffer in list
610 * @prev: Previous buffer in list
611 * @tstamp: Time we arrived/left
612 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
613 * @sk: Socket we are owned by
614 * @dev: Device we arrived on/are leaving by
615 * @cb: Control buffer. Free for use by every layer. Put private vars here
616 * @_skb_refdst: destination entry (with norefcount bit)
617 * @sp: the security path, used for xfrm
618 * @len: Length of actual data
619 * @data_len: Data length
620 * @mac_len: Length of link layer header
621 * @hdr_len: writable header length of cloned skb
622 * @csum: Checksum (must include start/offset pair)
623 * @csum_start: Offset from skb->head where checksumming should start
624 * @csum_offset: Offset from csum_start where checksum should be stored
625 * @priority: Packet queueing priority
626 * @ignore_df: allow local fragmentation
627 * @cloned: Head may be cloned (check refcnt to be sure)
628 * @ip_summed: Driver fed us an IP checksum
629 * @nohdr: Payload reference only, must not modify header
630 * @pkt_type: Packet class
631 * @fclone: skbuff clone status
632 * @ipvs_property: skbuff is owned by ipvs
633 * @offload_fwd_mark: Packet was L2-forwarded in hardware
634 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
635 * @tc_skip_classify: do not classify packet. set by IFB device
636 * @tc_at_ingress: used within tc_classify to distinguish in/egress
637 * @tc_redirected: packet was redirected by a tc action
638 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
639 * @peeked: this packet has been seen already, so stats have been
640 * done for it, don't do them again
641 * @nf_trace: netfilter packet trace flag
642 * @protocol: Packet protocol from driver
643 * @destructor: Destruct function
644 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
645 * @_nfct: Associated connection, if any (with nfctinfo bits)
646 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
647 * @skb_iif: ifindex of device we arrived on
648 * @tc_index: Traffic control index
649 * @hash: the packet hash
650 * @queue_mapping: Queue mapping for multiqueue devices
651 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
652 * @active_extensions: active extensions (skb_ext_id types)
653 * @ndisc_nodetype: router type (from link layer)
654 * @ooo_okay: allow the mapping of a socket to a queue to be changed
655 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
656 * ports.
657 * @sw_hash: indicates hash was computed in software stack
658 * @wifi_acked_valid: wifi_acked was set
659 * @wifi_acked: whether frame was acked on wifi or not
660 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
661 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
662 * @dst_pending_confirm: need to confirm neighbour
663 * @decrypted: Decrypted SKB
664 * @napi_id: id of the NAPI struct this skb came from
665 * @secmark: security marking
666 * @mark: Generic packet mark
667 * @vlan_proto: vlan encapsulation protocol
668 * @vlan_tci: vlan tag control information
669 * @inner_protocol: Protocol (encapsulation)
670 * @inner_transport_header: Inner transport layer header (encapsulation)
671 * @inner_network_header: Network layer header (encapsulation)
672 * @inner_mac_header: Link layer header (encapsulation)
673 * @transport_header: Transport layer header
674 * @network_header: Network layer header
675 * @mac_header: Link layer header
676 * @tail: Tail pointer
677 * @end: End pointer
678 * @head: Head of buffer
679 * @data: Data head pointer
680 * @truesize: Buffer size
681 * @users: User count - see {datagram,tcp}.c
682 * @extensions: allocated extensions, valid if active_extensions is nonzero
683 */
684
685 struct sk_buff {
686 union {
687 struct {
688 /* These two members must be first. */
689 struct sk_buff *next;
690 struct sk_buff *prev;
691
692 union {
693 struct net_device *dev;
694 /* Some protocols might use this space to store information,
695 * while device pointer would be NULL.
696 * UDP receive path is one user.
697 */
698 unsigned long dev_scratch;
699 };
700 };
701 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
702 struct list_head list;
703 };
704
705 union {
706 struct sock *sk;
707 int ip_defrag_offset;
708 };
709
710 union {
711 ktime_t tstamp;
712 u64 skb_mstamp_ns; /* earliest departure time */
713 };
714 /*
715 * This is the control buffer. It is free to use for every
716 * layer. Please put your private variables there. If you
717 * want to keep them across layers you have to do a skb_clone()
718 * first. This is owned by whoever has the skb queued ATM.
719 */
720 char cb[48] __aligned(8);
721
722 union {
723 struct {
724 unsigned long _skb_refdst;
725 void (*destructor)(struct sk_buff *skb);
726 };
727 struct list_head tcp_tsorted_anchor;
728 };
729
730 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
731 unsigned long _nfct;
732 #endif
733 unsigned int len,
734 data_len;
735 __u16 mac_len,
736 hdr_len;
737
738 /* Following fields are _not_ copied in __copy_skb_header()
739 * Note that queue_mapping is here mostly to fill a hole.
740 */
741 __u16 queue_mapping;
742
743 /* if you move cloned around you also must adapt those constants */
744 #ifdef __BIG_ENDIAN_BITFIELD
745 #define CLONED_MASK (1 << 7)
746 #else
747 #define CLONED_MASK 1
748 #endif
749 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
750
751 __u8 __cloned_offset[0];
752 __u8 cloned:1,
753 nohdr:1,
754 fclone:2,
755 peeked:1,
756 head_frag:1,
757 pfmemalloc:1;
758 #ifdef CONFIG_SKB_EXTENSIONS
759 __u8 active_extensions;
760 #endif
761 /* fields enclosed in headers_start/headers_end are copied
762 * using a single memcpy() in __copy_skb_header()
763 */
764 /* private: */
765 __u32 headers_start[0];
766 /* public: */
767
768 /* if you move pkt_type around you also must adapt those constants */
769 #ifdef __BIG_ENDIAN_BITFIELD
770 #define PKT_TYPE_MAX (7 << 5)
771 #else
772 #define PKT_TYPE_MAX 7
773 #endif
774 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
775
776 __u8 __pkt_type_offset[0];
777 __u8 pkt_type:3;
778 __u8 ignore_df:1;
779 __u8 nf_trace:1;
780 __u8 ip_summed:2;
781 __u8 ooo_okay:1;
782
783 __u8 l4_hash:1;
784 __u8 sw_hash:1;
785 __u8 wifi_acked_valid:1;
786 __u8 wifi_acked:1;
787 __u8 no_fcs:1;
788 /* Indicates the inner headers are valid in the skbuff. */
789 __u8 encapsulation:1;
790 __u8 encap_hdr_csum:1;
791 __u8 csum_valid:1;
792
793 #ifdef __BIG_ENDIAN_BITFIELD
794 #define PKT_VLAN_PRESENT_BIT 7
795 #else
796 #define PKT_VLAN_PRESENT_BIT 0
797 #endif
798 #define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset)
799 __u8 __pkt_vlan_present_offset[0];
800 __u8 vlan_present:1;
801 __u8 csum_complete_sw:1;
802 __u8 csum_level:2;
803 __u8 csum_not_inet:1;
804 __u8 dst_pending_confirm:1;
805 #ifdef CONFIG_IPV6_NDISC_NODETYPE
806 __u8 ndisc_nodetype:2;
807 #endif
808
809 __u8 ipvs_property:1;
810 __u8 inner_protocol_type:1;
811 __u8 remcsum_offload:1;
812 #ifdef CONFIG_NET_SWITCHDEV
813 __u8 offload_fwd_mark:1;
814 __u8 offload_l3_fwd_mark:1;
815 #endif
816 #ifdef CONFIG_NET_CLS_ACT
817 __u8 tc_skip_classify:1;
818 __u8 tc_at_ingress:1;
819 __u8 tc_redirected:1;
820 __u8 tc_from_ingress:1;
821 #endif
822 #ifdef CONFIG_TLS_DEVICE
823 __u8 decrypted:1;
824 #endif
825
826 #ifdef CONFIG_NET_SCHED
827 __u16 tc_index; /* traffic control index */
828 #endif
829
830 union {
831 __wsum csum;
832 struct {
833 __u16 csum_start;
834 __u16 csum_offset;
835 };
836 };
837 __u32 priority;
838 int skb_iif;
839 __u32 hash;
840 __be16 vlan_proto;
841 __u16 vlan_tci;
842 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
843 union {
844 unsigned int napi_id;
845 unsigned int sender_cpu;
846 };
847 #endif
848 #ifdef CONFIG_NETWORK_SECMARK
849 __u32 secmark;
850 #endif
851
852 union {
853 __u32 mark;
854 __u32 reserved_tailroom;
855 };
856
857 union {
858 __be16 inner_protocol;
859 __u8 inner_ipproto;
860 };
861
862 __u16 inner_transport_header;
863 __u16 inner_network_header;
864 __u16 inner_mac_header;
865
866 __be16 protocol;
867 __u16 transport_header;
868 __u16 network_header;
869 __u16 mac_header;
870
871 /* private: */
872 __u32 headers_end[0];
873 /* public: */
874
875 /* These elements must be at the end, see alloc_skb() for details. */
876 sk_buff_data_t tail;
877 sk_buff_data_t end;
878 unsigned char *head,
879 *data;
880 unsigned int truesize;
881 refcount_t users;
882
883 #ifdef CONFIG_SKB_EXTENSIONS
884 /* only useable after checking ->active_extensions != 0 */
885 struct skb_ext *extensions;
886 #endif
887 };
888
889 #ifdef __KERNEL__
890 /*
891 * Handling routines are only of interest to the kernel
892 */
893
894 #define SKB_ALLOC_FCLONE 0x01
895 #define SKB_ALLOC_RX 0x02
896 #define SKB_ALLOC_NAPI 0x04
897
898 /**
899 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
900 * @skb: buffer
901 */
902 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
903 {
904 return unlikely(skb->pfmemalloc);
905 }
906
907 /*
908 * skb might have a dst pointer attached, refcounted or not.
909 * _skb_refdst low order bit is set if refcount was _not_ taken
910 */
911 #define SKB_DST_NOREF 1UL
912 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
913
914 /**
915 * skb_dst - returns skb dst_entry
916 * @skb: buffer
917 *
918 * Returns skb dst_entry, regardless of reference taken or not.
919 */
920 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
921 {
922 /* If refdst was not refcounted, check we still are in a
923 * rcu_read_lock section
924 */
925 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
926 !rcu_read_lock_held() &&
927 !rcu_read_lock_bh_held());
928 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
929 }
930
931 /**
932 * skb_dst_set - sets skb dst
933 * @skb: buffer
934 * @dst: dst entry
935 *
936 * Sets skb dst, assuming a reference was taken on dst and should
937 * be released by skb_dst_drop()
938 */
939 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
940 {
941 skb->_skb_refdst = (unsigned long)dst;
942 }
943
944 /**
945 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
946 * @skb: buffer
947 * @dst: dst entry
948 *
949 * Sets skb dst, assuming a reference was not taken on dst.
950 * If dst entry is cached, we do not take reference and dst_release
951 * will be avoided by refdst_drop. If dst entry is not cached, we take
952 * reference, so that last dst_release can destroy the dst immediately.
953 */
954 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
955 {
956 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
957 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
958 }
959
960 /**
961 * skb_dst_is_noref - Test if skb dst isn't refcounted
962 * @skb: buffer
963 */
964 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
965 {
966 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
967 }
968
969 /**
970 * skb_rtable - Returns the skb &rtable
971 * @skb: buffer
972 */
973 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
974 {
975 return (struct rtable *)skb_dst(skb);
976 }
977
978 /* For mangling skb->pkt_type from user space side from applications
979 * such as nft, tc, etc, we only allow a conservative subset of
980 * possible pkt_types to be set.
981 */
982 static inline bool skb_pkt_type_ok(u32 ptype)
983 {
984 return ptype <= PACKET_OTHERHOST;
985 }
986
987 /**
988 * skb_napi_id - Returns the skb's NAPI id
989 * @skb: buffer
990 */
991 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
992 {
993 #ifdef CONFIG_NET_RX_BUSY_POLL
994 return skb->napi_id;
995 #else
996 return 0;
997 #endif
998 }
999
1000 /**
1001 * skb_unref - decrement the skb's reference count
1002 * @skb: buffer
1003 *
1004 * Returns true if we can free the skb.
1005 */
1006 static inline bool skb_unref(struct sk_buff *skb)
1007 {
1008 if (unlikely(!skb))
1009 return false;
1010 if (likely(refcount_read(&skb->users) == 1))
1011 smp_rmb();
1012 else if (likely(!refcount_dec_and_test(&skb->users)))
1013 return false;
1014
1015 return true;
1016 }
1017
1018 void skb_release_head_state(struct sk_buff *skb);
1019 void kfree_skb(struct sk_buff *skb);
1020 void kfree_skb_list(struct sk_buff *segs);
1021 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1022 void skb_tx_error(struct sk_buff *skb);
1023 void consume_skb(struct sk_buff *skb);
1024 void __consume_stateless_skb(struct sk_buff *skb);
1025 void __kfree_skb(struct sk_buff *skb);
1026 extern struct kmem_cache *skbuff_head_cache;
1027
1028 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1029 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1030 bool *fragstolen, int *delta_truesize);
1031
1032 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1033 int node);
1034 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1035 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1036 struct sk_buff *build_skb_around(struct sk_buff *skb,
1037 void *data, unsigned int frag_size);
1038
1039 /**
1040 * alloc_skb - allocate a network buffer
1041 * @size: size to allocate
1042 * @priority: allocation mask
1043 *
1044 * This function is a convenient wrapper around __alloc_skb().
1045 */
1046 static inline struct sk_buff *alloc_skb(unsigned int size,
1047 gfp_t priority)
1048 {
1049 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1050 }
1051
1052 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1053 unsigned long data_len,
1054 int max_page_order,
1055 int *errcode,
1056 gfp_t gfp_mask);
1057 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1058
1059 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1060 struct sk_buff_fclones {
1061 struct sk_buff skb1;
1062
1063 struct sk_buff skb2;
1064
1065 refcount_t fclone_ref;
1066 };
1067
1068 /**
1069 * skb_fclone_busy - check if fclone is busy
1070 * @sk: socket
1071 * @skb: buffer
1072 *
1073 * Returns true if skb is a fast clone, and its clone is not freed.
1074 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1075 * so we also check that this didnt happen.
1076 */
1077 static inline bool skb_fclone_busy(const struct sock *sk,
1078 const struct sk_buff *skb)
1079 {
1080 const struct sk_buff_fclones *fclones;
1081
1082 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1083
1084 return skb->fclone == SKB_FCLONE_ORIG &&
1085 refcount_read(&fclones->fclone_ref) > 1 &&
1086 fclones->skb2.sk == sk;
1087 }
1088
1089 /**
1090 * alloc_skb_fclone - allocate a network buffer from fclone cache
1091 * @size: size to allocate
1092 * @priority: allocation mask
1093 *
1094 * This function is a convenient wrapper around __alloc_skb().
1095 */
1096 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1097 gfp_t priority)
1098 {
1099 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1100 }
1101
1102 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1103 void skb_headers_offset_update(struct sk_buff *skb, int off);
1104 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1105 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1106 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1107 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1108 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1109 gfp_t gfp_mask, bool fclone);
1110 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1111 gfp_t gfp_mask)
1112 {
1113 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1114 }
1115
1116 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1117 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1118 unsigned int headroom);
1119 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1120 int newtailroom, gfp_t priority);
1121 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1122 int offset, int len);
1123 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1124 int offset, int len);
1125 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1126 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1127
1128 /**
1129 * skb_pad - zero pad the tail of an skb
1130 * @skb: buffer to pad
1131 * @pad: space to pad
1132 *
1133 * Ensure that a buffer is followed by a padding area that is zero
1134 * filled. Used by network drivers which may DMA or transfer data
1135 * beyond the buffer end onto the wire.
1136 *
1137 * May return error in out of memory cases. The skb is freed on error.
1138 */
1139 static inline int skb_pad(struct sk_buff *skb, int pad)
1140 {
1141 return __skb_pad(skb, pad, true);
1142 }
1143 #define dev_kfree_skb(a) consume_skb(a)
1144
1145 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1146 int offset, size_t size);
1147
1148 struct skb_seq_state {
1149 __u32 lower_offset;
1150 __u32 upper_offset;
1151 __u32 frag_idx;
1152 __u32 stepped_offset;
1153 struct sk_buff *root_skb;
1154 struct sk_buff *cur_skb;
1155 __u8 *frag_data;
1156 };
1157
1158 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1159 unsigned int to, struct skb_seq_state *st);
1160 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1161 struct skb_seq_state *st);
1162 void skb_abort_seq_read(struct skb_seq_state *st);
1163
1164 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1165 unsigned int to, struct ts_config *config);
1166
1167 /*
1168 * Packet hash types specify the type of hash in skb_set_hash.
1169 *
1170 * Hash types refer to the protocol layer addresses which are used to
1171 * construct a packet's hash. The hashes are used to differentiate or identify
1172 * flows of the protocol layer for the hash type. Hash types are either
1173 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1174 *
1175 * Properties of hashes:
1176 *
1177 * 1) Two packets in different flows have different hash values
1178 * 2) Two packets in the same flow should have the same hash value
1179 *
1180 * A hash at a higher layer is considered to be more specific. A driver should
1181 * set the most specific hash possible.
1182 *
1183 * A driver cannot indicate a more specific hash than the layer at which a hash
1184 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1185 *
1186 * A driver may indicate a hash level which is less specific than the
1187 * actual layer the hash was computed on. For instance, a hash computed
1188 * at L4 may be considered an L3 hash. This should only be done if the
1189 * driver can't unambiguously determine that the HW computed the hash at
1190 * the higher layer. Note that the "should" in the second property above
1191 * permits this.
1192 */
1193 enum pkt_hash_types {
1194 PKT_HASH_TYPE_NONE, /* Undefined type */
1195 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1196 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1197 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1198 };
1199
1200 static inline void skb_clear_hash(struct sk_buff *skb)
1201 {
1202 skb->hash = 0;
1203 skb->sw_hash = 0;
1204 skb->l4_hash = 0;
1205 }
1206
1207 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1208 {
1209 if (!skb->l4_hash)
1210 skb_clear_hash(skb);
1211 }
1212
1213 static inline void
1214 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1215 {
1216 skb->l4_hash = is_l4;
1217 skb->sw_hash = is_sw;
1218 skb->hash = hash;
1219 }
1220
1221 static inline void
1222 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1223 {
1224 /* Used by drivers to set hash from HW */
1225 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1226 }
1227
1228 static inline void
1229 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1230 {
1231 __skb_set_hash(skb, hash, true, is_l4);
1232 }
1233
1234 void __skb_get_hash(struct sk_buff *skb);
1235 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1236 u32 skb_get_poff(const struct sk_buff *skb);
1237 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1238 const struct flow_keys_basic *keys, int hlen);
1239 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1240 void *data, int hlen_proto);
1241
1242 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1243 int thoff, u8 ip_proto)
1244 {
1245 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1246 }
1247
1248 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1249 const struct flow_dissector_key *key,
1250 unsigned int key_count);
1251
1252 #ifdef CONFIG_NET
1253 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1254 union bpf_attr __user *uattr);
1255 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1256 struct bpf_prog *prog);
1257
1258 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1259 #else
1260 static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1261 union bpf_attr __user *uattr)
1262 {
1263 return -EOPNOTSUPP;
1264 }
1265
1266 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1267 struct bpf_prog *prog)
1268 {
1269 return -EOPNOTSUPP;
1270 }
1271
1272 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1273 {
1274 return -EOPNOTSUPP;
1275 }
1276 #endif
1277
1278 struct bpf_flow_dissector;
1279 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1280 __be16 proto, int nhoff, int hlen, unsigned int flags);
1281
1282 bool __skb_flow_dissect(const struct net *net,
1283 const struct sk_buff *skb,
1284 struct flow_dissector *flow_dissector,
1285 void *target_container,
1286 void *data, __be16 proto, int nhoff, int hlen,
1287 unsigned int flags);
1288
1289 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1290 struct flow_dissector *flow_dissector,
1291 void *target_container, unsigned int flags)
1292 {
1293 return __skb_flow_dissect(NULL, skb, flow_dissector,
1294 target_container, NULL, 0, 0, 0, flags);
1295 }
1296
1297 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1298 struct flow_keys *flow,
1299 unsigned int flags)
1300 {
1301 memset(flow, 0, sizeof(*flow));
1302 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1303 flow, NULL, 0, 0, 0, flags);
1304 }
1305
1306 static inline bool
1307 skb_flow_dissect_flow_keys_basic(const struct net *net,
1308 const struct sk_buff *skb,
1309 struct flow_keys_basic *flow, void *data,
1310 __be16 proto, int nhoff, int hlen,
1311 unsigned int flags)
1312 {
1313 memset(flow, 0, sizeof(*flow));
1314 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1315 data, proto, nhoff, hlen, flags);
1316 }
1317
1318 void skb_flow_dissect_meta(const struct sk_buff *skb,
1319 struct flow_dissector *flow_dissector,
1320 void *target_container);
1321
1322 /* Gets a skb connection tracking info, ctinfo map should be a
1323 * a map of mapsize to translate enum ip_conntrack_info states
1324 * to user states.
1325 */
1326 void
1327 skb_flow_dissect_ct(const struct sk_buff *skb,
1328 struct flow_dissector *flow_dissector,
1329 void *target_container,
1330 u16 *ctinfo_map,
1331 size_t mapsize);
1332 void
1333 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1334 struct flow_dissector *flow_dissector,
1335 void *target_container);
1336
1337 static inline __u32 skb_get_hash(struct sk_buff *skb)
1338 {
1339 if (!skb->l4_hash && !skb->sw_hash)
1340 __skb_get_hash(skb);
1341
1342 return skb->hash;
1343 }
1344
1345 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1346 {
1347 if (!skb->l4_hash && !skb->sw_hash) {
1348 struct flow_keys keys;
1349 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1350
1351 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1352 }
1353
1354 return skb->hash;
1355 }
1356
1357 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1358
1359 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1360 {
1361 return skb->hash;
1362 }
1363
1364 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1365 {
1366 to->hash = from->hash;
1367 to->sw_hash = from->sw_hash;
1368 to->l4_hash = from->l4_hash;
1369 };
1370
1371 static inline void skb_copy_decrypted(struct sk_buff *to,
1372 const struct sk_buff *from)
1373 {
1374 #ifdef CONFIG_TLS_DEVICE
1375 to->decrypted = from->decrypted;
1376 #endif
1377 }
1378
1379 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1380 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1381 {
1382 return skb->head + skb->end;
1383 }
1384
1385 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1386 {
1387 return skb->end;
1388 }
1389 #else
1390 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1391 {
1392 return skb->end;
1393 }
1394
1395 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1396 {
1397 return skb->end - skb->head;
1398 }
1399 #endif
1400
1401 /* Internal */
1402 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1403
1404 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1405 {
1406 return &skb_shinfo(skb)->hwtstamps;
1407 }
1408
1409 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1410 {
1411 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1412
1413 return is_zcopy ? skb_uarg(skb) : NULL;
1414 }
1415
1416 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1417 bool *have_ref)
1418 {
1419 if (skb && uarg && !skb_zcopy(skb)) {
1420 if (unlikely(have_ref && *have_ref))
1421 *have_ref = false;
1422 else
1423 sock_zerocopy_get(uarg);
1424 skb_shinfo(skb)->destructor_arg = uarg;
1425 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1426 }
1427 }
1428
1429 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1430 {
1431 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1432 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1433 }
1434
1435 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1436 {
1437 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1438 }
1439
1440 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1441 {
1442 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1443 }
1444
1445 /* Release a reference on a zerocopy structure */
1446 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1447 {
1448 struct ubuf_info *uarg = skb_zcopy(skb);
1449
1450 if (uarg) {
1451 if (skb_zcopy_is_nouarg(skb)) {
1452 /* no notification callback */
1453 } else if (uarg->callback == sock_zerocopy_callback) {
1454 uarg->zerocopy = uarg->zerocopy && zerocopy;
1455 sock_zerocopy_put(uarg);
1456 } else {
1457 uarg->callback(uarg, zerocopy);
1458 }
1459
1460 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1461 }
1462 }
1463
1464 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1465 static inline void skb_zcopy_abort(struct sk_buff *skb)
1466 {
1467 struct ubuf_info *uarg = skb_zcopy(skb);
1468
1469 if (uarg) {
1470 sock_zerocopy_put_abort(uarg, false);
1471 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1472 }
1473 }
1474
1475 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1476 {
1477 skb->next = NULL;
1478 }
1479
1480 static inline void skb_list_del_init(struct sk_buff *skb)
1481 {
1482 __list_del_entry(&skb->list);
1483 skb_mark_not_on_list(skb);
1484 }
1485
1486 /**
1487 * skb_queue_empty - check if a queue is empty
1488 * @list: queue head
1489 *
1490 * Returns true if the queue is empty, false otherwise.
1491 */
1492 static inline int skb_queue_empty(const struct sk_buff_head *list)
1493 {
1494 return list->next == (const struct sk_buff *) list;
1495 }
1496
1497 /**
1498 * skb_queue_is_last - check if skb is the last entry in the queue
1499 * @list: queue head
1500 * @skb: buffer
1501 *
1502 * Returns true if @skb is the last buffer on the list.
1503 */
1504 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1505 const struct sk_buff *skb)
1506 {
1507 return skb->next == (const struct sk_buff *) list;
1508 }
1509
1510 /**
1511 * skb_queue_is_first - check if skb is the first entry in the queue
1512 * @list: queue head
1513 * @skb: buffer
1514 *
1515 * Returns true if @skb is the first buffer on the list.
1516 */
1517 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1518 const struct sk_buff *skb)
1519 {
1520 return skb->prev == (const struct sk_buff *) list;
1521 }
1522
1523 /**
1524 * skb_queue_next - return the next packet in the queue
1525 * @list: queue head
1526 * @skb: current buffer
1527 *
1528 * Return the next packet in @list after @skb. It is only valid to
1529 * call this if skb_queue_is_last() evaluates to false.
1530 */
1531 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1532 const struct sk_buff *skb)
1533 {
1534 /* This BUG_ON may seem severe, but if we just return then we
1535 * are going to dereference garbage.
1536 */
1537 BUG_ON(skb_queue_is_last(list, skb));
1538 return skb->next;
1539 }
1540
1541 /**
1542 * skb_queue_prev - return the prev packet in the queue
1543 * @list: queue head
1544 * @skb: current buffer
1545 *
1546 * Return the prev packet in @list before @skb. It is only valid to
1547 * call this if skb_queue_is_first() evaluates to false.
1548 */
1549 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1550 const struct sk_buff *skb)
1551 {
1552 /* This BUG_ON may seem severe, but if we just return then we
1553 * are going to dereference garbage.
1554 */
1555 BUG_ON(skb_queue_is_first(list, skb));
1556 return skb->prev;
1557 }
1558
1559 /**
1560 * skb_get - reference buffer
1561 * @skb: buffer to reference
1562 *
1563 * Makes another reference to a socket buffer and returns a pointer
1564 * to the buffer.
1565 */
1566 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1567 {
1568 refcount_inc(&skb->users);
1569 return skb;
1570 }
1571
1572 /*
1573 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1574 */
1575
1576 /**
1577 * skb_cloned - is the buffer a clone
1578 * @skb: buffer to check
1579 *
1580 * Returns true if the buffer was generated with skb_clone() and is
1581 * one of multiple shared copies of the buffer. Cloned buffers are
1582 * shared data so must not be written to under normal circumstances.
1583 */
1584 static inline int skb_cloned(const struct sk_buff *skb)
1585 {
1586 return skb->cloned &&
1587 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1588 }
1589
1590 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1591 {
1592 might_sleep_if(gfpflags_allow_blocking(pri));
1593
1594 if (skb_cloned(skb))
1595 return pskb_expand_head(skb, 0, 0, pri);
1596
1597 return 0;
1598 }
1599
1600 /**
1601 * skb_header_cloned - is the header a clone
1602 * @skb: buffer to check
1603 *
1604 * Returns true if modifying the header part of the buffer requires
1605 * the data to be copied.
1606 */
1607 static inline int skb_header_cloned(const struct sk_buff *skb)
1608 {
1609 int dataref;
1610
1611 if (!skb->cloned)
1612 return 0;
1613
1614 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1615 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1616 return dataref != 1;
1617 }
1618
1619 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1620 {
1621 might_sleep_if(gfpflags_allow_blocking(pri));
1622
1623 if (skb_header_cloned(skb))
1624 return pskb_expand_head(skb, 0, 0, pri);
1625
1626 return 0;
1627 }
1628
1629 /**
1630 * __skb_header_release - release reference to header
1631 * @skb: buffer to operate on
1632 */
1633 static inline void __skb_header_release(struct sk_buff *skb)
1634 {
1635 skb->nohdr = 1;
1636 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1637 }
1638
1639
1640 /**
1641 * skb_shared - is the buffer shared
1642 * @skb: buffer to check
1643 *
1644 * Returns true if more than one person has a reference to this
1645 * buffer.
1646 */
1647 static inline int skb_shared(const struct sk_buff *skb)
1648 {
1649 return refcount_read(&skb->users) != 1;
1650 }
1651
1652 /**
1653 * skb_share_check - check if buffer is shared and if so clone it
1654 * @skb: buffer to check
1655 * @pri: priority for memory allocation
1656 *
1657 * If the buffer is shared the buffer is cloned and the old copy
1658 * drops a reference. A new clone with a single reference is returned.
1659 * If the buffer is not shared the original buffer is returned. When
1660 * being called from interrupt status or with spinlocks held pri must
1661 * be GFP_ATOMIC.
1662 *
1663 * NULL is returned on a memory allocation failure.
1664 */
1665 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1666 {
1667 might_sleep_if(gfpflags_allow_blocking(pri));
1668 if (skb_shared(skb)) {
1669 struct sk_buff *nskb = skb_clone(skb, pri);
1670
1671 if (likely(nskb))
1672 consume_skb(skb);
1673 else
1674 kfree_skb(skb);
1675 skb = nskb;
1676 }
1677 return skb;
1678 }
1679
1680 /*
1681 * Copy shared buffers into a new sk_buff. We effectively do COW on
1682 * packets to handle cases where we have a local reader and forward
1683 * and a couple of other messy ones. The normal one is tcpdumping
1684 * a packet thats being forwarded.
1685 */
1686
1687 /**
1688 * skb_unshare - make a copy of a shared buffer
1689 * @skb: buffer to check
1690 * @pri: priority for memory allocation
1691 *
1692 * If the socket buffer is a clone then this function creates a new
1693 * copy of the data, drops a reference count on the old copy and returns
1694 * the new copy with the reference count at 1. If the buffer is not a clone
1695 * the original buffer is returned. When called with a spinlock held or
1696 * from interrupt state @pri must be %GFP_ATOMIC
1697 *
1698 * %NULL is returned on a memory allocation failure.
1699 */
1700 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1701 gfp_t pri)
1702 {
1703 might_sleep_if(gfpflags_allow_blocking(pri));
1704 if (skb_cloned(skb)) {
1705 struct sk_buff *nskb = skb_copy(skb, pri);
1706
1707 /* Free our shared copy */
1708 if (likely(nskb))
1709 consume_skb(skb);
1710 else
1711 kfree_skb(skb);
1712 skb = nskb;
1713 }
1714 return skb;
1715 }
1716
1717 /**
1718 * skb_peek - peek at the head of an &sk_buff_head
1719 * @list_: list to peek at
1720 *
1721 * Peek an &sk_buff. Unlike most other operations you _MUST_
1722 * be careful with this one. A peek leaves the buffer on the
1723 * list and someone else may run off with it. You must hold
1724 * the appropriate locks or have a private queue to do this.
1725 *
1726 * Returns %NULL for an empty list or a pointer to the head element.
1727 * The reference count is not incremented and the reference is therefore
1728 * volatile. Use with caution.
1729 */
1730 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1731 {
1732 struct sk_buff *skb = list_->next;
1733
1734 if (skb == (struct sk_buff *)list_)
1735 skb = NULL;
1736 return skb;
1737 }
1738
1739 /**
1740 * __skb_peek - peek at the head of a non-empty &sk_buff_head
1741 * @list_: list to peek at
1742 *
1743 * Like skb_peek(), but the caller knows that the list is not empty.
1744 */
1745 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1746 {
1747 return list_->next;
1748 }
1749
1750 /**
1751 * skb_peek_next - peek skb following the given one from a queue
1752 * @skb: skb to start from
1753 * @list_: list to peek at
1754 *
1755 * Returns %NULL when the end of the list is met or a pointer to the
1756 * next element. The reference count is not incremented and the
1757 * reference is therefore volatile. Use with caution.
1758 */
1759 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1760 const struct sk_buff_head *list_)
1761 {
1762 struct sk_buff *next = skb->next;
1763
1764 if (next == (struct sk_buff *)list_)
1765 next = NULL;
1766 return next;
1767 }
1768
1769 /**
1770 * skb_peek_tail - peek at the tail of an &sk_buff_head
1771 * @list_: list to peek at
1772 *
1773 * Peek an &sk_buff. Unlike most other operations you _MUST_
1774 * be careful with this one. A peek leaves the buffer on the
1775 * list and someone else may run off with it. You must hold
1776 * the appropriate locks or have a private queue to do this.
1777 *
1778 * Returns %NULL for an empty list or a pointer to the tail element.
1779 * The reference count is not incremented and the reference is therefore
1780 * volatile. Use with caution.
1781 */
1782 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1783 {
1784 struct sk_buff *skb = list_->prev;
1785
1786 if (skb == (struct sk_buff *)list_)
1787 skb = NULL;
1788 return skb;
1789
1790 }
1791
1792 /**
1793 * skb_queue_len - get queue length
1794 * @list_: list to measure
1795 *
1796 * Return the length of an &sk_buff queue.
1797 */
1798 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1799 {
1800 return list_->qlen;
1801 }
1802
1803 /**
1804 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1805 * @list: queue to initialize
1806 *
1807 * This initializes only the list and queue length aspects of
1808 * an sk_buff_head object. This allows to initialize the list
1809 * aspects of an sk_buff_head without reinitializing things like
1810 * the spinlock. It can also be used for on-stack sk_buff_head
1811 * objects where the spinlock is known to not be used.
1812 */
1813 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1814 {
1815 list->prev = list->next = (struct sk_buff *)list;
1816 list->qlen = 0;
1817 }
1818
1819 /*
1820 * This function creates a split out lock class for each invocation;
1821 * this is needed for now since a whole lot of users of the skb-queue
1822 * infrastructure in drivers have different locking usage (in hardirq)
1823 * than the networking core (in softirq only). In the long run either the
1824 * network layer or drivers should need annotation to consolidate the
1825 * main types of usage into 3 classes.
1826 */
1827 static inline void skb_queue_head_init(struct sk_buff_head *list)
1828 {
1829 spin_lock_init(&list->lock);
1830 __skb_queue_head_init(list);
1831 }
1832
1833 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1834 struct lock_class_key *class)
1835 {
1836 skb_queue_head_init(list);
1837 lockdep_set_class(&list->lock, class);
1838 }
1839
1840 /*
1841 * Insert an sk_buff on a list.
1842 *
1843 * The "__skb_xxxx()" functions are the non-atomic ones that
1844 * can only be called with interrupts disabled.
1845 */
1846 static inline void __skb_insert(struct sk_buff *newsk,
1847 struct sk_buff *prev, struct sk_buff *next,
1848 struct sk_buff_head *list)
1849 {
1850 newsk->next = next;
1851 newsk->prev = prev;
1852 next->prev = prev->next = newsk;
1853 list->qlen++;
1854 }
1855
1856 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1857 struct sk_buff *prev,
1858 struct sk_buff *next)
1859 {
1860 struct sk_buff *first = list->next;
1861 struct sk_buff *last = list->prev;
1862
1863 first->prev = prev;
1864 prev->next = first;
1865
1866 last->next = next;
1867 next->prev = last;
1868 }
1869
1870 /**
1871 * skb_queue_splice - join two skb lists, this is designed for stacks
1872 * @list: the new list to add
1873 * @head: the place to add it in the first list
1874 */
1875 static inline void skb_queue_splice(const struct sk_buff_head *list,
1876 struct sk_buff_head *head)
1877 {
1878 if (!skb_queue_empty(list)) {
1879 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1880 head->qlen += list->qlen;
1881 }
1882 }
1883
1884 /**
1885 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1886 * @list: the new list to add
1887 * @head: the place to add it in the first list
1888 *
1889 * The list at @list is reinitialised
1890 */
1891 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1892 struct sk_buff_head *head)
1893 {
1894 if (!skb_queue_empty(list)) {
1895 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1896 head->qlen += list->qlen;
1897 __skb_queue_head_init(list);
1898 }
1899 }
1900
1901 /**
1902 * skb_queue_splice_tail - join two skb lists, each list being a queue
1903 * @list: the new list to add
1904 * @head: the place to add it in the first list
1905 */
1906 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1907 struct sk_buff_head *head)
1908 {
1909 if (!skb_queue_empty(list)) {
1910 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1911 head->qlen += list->qlen;
1912 }
1913 }
1914
1915 /**
1916 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1917 * @list: the new list to add
1918 * @head: the place to add it in the first list
1919 *
1920 * Each of the lists is a queue.
1921 * The list at @list is reinitialised
1922 */
1923 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1924 struct sk_buff_head *head)
1925 {
1926 if (!skb_queue_empty(list)) {
1927 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1928 head->qlen += list->qlen;
1929 __skb_queue_head_init(list);
1930 }
1931 }
1932
1933 /**
1934 * __skb_queue_after - queue a buffer at the list head
1935 * @list: list to use
1936 * @prev: place after this buffer
1937 * @newsk: buffer to queue
1938 *
1939 * Queue a buffer int the middle of a list. This function takes no locks
1940 * and you must therefore hold required locks before calling it.
1941 *
1942 * A buffer cannot be placed on two lists at the same time.
1943 */
1944 static inline void __skb_queue_after(struct sk_buff_head *list,
1945 struct sk_buff *prev,
1946 struct sk_buff *newsk)
1947 {
1948 __skb_insert(newsk, prev, prev->next, list);
1949 }
1950
1951 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1952 struct sk_buff_head *list);
1953
1954 static inline void __skb_queue_before(struct sk_buff_head *list,
1955 struct sk_buff *next,
1956 struct sk_buff *newsk)
1957 {
1958 __skb_insert(newsk, next->prev, next, list);
1959 }
1960
1961 /**
1962 * __skb_queue_head - queue a buffer at the list head
1963 * @list: list to use
1964 * @newsk: buffer to queue
1965 *
1966 * Queue a buffer at the start of a list. This function takes no locks
1967 * and you must therefore hold required locks before calling it.
1968 *
1969 * A buffer cannot be placed on two lists at the same time.
1970 */
1971 static inline void __skb_queue_head(struct sk_buff_head *list,
1972 struct sk_buff *newsk)
1973 {
1974 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1975 }
1976 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1977
1978 /**
1979 * __skb_queue_tail - queue a buffer at the list tail
1980 * @list: list to use
1981 * @newsk: buffer to queue
1982 *
1983 * Queue a buffer at the end of a list. This function takes no locks
1984 * and you must therefore hold required locks before calling it.
1985 *
1986 * A buffer cannot be placed on two lists at the same time.
1987 */
1988 static inline void __skb_queue_tail(struct sk_buff_head *list,
1989 struct sk_buff *newsk)
1990 {
1991 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1992 }
1993 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1994
1995 /*
1996 * remove sk_buff from list. _Must_ be called atomically, and with
1997 * the list known..
1998 */
1999 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2000 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2001 {
2002 struct sk_buff *next, *prev;
2003
2004 list->qlen--;
2005 next = skb->next;
2006 prev = skb->prev;
2007 skb->next = skb->prev = NULL;
2008 next->prev = prev;
2009 prev->next = next;
2010 }
2011
2012 /**
2013 * __skb_dequeue - remove from the head of the queue
2014 * @list: list to dequeue from
2015 *
2016 * Remove the head of the list. This function does not take any locks
2017 * so must be used with appropriate locks held only. The head item is
2018 * returned or %NULL if the list is empty.
2019 */
2020 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2021 {
2022 struct sk_buff *skb = skb_peek(list);
2023 if (skb)
2024 __skb_unlink(skb, list);
2025 return skb;
2026 }
2027 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2028
2029 /**
2030 * __skb_dequeue_tail - remove from the tail of the queue
2031 * @list: list to dequeue from
2032 *
2033 * Remove the tail of the list. This function does not take any locks
2034 * so must be used with appropriate locks held only. The tail item is
2035 * returned or %NULL if the list is empty.
2036 */
2037 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2038 {
2039 struct sk_buff *skb = skb_peek_tail(list);
2040 if (skb)
2041 __skb_unlink(skb, list);
2042 return skb;
2043 }
2044 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2045
2046
2047 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2048 {
2049 return skb->data_len;
2050 }
2051
2052 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2053 {
2054 return skb->len - skb->data_len;
2055 }
2056
2057 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2058 {
2059 unsigned int i, len = 0;
2060
2061 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2062 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2063 return len;
2064 }
2065
2066 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2067 {
2068 return skb_headlen(skb) + __skb_pagelen(skb);
2069 }
2070
2071 /**
2072 * __skb_fill_page_desc - initialise a paged fragment in an skb
2073 * @skb: buffer containing fragment to be initialised
2074 * @i: paged fragment index to initialise
2075 * @page: the page to use for this fragment
2076 * @off: the offset to the data with @page
2077 * @size: the length of the data
2078 *
2079 * Initialises the @i'th fragment of @skb to point to &size bytes at
2080 * offset @off within @page.
2081 *
2082 * Does not take any additional reference on the fragment.
2083 */
2084 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2085 struct page *page, int off, int size)
2086 {
2087 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2088
2089 /*
2090 * Propagate page pfmemalloc to the skb if we can. The problem is
2091 * that not all callers have unique ownership of the page but rely
2092 * on page_is_pfmemalloc doing the right thing(tm).
2093 */
2094 frag->bv_page = page;
2095 frag->bv_offset = off;
2096 skb_frag_size_set(frag, size);
2097
2098 page = compound_head(page);
2099 if (page_is_pfmemalloc(page))
2100 skb->pfmemalloc = true;
2101 }
2102
2103 /**
2104 * skb_fill_page_desc - initialise a paged fragment in an skb
2105 * @skb: buffer containing fragment to be initialised
2106 * @i: paged fragment index to initialise
2107 * @page: the page to use for this fragment
2108 * @off: the offset to the data with @page
2109 * @size: the length of the data
2110 *
2111 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2112 * @skb to point to @size bytes at offset @off within @page. In
2113 * addition updates @skb such that @i is the last fragment.
2114 *
2115 * Does not take any additional reference on the fragment.
2116 */
2117 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2118 struct page *page, int off, int size)
2119 {
2120 __skb_fill_page_desc(skb, i, page, off, size);
2121 skb_shinfo(skb)->nr_frags = i + 1;
2122 }
2123
2124 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2125 int size, unsigned int truesize);
2126
2127 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2128 unsigned int truesize);
2129
2130 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2131
2132 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2133 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2134 {
2135 return skb->head + skb->tail;
2136 }
2137
2138 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2139 {
2140 skb->tail = skb->data - skb->head;
2141 }
2142
2143 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2144 {
2145 skb_reset_tail_pointer(skb);
2146 skb->tail += offset;
2147 }
2148
2149 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2150 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2151 {
2152 return skb->tail;
2153 }
2154
2155 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2156 {
2157 skb->tail = skb->data;
2158 }
2159
2160 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2161 {
2162 skb->tail = skb->data + offset;
2163 }
2164
2165 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2166
2167 /*
2168 * Add data to an sk_buff
2169 */
2170 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2171 void *skb_put(struct sk_buff *skb, unsigned int len);
2172 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2173 {
2174 void *tmp = skb_tail_pointer(skb);
2175 SKB_LINEAR_ASSERT(skb);
2176 skb->tail += len;
2177 skb->len += len;
2178 return tmp;
2179 }
2180
2181 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2182 {
2183 void *tmp = __skb_put(skb, len);
2184
2185 memset(tmp, 0, len);
2186 return tmp;
2187 }
2188
2189 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2190 unsigned int len)
2191 {
2192 void *tmp = __skb_put(skb, len);
2193
2194 memcpy(tmp, data, len);
2195 return tmp;
2196 }
2197
2198 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2199 {
2200 *(u8 *)__skb_put(skb, 1) = val;
2201 }
2202
2203 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2204 {
2205 void *tmp = skb_put(skb, len);
2206
2207 memset(tmp, 0, len);
2208
2209 return tmp;
2210 }
2211
2212 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2213 unsigned int len)
2214 {
2215 void *tmp = skb_put(skb, len);
2216
2217 memcpy(tmp, data, len);
2218
2219 return tmp;
2220 }
2221
2222 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2223 {
2224 *(u8 *)skb_put(skb, 1) = val;
2225 }
2226
2227 void *skb_push(struct sk_buff *skb, unsigned int len);
2228 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2229 {
2230 skb->data -= len;
2231 skb->len += len;
2232 return skb->data;
2233 }
2234
2235 void *skb_pull(struct sk_buff *skb, unsigned int len);
2236 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2237 {
2238 skb->len -= len;
2239 BUG_ON(skb->len < skb->data_len);
2240 return skb->data += len;
2241 }
2242
2243 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2244 {
2245 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2246 }
2247
2248 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2249
2250 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2251 {
2252 if (len > skb_headlen(skb) &&
2253 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2254 return NULL;
2255 skb->len -= len;
2256 return skb->data += len;
2257 }
2258
2259 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2260 {
2261 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2262 }
2263
2264 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2265 {
2266 if (likely(len <= skb_headlen(skb)))
2267 return 1;
2268 if (unlikely(len > skb->len))
2269 return 0;
2270 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2271 }
2272
2273 void skb_condense(struct sk_buff *skb);
2274
2275 /**
2276 * skb_headroom - bytes at buffer head
2277 * @skb: buffer to check
2278 *
2279 * Return the number of bytes of free space at the head of an &sk_buff.
2280 */
2281 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2282 {
2283 return skb->data - skb->head;
2284 }
2285
2286 /**
2287 * skb_tailroom - bytes at buffer end
2288 * @skb: buffer to check
2289 *
2290 * Return the number of bytes of free space at the tail of an sk_buff
2291 */
2292 static inline int skb_tailroom(const struct sk_buff *skb)
2293 {
2294 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2295 }
2296
2297 /**
2298 * skb_availroom - bytes at buffer end
2299 * @skb: buffer to check
2300 *
2301 * Return the number of bytes of free space at the tail of an sk_buff
2302 * allocated by sk_stream_alloc()
2303 */
2304 static inline int skb_availroom(const struct sk_buff *skb)
2305 {
2306 if (skb_is_nonlinear(skb))
2307 return 0;
2308
2309 return skb->end - skb->tail - skb->reserved_tailroom;
2310 }
2311
2312 /**
2313 * skb_reserve - adjust headroom
2314 * @skb: buffer to alter
2315 * @len: bytes to move
2316 *
2317 * Increase the headroom of an empty &sk_buff by reducing the tail
2318 * room. This is only allowed for an empty buffer.
2319 */
2320 static inline void skb_reserve(struct sk_buff *skb, int len)
2321 {
2322 skb->data += len;
2323 skb->tail += len;
2324 }
2325
2326 /**
2327 * skb_tailroom_reserve - adjust reserved_tailroom
2328 * @skb: buffer to alter
2329 * @mtu: maximum amount of headlen permitted
2330 * @needed_tailroom: minimum amount of reserved_tailroom
2331 *
2332 * Set reserved_tailroom so that headlen can be as large as possible but
2333 * not larger than mtu and tailroom cannot be smaller than
2334 * needed_tailroom.
2335 * The required headroom should already have been reserved before using
2336 * this function.
2337 */
2338 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2339 unsigned int needed_tailroom)
2340 {
2341 SKB_LINEAR_ASSERT(skb);
2342 if (mtu < skb_tailroom(skb) - needed_tailroom)
2343 /* use at most mtu */
2344 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2345 else
2346 /* use up to all available space */
2347 skb->reserved_tailroom = needed_tailroom;
2348 }
2349
2350 #define ENCAP_TYPE_ETHER 0
2351 #define ENCAP_TYPE_IPPROTO 1
2352
2353 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2354 __be16 protocol)
2355 {
2356 skb->inner_protocol = protocol;
2357 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2358 }
2359
2360 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2361 __u8 ipproto)
2362 {
2363 skb->inner_ipproto = ipproto;
2364 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2365 }
2366
2367 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2368 {
2369 skb->inner_mac_header = skb->mac_header;
2370 skb->inner_network_header = skb->network_header;
2371 skb->inner_transport_header = skb->transport_header;
2372 }
2373
2374 static inline void skb_reset_mac_len(struct sk_buff *skb)
2375 {
2376 skb->mac_len = skb->network_header - skb->mac_header;
2377 }
2378
2379 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2380 *skb)
2381 {
2382 return skb->head + skb->inner_transport_header;
2383 }
2384
2385 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2386 {
2387 return skb_inner_transport_header(skb) - skb->data;
2388 }
2389
2390 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2391 {
2392 skb->inner_transport_header = skb->data - skb->head;
2393 }
2394
2395 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2396 const int offset)
2397 {
2398 skb_reset_inner_transport_header(skb);
2399 skb->inner_transport_header += offset;
2400 }
2401
2402 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2403 {
2404 return skb->head + skb->inner_network_header;
2405 }
2406
2407 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2408 {
2409 skb->inner_network_header = skb->data - skb->head;
2410 }
2411
2412 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2413 const int offset)
2414 {
2415 skb_reset_inner_network_header(skb);
2416 skb->inner_network_header += offset;
2417 }
2418
2419 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2420 {
2421 return skb->head + skb->inner_mac_header;
2422 }
2423
2424 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2425 {
2426 skb->inner_mac_header = skb->data - skb->head;
2427 }
2428
2429 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2430 const int offset)
2431 {
2432 skb_reset_inner_mac_header(skb);
2433 skb->inner_mac_header += offset;
2434 }
2435 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2436 {
2437 return skb->transport_header != (typeof(skb->transport_header))~0U;
2438 }
2439
2440 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2441 {
2442 return skb->head + skb->transport_header;
2443 }
2444
2445 static inline void skb_reset_transport_header(struct sk_buff *skb)
2446 {
2447 skb->transport_header = skb->data - skb->head;
2448 }
2449
2450 static inline void skb_set_transport_header(struct sk_buff *skb,
2451 const int offset)
2452 {
2453 skb_reset_transport_header(skb);
2454 skb->transport_header += offset;
2455 }
2456
2457 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2458 {
2459 return skb->head + skb->network_header;
2460 }
2461
2462 static inline void skb_reset_network_header(struct sk_buff *skb)
2463 {
2464 skb->network_header = skb->data - skb->head;
2465 }
2466
2467 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2468 {
2469 skb_reset_network_header(skb);
2470 skb->network_header += offset;
2471 }
2472
2473 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2474 {
2475 return skb->head + skb->mac_header;
2476 }
2477
2478 static inline int skb_mac_offset(const struct sk_buff *skb)
2479 {
2480 return skb_mac_header(skb) - skb->data;
2481 }
2482
2483 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2484 {
2485 return skb->network_header - skb->mac_header;
2486 }
2487
2488 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2489 {
2490 return skb->mac_header != (typeof(skb->mac_header))~0U;
2491 }
2492
2493 static inline void skb_reset_mac_header(struct sk_buff *skb)
2494 {
2495 skb->mac_header = skb->data - skb->head;
2496 }
2497
2498 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2499 {
2500 skb_reset_mac_header(skb);
2501 skb->mac_header += offset;
2502 }
2503
2504 static inline void skb_pop_mac_header(struct sk_buff *skb)
2505 {
2506 skb->mac_header = skb->network_header;
2507 }
2508
2509 static inline void skb_probe_transport_header(struct sk_buff *skb)
2510 {
2511 struct flow_keys_basic keys;
2512
2513 if (skb_transport_header_was_set(skb))
2514 return;
2515
2516 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2517 NULL, 0, 0, 0, 0))
2518 skb_set_transport_header(skb, keys.control.thoff);
2519 }
2520
2521 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2522 {
2523 if (skb_mac_header_was_set(skb)) {
2524 const unsigned char *old_mac = skb_mac_header(skb);
2525
2526 skb_set_mac_header(skb, -skb->mac_len);
2527 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2528 }
2529 }
2530
2531 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2532 {
2533 return skb->csum_start - skb_headroom(skb);
2534 }
2535
2536 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2537 {
2538 return skb->head + skb->csum_start;
2539 }
2540
2541 static inline int skb_transport_offset(const struct sk_buff *skb)
2542 {
2543 return skb_transport_header(skb) - skb->data;
2544 }
2545
2546 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2547 {
2548 return skb->transport_header - skb->network_header;
2549 }
2550
2551 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2552 {
2553 return skb->inner_transport_header - skb->inner_network_header;
2554 }
2555
2556 static inline int skb_network_offset(const struct sk_buff *skb)
2557 {
2558 return skb_network_header(skb) - skb->data;
2559 }
2560
2561 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2562 {
2563 return skb_inner_network_header(skb) - skb->data;
2564 }
2565
2566 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2567 {
2568 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2569 }
2570
2571 /*
2572 * CPUs often take a performance hit when accessing unaligned memory
2573 * locations. The actual performance hit varies, it can be small if the
2574 * hardware handles it or large if we have to take an exception and fix it
2575 * in software.
2576 *
2577 * Since an ethernet header is 14 bytes network drivers often end up with
2578 * the IP header at an unaligned offset. The IP header can be aligned by
2579 * shifting the start of the packet by 2 bytes. Drivers should do this
2580 * with:
2581 *
2582 * skb_reserve(skb, NET_IP_ALIGN);
2583 *
2584 * The downside to this alignment of the IP header is that the DMA is now
2585 * unaligned. On some architectures the cost of an unaligned DMA is high
2586 * and this cost outweighs the gains made by aligning the IP header.
2587 *
2588 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2589 * to be overridden.
2590 */
2591 #ifndef NET_IP_ALIGN
2592 #define NET_IP_ALIGN 2
2593 #endif
2594
2595 /*
2596 * The networking layer reserves some headroom in skb data (via
2597 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2598 * the header has to grow. In the default case, if the header has to grow
2599 * 32 bytes or less we avoid the reallocation.
2600 *
2601 * Unfortunately this headroom changes the DMA alignment of the resulting
2602 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2603 * on some architectures. An architecture can override this value,
2604 * perhaps setting it to a cacheline in size (since that will maintain
2605 * cacheline alignment of the DMA). It must be a power of 2.
2606 *
2607 * Various parts of the networking layer expect at least 32 bytes of
2608 * headroom, you should not reduce this.
2609 *
2610 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2611 * to reduce average number of cache lines per packet.
2612 * get_rps_cpus() for example only access one 64 bytes aligned block :
2613 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2614 */
2615 #ifndef NET_SKB_PAD
2616 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2617 #endif
2618
2619 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2620
2621 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2622 {
2623 if (WARN_ON(skb_is_nonlinear(skb)))
2624 return;
2625 skb->len = len;
2626 skb_set_tail_pointer(skb, len);
2627 }
2628
2629 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2630 {
2631 __skb_set_length(skb, len);
2632 }
2633
2634 void skb_trim(struct sk_buff *skb, unsigned int len);
2635
2636 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2637 {
2638 if (skb->data_len)
2639 return ___pskb_trim(skb, len);
2640 __skb_trim(skb, len);
2641 return 0;
2642 }
2643
2644 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2645 {
2646 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2647 }
2648
2649 /**
2650 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2651 * @skb: buffer to alter
2652 * @len: new length
2653 *
2654 * This is identical to pskb_trim except that the caller knows that
2655 * the skb is not cloned so we should never get an error due to out-
2656 * of-memory.
2657 */
2658 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2659 {
2660 int err = pskb_trim(skb, len);
2661 BUG_ON(err);
2662 }
2663
2664 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2665 {
2666 unsigned int diff = len - skb->len;
2667
2668 if (skb_tailroom(skb) < diff) {
2669 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2670 GFP_ATOMIC);
2671 if (ret)
2672 return ret;
2673 }
2674 __skb_set_length(skb, len);
2675 return 0;
2676 }
2677
2678 /**
2679 * skb_orphan - orphan a buffer
2680 * @skb: buffer to orphan
2681 *
2682 * If a buffer currently has an owner then we call the owner's
2683 * destructor function and make the @skb unowned. The buffer continues
2684 * to exist but is no longer charged to its former owner.
2685 */
2686 static inline void skb_orphan(struct sk_buff *skb)
2687 {
2688 if (skb->destructor) {
2689 skb->destructor(skb);
2690 skb->destructor = NULL;
2691 skb->sk = NULL;
2692 } else {
2693 BUG_ON(skb->sk);
2694 }
2695 }
2696
2697 /**
2698 * skb_orphan_frags - orphan the frags contained in a buffer
2699 * @skb: buffer to orphan frags from
2700 * @gfp_mask: allocation mask for replacement pages
2701 *
2702 * For each frag in the SKB which needs a destructor (i.e. has an
2703 * owner) create a copy of that frag and release the original
2704 * page by calling the destructor.
2705 */
2706 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2707 {
2708 if (likely(!skb_zcopy(skb)))
2709 return 0;
2710 if (!skb_zcopy_is_nouarg(skb) &&
2711 skb_uarg(skb)->callback == sock_zerocopy_callback)
2712 return 0;
2713 return skb_copy_ubufs(skb, gfp_mask);
2714 }
2715
2716 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2717 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2718 {
2719 if (likely(!skb_zcopy(skb)))
2720 return 0;
2721 return skb_copy_ubufs(skb, gfp_mask);
2722 }
2723
2724 /**
2725 * __skb_queue_purge - empty a list
2726 * @list: list to empty
2727 *
2728 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2729 * the list and one reference dropped. This function does not take the
2730 * list lock and the caller must hold the relevant locks to use it.
2731 */
2732 static inline void __skb_queue_purge(struct sk_buff_head *list)
2733 {
2734 struct sk_buff *skb;
2735 while ((skb = __skb_dequeue(list)) != NULL)
2736 kfree_skb(skb);
2737 }
2738 void skb_queue_purge(struct sk_buff_head *list);
2739
2740 unsigned int skb_rbtree_purge(struct rb_root *root);
2741
2742 void *netdev_alloc_frag(unsigned int fragsz);
2743
2744 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2745 gfp_t gfp_mask);
2746
2747 /**
2748 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2749 * @dev: network device to receive on
2750 * @length: length to allocate
2751 *
2752 * Allocate a new &sk_buff and assign it a usage count of one. The
2753 * buffer has unspecified headroom built in. Users should allocate
2754 * the headroom they think they need without accounting for the
2755 * built in space. The built in space is used for optimisations.
2756 *
2757 * %NULL is returned if there is no free memory. Although this function
2758 * allocates memory it can be called from an interrupt.
2759 */
2760 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2761 unsigned int length)
2762 {
2763 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2764 }
2765
2766 /* legacy helper around __netdev_alloc_skb() */
2767 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2768 gfp_t gfp_mask)
2769 {
2770 return __netdev_alloc_skb(NULL, length, gfp_mask);
2771 }
2772
2773 /* legacy helper around netdev_alloc_skb() */
2774 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2775 {
2776 return netdev_alloc_skb(NULL, length);
2777 }
2778
2779
2780 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2781 unsigned int length, gfp_t gfp)
2782 {
2783 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2784
2785 if (NET_IP_ALIGN && skb)
2786 skb_reserve(skb, NET_IP_ALIGN);
2787 return skb;
2788 }
2789
2790 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2791 unsigned int length)
2792 {
2793 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2794 }
2795
2796 static inline void skb_free_frag(void *addr)
2797 {
2798 page_frag_free(addr);
2799 }
2800
2801 void *napi_alloc_frag(unsigned int fragsz);
2802 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2803 unsigned int length, gfp_t gfp_mask);
2804 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2805 unsigned int length)
2806 {
2807 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2808 }
2809 void napi_consume_skb(struct sk_buff *skb, int budget);
2810
2811 void __kfree_skb_flush(void);
2812 void __kfree_skb_defer(struct sk_buff *skb);
2813
2814 /**
2815 * __dev_alloc_pages - allocate page for network Rx
2816 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2817 * @order: size of the allocation
2818 *
2819 * Allocate a new page.
2820 *
2821 * %NULL is returned if there is no free memory.
2822 */
2823 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2824 unsigned int order)
2825 {
2826 /* This piece of code contains several assumptions.
2827 * 1. This is for device Rx, therefor a cold page is preferred.
2828 * 2. The expectation is the user wants a compound page.
2829 * 3. If requesting a order 0 page it will not be compound
2830 * due to the check to see if order has a value in prep_new_page
2831 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2832 * code in gfp_to_alloc_flags that should be enforcing this.
2833 */
2834 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2835
2836 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2837 }
2838
2839 static inline struct page *dev_alloc_pages(unsigned int order)
2840 {
2841 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2842 }
2843
2844 /**
2845 * __dev_alloc_page - allocate a page for network Rx
2846 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2847 *
2848 * Allocate a new page.
2849 *
2850 * %NULL is returned if there is no free memory.
2851 */
2852 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2853 {
2854 return __dev_alloc_pages(gfp_mask, 0);
2855 }
2856
2857 static inline struct page *dev_alloc_page(void)
2858 {
2859 return dev_alloc_pages(0);
2860 }
2861
2862 /**
2863 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2864 * @page: The page that was allocated from skb_alloc_page
2865 * @skb: The skb that may need pfmemalloc set
2866 */
2867 static inline void skb_propagate_pfmemalloc(struct page *page,
2868 struct sk_buff *skb)
2869 {
2870 if (page_is_pfmemalloc(page))
2871 skb->pfmemalloc = true;
2872 }
2873
2874 /**
2875 * skb_frag_off() - Returns the offset of a skb fragment
2876 * @frag: the paged fragment
2877 */
2878 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2879 {
2880 return frag->bv_offset;
2881 }
2882
2883 /**
2884 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2885 * @frag: skb fragment
2886 * @delta: value to add
2887 */
2888 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2889 {
2890 frag->bv_offset += delta;
2891 }
2892
2893 /**
2894 * skb_frag_off_set() - Sets the offset of a skb fragment
2895 * @frag: skb fragment
2896 * @offset: offset of fragment
2897 */
2898 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2899 {
2900 frag->bv_offset = offset;
2901 }
2902
2903 /**
2904 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2905 * @fragto: skb fragment where offset is set
2906 * @fragfrom: skb fragment offset is copied from
2907 */
2908 static inline void skb_frag_off_copy(skb_frag_t *fragto,
2909 const skb_frag_t *fragfrom)
2910 {
2911 fragto->bv_offset = fragfrom->bv_offset;
2912 }
2913
2914 /**
2915 * skb_frag_page - retrieve the page referred to by a paged fragment
2916 * @frag: the paged fragment
2917 *
2918 * Returns the &struct page associated with @frag.
2919 */
2920 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2921 {
2922 return frag->bv_page;
2923 }
2924
2925 /**
2926 * __skb_frag_ref - take an addition reference on a paged fragment.
2927 * @frag: the paged fragment
2928 *
2929 * Takes an additional reference on the paged fragment @frag.
2930 */
2931 static inline void __skb_frag_ref(skb_frag_t *frag)
2932 {
2933 get_page(skb_frag_page(frag));
2934 }
2935
2936 /**
2937 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2938 * @skb: the buffer
2939 * @f: the fragment offset.
2940 *
2941 * Takes an additional reference on the @f'th paged fragment of @skb.
2942 */
2943 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2944 {
2945 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2946 }
2947
2948 /**
2949 * __skb_frag_unref - release a reference on a paged fragment.
2950 * @frag: the paged fragment
2951 *
2952 * Releases a reference on the paged fragment @frag.
2953 */
2954 static inline void __skb_frag_unref(skb_frag_t *frag)
2955 {
2956 put_page(skb_frag_page(frag));
2957 }
2958
2959 /**
2960 * skb_frag_unref - release a reference on a paged fragment of an skb.
2961 * @skb: the buffer
2962 * @f: the fragment offset
2963 *
2964 * Releases a reference on the @f'th paged fragment of @skb.
2965 */
2966 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2967 {
2968 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2969 }
2970
2971 /**
2972 * skb_frag_address - gets the address of the data contained in a paged fragment
2973 * @frag: the paged fragment buffer
2974 *
2975 * Returns the address of the data within @frag. The page must already
2976 * be mapped.
2977 */
2978 static inline void *skb_frag_address(const skb_frag_t *frag)
2979 {
2980 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
2981 }
2982
2983 /**
2984 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2985 * @frag: the paged fragment buffer
2986 *
2987 * Returns the address of the data within @frag. Checks that the page
2988 * is mapped and returns %NULL otherwise.
2989 */
2990 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2991 {
2992 void *ptr = page_address(skb_frag_page(frag));
2993 if (unlikely(!ptr))
2994 return NULL;
2995
2996 return ptr + skb_frag_off(frag);
2997 }
2998
2999 /**
3000 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3001 * @fragto: skb fragment where page is set
3002 * @fragfrom: skb fragment page is copied from
3003 */
3004 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3005 const skb_frag_t *fragfrom)
3006 {
3007 fragto->bv_page = fragfrom->bv_page;
3008 }
3009
3010 /**
3011 * __skb_frag_set_page - sets the page contained in a paged fragment
3012 * @frag: the paged fragment
3013 * @page: the page to set
3014 *
3015 * Sets the fragment @frag to contain @page.
3016 */
3017 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3018 {
3019 frag->bv_page = page;
3020 }
3021
3022 /**
3023 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3024 * @skb: the buffer
3025 * @f: the fragment offset
3026 * @page: the page to set
3027 *
3028 * Sets the @f'th fragment of @skb to contain @page.
3029 */
3030 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3031 struct page *page)
3032 {
3033 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3034 }
3035
3036 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3037
3038 /**
3039 * skb_frag_dma_map - maps a paged fragment via the DMA API
3040 * @dev: the device to map the fragment to
3041 * @frag: the paged fragment to map
3042 * @offset: the offset within the fragment (starting at the
3043 * fragment's own offset)
3044 * @size: the number of bytes to map
3045 * @dir: the direction of the mapping (``PCI_DMA_*``)
3046 *
3047 * Maps the page associated with @frag to @device.
3048 */
3049 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3050 const skb_frag_t *frag,
3051 size_t offset, size_t size,
3052 enum dma_data_direction dir)
3053 {
3054 return dma_map_page(dev, skb_frag_page(frag),
3055 skb_frag_off(frag) + offset, size, dir);
3056 }
3057
3058 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3059 gfp_t gfp_mask)
3060 {
3061 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3062 }
3063
3064
3065 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3066 gfp_t gfp_mask)
3067 {
3068 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3069 }
3070
3071
3072 /**
3073 * skb_clone_writable - is the header of a clone writable
3074 * @skb: buffer to check
3075 * @len: length up to which to write
3076 *
3077 * Returns true if modifying the header part of the cloned buffer
3078 * does not requires the data to be copied.
3079 */
3080 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3081 {
3082 return !skb_header_cloned(skb) &&
3083 skb_headroom(skb) + len <= skb->hdr_len;
3084 }
3085
3086 static inline int skb_try_make_writable(struct sk_buff *skb,
3087 unsigned int write_len)
3088 {
3089 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3090 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3091 }
3092
3093 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3094 int cloned)
3095 {
3096 int delta = 0;
3097
3098 if (headroom > skb_headroom(skb))
3099 delta = headroom - skb_headroom(skb);
3100
3101 if (delta || cloned)
3102 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3103 GFP_ATOMIC);
3104 return 0;
3105 }
3106
3107 /**
3108 * skb_cow - copy header of skb when it is required
3109 * @skb: buffer to cow
3110 * @headroom: needed headroom
3111 *
3112 * If the skb passed lacks sufficient headroom or its data part
3113 * is shared, data is reallocated. If reallocation fails, an error
3114 * is returned and original skb is not changed.
3115 *
3116 * The result is skb with writable area skb->head...skb->tail
3117 * and at least @headroom of space at head.
3118 */
3119 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3120 {
3121 return __skb_cow(skb, headroom, skb_cloned(skb));
3122 }
3123
3124 /**
3125 * skb_cow_head - skb_cow but only making the head writable
3126 * @skb: buffer to cow
3127 * @headroom: needed headroom
3128 *
3129 * This function is identical to skb_cow except that we replace the
3130 * skb_cloned check by skb_header_cloned. It should be used when
3131 * you only need to push on some header and do not need to modify
3132 * the data.
3133 */
3134 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3135 {
3136 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3137 }
3138
3139 /**
3140 * skb_padto - pad an skbuff up to a minimal size
3141 * @skb: buffer to pad
3142 * @len: minimal length
3143 *
3144 * Pads up a buffer to ensure the trailing bytes exist and are
3145 * blanked. If the buffer already contains sufficient data it
3146 * is untouched. Otherwise it is extended. Returns zero on
3147 * success. The skb is freed on error.
3148 */
3149 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3150 {
3151 unsigned int size = skb->len;
3152 if (likely(size >= len))
3153 return 0;
3154 return skb_pad(skb, len - size);
3155 }
3156
3157 /**
3158 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3159 * @skb: buffer to pad
3160 * @len: minimal length
3161 * @free_on_error: free buffer on error
3162 *
3163 * Pads up a buffer to ensure the trailing bytes exist and are
3164 * blanked. If the buffer already contains sufficient data it
3165 * is untouched. Otherwise it is extended. Returns zero on
3166 * success. The skb is freed on error if @free_on_error is true.
3167 */
3168 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3169 bool free_on_error)
3170 {
3171 unsigned int size = skb->len;
3172
3173 if (unlikely(size < len)) {
3174 len -= size;
3175 if (__skb_pad(skb, len, free_on_error))
3176 return -ENOMEM;
3177 __skb_put(skb, len);
3178 }
3179 return 0;
3180 }
3181
3182 /**
3183 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3184 * @skb: buffer to pad
3185 * @len: minimal length
3186 *
3187 * Pads up a buffer to ensure the trailing bytes exist and are
3188 * blanked. If the buffer already contains sufficient data it
3189 * is untouched. Otherwise it is extended. Returns zero on
3190 * success. The skb is freed on error.
3191 */
3192 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3193 {
3194 return __skb_put_padto(skb, len, true);
3195 }
3196
3197 static inline int skb_add_data(struct sk_buff *skb,
3198 struct iov_iter *from, int copy)
3199 {
3200 const int off = skb->len;
3201
3202 if (skb->ip_summed == CHECKSUM_NONE) {
3203 __wsum csum = 0;
3204 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3205 &csum, from)) {
3206 skb->csum = csum_block_add(skb->csum, csum, off);
3207 return 0;
3208 }
3209 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3210 return 0;
3211
3212 __skb_trim(skb, off);
3213 return -EFAULT;
3214 }
3215
3216 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3217 const struct page *page, int off)
3218 {
3219 if (skb_zcopy(skb))
3220 return false;
3221 if (i) {
3222 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3223
3224 return page == skb_frag_page(frag) &&
3225 off == skb_frag_off(frag) + skb_frag_size(frag);
3226 }
3227 return false;
3228 }
3229
3230 static inline int __skb_linearize(struct sk_buff *skb)
3231 {
3232 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3233 }
3234
3235 /**
3236 * skb_linearize - convert paged skb to linear one
3237 * @skb: buffer to linarize
3238 *
3239 * If there is no free memory -ENOMEM is returned, otherwise zero
3240 * is returned and the old skb data released.
3241 */
3242 static inline int skb_linearize(struct sk_buff *skb)
3243 {
3244 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3245 }
3246
3247 /**
3248 * skb_has_shared_frag - can any frag be overwritten
3249 * @skb: buffer to test
3250 *
3251 * Return true if the skb has at least one frag that might be modified
3252 * by an external entity (as in vmsplice()/sendfile())
3253 */
3254 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3255 {
3256 return skb_is_nonlinear(skb) &&
3257 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3258 }
3259
3260 /**
3261 * skb_linearize_cow - make sure skb is linear and writable
3262 * @skb: buffer to process
3263 *
3264 * If there is no free memory -ENOMEM is returned, otherwise zero
3265 * is returned and the old skb data released.
3266 */
3267 static inline int skb_linearize_cow(struct sk_buff *skb)
3268 {
3269 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3270 __skb_linearize(skb) : 0;
3271 }
3272
3273 static __always_inline void
3274 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3275 unsigned int off)
3276 {
3277 if (skb->ip_summed == CHECKSUM_COMPLETE)
3278 skb->csum = csum_block_sub(skb->csum,
3279 csum_partial(start, len, 0), off);
3280 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3281 skb_checksum_start_offset(skb) < 0)
3282 skb->ip_summed = CHECKSUM_NONE;
3283 }
3284
3285 /**
3286 * skb_postpull_rcsum - update checksum for received skb after pull
3287 * @skb: buffer to update
3288 * @start: start of data before pull
3289 * @len: length of data pulled
3290 *
3291 * After doing a pull on a received packet, you need to call this to
3292 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3293 * CHECKSUM_NONE so that it can be recomputed from scratch.
3294 */
3295 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3296 const void *start, unsigned int len)
3297 {
3298 __skb_postpull_rcsum(skb, start, len, 0);
3299 }
3300
3301 static __always_inline void
3302 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3303 unsigned int off)
3304 {
3305 if (skb->ip_summed == CHECKSUM_COMPLETE)
3306 skb->csum = csum_block_add(skb->csum,
3307 csum_partial(start, len, 0), off);
3308 }
3309
3310 /**
3311 * skb_postpush_rcsum - update checksum for received skb after push
3312 * @skb: buffer to update
3313 * @start: start of data after push
3314 * @len: length of data pushed
3315 *
3316 * After doing a push on a received packet, you need to call this to
3317 * update the CHECKSUM_COMPLETE checksum.
3318 */
3319 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3320 const void *start, unsigned int len)
3321 {
3322 __skb_postpush_rcsum(skb, start, len, 0);
3323 }
3324
3325 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3326
3327 /**
3328 * skb_push_rcsum - push skb and update receive checksum
3329 * @skb: buffer to update
3330 * @len: length of data pulled
3331 *
3332 * This function performs an skb_push on the packet and updates
3333 * the CHECKSUM_COMPLETE checksum. It should be used on
3334 * receive path processing instead of skb_push unless you know
3335 * that the checksum difference is zero (e.g., a valid IP header)
3336 * or you are setting ip_summed to CHECKSUM_NONE.
3337 */
3338 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3339 {
3340 skb_push(skb, len);
3341 skb_postpush_rcsum(skb, skb->data, len);
3342 return skb->data;
3343 }
3344
3345 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3346 /**
3347 * pskb_trim_rcsum - trim received skb and update checksum
3348 * @skb: buffer to trim
3349 * @len: new length
3350 *
3351 * This is exactly the same as pskb_trim except that it ensures the
3352 * checksum of received packets are still valid after the operation.
3353 * It can change skb pointers.
3354 */
3355
3356 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3357 {
3358 if (likely(len >= skb->len))
3359 return 0;
3360 return pskb_trim_rcsum_slow(skb, len);
3361 }
3362
3363 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3364 {
3365 if (skb->ip_summed == CHECKSUM_COMPLETE)
3366 skb->ip_summed = CHECKSUM_NONE;
3367 __skb_trim(skb, len);
3368 return 0;
3369 }
3370
3371 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3372 {
3373 if (skb->ip_summed == CHECKSUM_COMPLETE)
3374 skb->ip_summed = CHECKSUM_NONE;
3375 return __skb_grow(skb, len);
3376 }
3377
3378 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3379 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3380 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3381 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3382 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3383
3384 #define skb_queue_walk(queue, skb) \
3385 for (skb = (queue)->next; \
3386 skb != (struct sk_buff *)(queue); \
3387 skb = skb->next)
3388
3389 #define skb_queue_walk_safe(queue, skb, tmp) \
3390 for (skb = (queue)->next, tmp = skb->next; \
3391 skb != (struct sk_buff *)(queue); \
3392 skb = tmp, tmp = skb->next)
3393
3394 #define skb_queue_walk_from(queue, skb) \
3395 for (; skb != (struct sk_buff *)(queue); \
3396 skb = skb->next)
3397
3398 #define skb_rbtree_walk(skb, root) \
3399 for (skb = skb_rb_first(root); skb != NULL; \
3400 skb = skb_rb_next(skb))
3401
3402 #define skb_rbtree_walk_from(skb) \
3403 for (; skb != NULL; \
3404 skb = skb_rb_next(skb))
3405
3406 #define skb_rbtree_walk_from_safe(skb, tmp) \
3407 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3408 skb = tmp)
3409
3410 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3411 for (tmp = skb->next; \
3412 skb != (struct sk_buff *)(queue); \
3413 skb = tmp, tmp = skb->next)
3414
3415 #define skb_queue_reverse_walk(queue, skb) \
3416 for (skb = (queue)->prev; \
3417 skb != (struct sk_buff *)(queue); \
3418 skb = skb->prev)
3419
3420 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3421 for (skb = (queue)->prev, tmp = skb->prev; \
3422 skb != (struct sk_buff *)(queue); \
3423 skb = tmp, tmp = skb->prev)
3424
3425 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3426 for (tmp = skb->prev; \
3427 skb != (struct sk_buff *)(queue); \
3428 skb = tmp, tmp = skb->prev)
3429
3430 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3431 {
3432 return skb_shinfo(skb)->frag_list != NULL;
3433 }
3434
3435 static inline void skb_frag_list_init(struct sk_buff *skb)
3436 {
3437 skb_shinfo(skb)->frag_list = NULL;
3438 }
3439
3440 #define skb_walk_frags(skb, iter) \
3441 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3442
3443
3444 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3445 const struct sk_buff *skb);
3446 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3447 struct sk_buff_head *queue,
3448 unsigned int flags,
3449 void (*destructor)(struct sock *sk,
3450 struct sk_buff *skb),
3451 int *off, int *err,
3452 struct sk_buff **last);
3453 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3454 void (*destructor)(struct sock *sk,
3455 struct sk_buff *skb),
3456 int *off, int *err,
3457 struct sk_buff **last);
3458 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3459 void (*destructor)(struct sock *sk,
3460 struct sk_buff *skb),
3461 int *off, int *err);
3462 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3463 int *err);
3464 __poll_t datagram_poll(struct file *file, struct socket *sock,
3465 struct poll_table_struct *wait);
3466 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3467 struct iov_iter *to, int size);
3468 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3469 struct msghdr *msg, int size)
3470 {
3471 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3472 }
3473 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3474 struct msghdr *msg);
3475 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3476 struct iov_iter *to, int len,
3477 struct ahash_request *hash);
3478 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3479 struct iov_iter *from, int len);
3480 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3481 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3482 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3483 static inline void skb_free_datagram_locked(struct sock *sk,
3484 struct sk_buff *skb)
3485 {
3486 __skb_free_datagram_locked(sk, skb, 0);
3487 }
3488 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3489 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3490 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3491 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3492 int len, __wsum csum);
3493 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3494 struct pipe_inode_info *pipe, unsigned int len,
3495 unsigned int flags);
3496 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3497 int len);
3498 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3499 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3500 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3501 int len, int hlen);
3502 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3503 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3504 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3505 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3506 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3507 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3508 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3509 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3510 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3511 int skb_vlan_pop(struct sk_buff *skb);
3512 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3513 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto);
3514 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto);
3515 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3516 int skb_mpls_dec_ttl(struct sk_buff *skb);
3517 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3518 gfp_t gfp);
3519
3520 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3521 {
3522 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3523 }
3524
3525 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3526 {
3527 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3528 }
3529
3530 struct skb_checksum_ops {
3531 __wsum (*update)(const void *mem, int len, __wsum wsum);
3532 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3533 };
3534
3535 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3536
3537 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3538 __wsum csum, const struct skb_checksum_ops *ops);
3539 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3540 __wsum csum);
3541
3542 static inline void * __must_check
3543 __skb_header_pointer(const struct sk_buff *skb, int offset,
3544 int len, void *data, int hlen, void *buffer)
3545 {
3546 if (hlen - offset >= len)
3547 return data + offset;
3548
3549 if (!skb ||
3550 skb_copy_bits(skb, offset, buffer, len) < 0)
3551 return NULL;
3552
3553 return buffer;
3554 }
3555
3556 static inline void * __must_check
3557 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3558 {
3559 return __skb_header_pointer(skb, offset, len, skb->data,
3560 skb_headlen(skb), buffer);
3561 }
3562
3563 /**
3564 * skb_needs_linearize - check if we need to linearize a given skb
3565 * depending on the given device features.
3566 * @skb: socket buffer to check
3567 * @features: net device features
3568 *
3569 * Returns true if either:
3570 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3571 * 2. skb is fragmented and the device does not support SG.
3572 */
3573 static inline bool skb_needs_linearize(struct sk_buff *skb,
3574 netdev_features_t features)
3575 {
3576 return skb_is_nonlinear(skb) &&
3577 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3578 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3579 }
3580
3581 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3582 void *to,
3583 const unsigned int len)
3584 {
3585 memcpy(to, skb->data, len);
3586 }
3587
3588 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3589 const int offset, void *to,
3590 const unsigned int len)
3591 {
3592 memcpy(to, skb->data + offset, len);
3593 }
3594
3595 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3596 const void *from,
3597 const unsigned int len)
3598 {
3599 memcpy(skb->data, from, len);
3600 }
3601
3602 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3603 const int offset,
3604 const void *from,
3605 const unsigned int len)
3606 {
3607 memcpy(skb->data + offset, from, len);
3608 }
3609
3610 void skb_init(void);
3611
3612 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3613 {
3614 return skb->tstamp;
3615 }
3616
3617 /**
3618 * skb_get_timestamp - get timestamp from a skb
3619 * @skb: skb to get stamp from
3620 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
3621 *
3622 * Timestamps are stored in the skb as offsets to a base timestamp.
3623 * This function converts the offset back to a struct timeval and stores
3624 * it in stamp.
3625 */
3626 static inline void skb_get_timestamp(const struct sk_buff *skb,
3627 struct __kernel_old_timeval *stamp)
3628 {
3629 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
3630 }
3631
3632 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3633 struct __kernel_sock_timeval *stamp)
3634 {
3635 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3636
3637 stamp->tv_sec = ts.tv_sec;
3638 stamp->tv_usec = ts.tv_nsec / 1000;
3639 }
3640
3641 static inline void skb_get_timestampns(const struct sk_buff *skb,
3642 struct timespec *stamp)
3643 {
3644 *stamp = ktime_to_timespec(skb->tstamp);
3645 }
3646
3647 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3648 struct __kernel_timespec *stamp)
3649 {
3650 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3651
3652 stamp->tv_sec = ts.tv_sec;
3653 stamp->tv_nsec = ts.tv_nsec;
3654 }
3655
3656 static inline void __net_timestamp(struct sk_buff *skb)
3657 {
3658 skb->tstamp = ktime_get_real();
3659 }
3660
3661 static inline ktime_t net_timedelta(ktime_t t)
3662 {
3663 return ktime_sub(ktime_get_real(), t);
3664 }
3665
3666 static inline ktime_t net_invalid_timestamp(void)
3667 {
3668 return 0;
3669 }
3670
3671 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3672 {
3673 return skb_shinfo(skb)->meta_len;
3674 }
3675
3676 static inline void *skb_metadata_end(const struct sk_buff *skb)
3677 {
3678 return skb_mac_header(skb);
3679 }
3680
3681 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3682 const struct sk_buff *skb_b,
3683 u8 meta_len)
3684 {
3685 const void *a = skb_metadata_end(skb_a);
3686 const void *b = skb_metadata_end(skb_b);
3687 /* Using more efficient varaiant than plain call to memcmp(). */
3688 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3689 u64 diffs = 0;
3690
3691 switch (meta_len) {
3692 #define __it(x, op) (x -= sizeof(u##op))
3693 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3694 case 32: diffs |= __it_diff(a, b, 64);
3695 /* fall through */
3696 case 24: diffs |= __it_diff(a, b, 64);
3697 /* fall through */
3698 case 16: diffs |= __it_diff(a, b, 64);
3699 /* fall through */
3700 case 8: diffs |= __it_diff(a, b, 64);
3701 break;
3702 case 28: diffs |= __it_diff(a, b, 64);
3703 /* fall through */
3704 case 20: diffs |= __it_diff(a, b, 64);
3705 /* fall through */
3706 case 12: diffs |= __it_diff(a, b, 64);
3707 /* fall through */
3708 case 4: diffs |= __it_diff(a, b, 32);
3709 break;
3710 }
3711 return diffs;
3712 #else
3713 return memcmp(a - meta_len, b - meta_len, meta_len);
3714 #endif
3715 }
3716
3717 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3718 const struct sk_buff *skb_b)
3719 {
3720 u8 len_a = skb_metadata_len(skb_a);
3721 u8 len_b = skb_metadata_len(skb_b);
3722
3723 if (!(len_a | len_b))
3724 return false;
3725
3726 return len_a != len_b ?
3727 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3728 }
3729
3730 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3731 {
3732 skb_shinfo(skb)->meta_len = meta_len;
3733 }
3734
3735 static inline void skb_metadata_clear(struct sk_buff *skb)
3736 {
3737 skb_metadata_set(skb, 0);
3738 }
3739
3740 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3741
3742 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3743
3744 void skb_clone_tx_timestamp(struct sk_buff *skb);
3745 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3746
3747 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3748
3749 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3750 {
3751 }
3752
3753 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3754 {
3755 return false;
3756 }
3757
3758 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3759
3760 /**
3761 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3762 *
3763 * PHY drivers may accept clones of transmitted packets for
3764 * timestamping via their phy_driver.txtstamp method. These drivers
3765 * must call this function to return the skb back to the stack with a
3766 * timestamp.
3767 *
3768 * @skb: clone of the the original outgoing packet
3769 * @hwtstamps: hardware time stamps
3770 *
3771 */
3772 void skb_complete_tx_timestamp(struct sk_buff *skb,
3773 struct skb_shared_hwtstamps *hwtstamps);
3774
3775 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3776 struct skb_shared_hwtstamps *hwtstamps,
3777 struct sock *sk, int tstype);
3778
3779 /**
3780 * skb_tstamp_tx - queue clone of skb with send time stamps
3781 * @orig_skb: the original outgoing packet
3782 * @hwtstamps: hardware time stamps, may be NULL if not available
3783 *
3784 * If the skb has a socket associated, then this function clones the
3785 * skb (thus sharing the actual data and optional structures), stores
3786 * the optional hardware time stamping information (if non NULL) or
3787 * generates a software time stamp (otherwise), then queues the clone
3788 * to the error queue of the socket. Errors are silently ignored.
3789 */
3790 void skb_tstamp_tx(struct sk_buff *orig_skb,
3791 struct skb_shared_hwtstamps *hwtstamps);
3792
3793 /**
3794 * skb_tx_timestamp() - Driver hook for transmit timestamping
3795 *
3796 * Ethernet MAC Drivers should call this function in their hard_xmit()
3797 * function immediately before giving the sk_buff to the MAC hardware.
3798 *
3799 * Specifically, one should make absolutely sure that this function is
3800 * called before TX completion of this packet can trigger. Otherwise
3801 * the packet could potentially already be freed.
3802 *
3803 * @skb: A socket buffer.
3804 */
3805 static inline void skb_tx_timestamp(struct sk_buff *skb)
3806 {
3807 skb_clone_tx_timestamp(skb);
3808 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3809 skb_tstamp_tx(skb, NULL);
3810 }
3811
3812 /**
3813 * skb_complete_wifi_ack - deliver skb with wifi status
3814 *
3815 * @skb: the original outgoing packet
3816 * @acked: ack status
3817 *
3818 */
3819 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3820
3821 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3822 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3823
3824 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3825 {
3826 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3827 skb->csum_valid ||
3828 (skb->ip_summed == CHECKSUM_PARTIAL &&
3829 skb_checksum_start_offset(skb) >= 0));
3830 }
3831
3832 /**
3833 * skb_checksum_complete - Calculate checksum of an entire packet
3834 * @skb: packet to process
3835 *
3836 * This function calculates the checksum over the entire packet plus
3837 * the value of skb->csum. The latter can be used to supply the
3838 * checksum of a pseudo header as used by TCP/UDP. It returns the
3839 * checksum.
3840 *
3841 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3842 * this function can be used to verify that checksum on received
3843 * packets. In that case the function should return zero if the
3844 * checksum is correct. In particular, this function will return zero
3845 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3846 * hardware has already verified the correctness of the checksum.
3847 */
3848 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3849 {
3850 return skb_csum_unnecessary(skb) ?
3851 0 : __skb_checksum_complete(skb);
3852 }
3853
3854 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3855 {
3856 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3857 if (skb->csum_level == 0)
3858 skb->ip_summed = CHECKSUM_NONE;
3859 else
3860 skb->csum_level--;
3861 }
3862 }
3863
3864 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3865 {
3866 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3867 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3868 skb->csum_level++;
3869 } else if (skb->ip_summed == CHECKSUM_NONE) {
3870 skb->ip_summed = CHECKSUM_UNNECESSARY;
3871 skb->csum_level = 0;
3872 }
3873 }
3874
3875 /* Check if we need to perform checksum complete validation.
3876 *
3877 * Returns true if checksum complete is needed, false otherwise
3878 * (either checksum is unnecessary or zero checksum is allowed).
3879 */
3880 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3881 bool zero_okay,
3882 __sum16 check)
3883 {
3884 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3885 skb->csum_valid = 1;
3886 __skb_decr_checksum_unnecessary(skb);
3887 return false;
3888 }
3889
3890 return true;
3891 }
3892
3893 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3894 * in checksum_init.
3895 */
3896 #define CHECKSUM_BREAK 76
3897
3898 /* Unset checksum-complete
3899 *
3900 * Unset checksum complete can be done when packet is being modified
3901 * (uncompressed for instance) and checksum-complete value is
3902 * invalidated.
3903 */
3904 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3905 {
3906 if (skb->ip_summed == CHECKSUM_COMPLETE)
3907 skb->ip_summed = CHECKSUM_NONE;
3908 }
3909
3910 /* Validate (init) checksum based on checksum complete.
3911 *
3912 * Return values:
3913 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3914 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3915 * checksum is stored in skb->csum for use in __skb_checksum_complete
3916 * non-zero: value of invalid checksum
3917 *
3918 */
3919 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3920 bool complete,
3921 __wsum psum)
3922 {
3923 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3924 if (!csum_fold(csum_add(psum, skb->csum))) {
3925 skb->csum_valid = 1;
3926 return 0;
3927 }
3928 }
3929
3930 skb->csum = psum;
3931
3932 if (complete || skb->len <= CHECKSUM_BREAK) {
3933 __sum16 csum;
3934
3935 csum = __skb_checksum_complete(skb);
3936 skb->csum_valid = !csum;
3937 return csum;
3938 }
3939
3940 return 0;
3941 }
3942
3943 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3944 {
3945 return 0;
3946 }
3947
3948 /* Perform checksum validate (init). Note that this is a macro since we only
3949 * want to calculate the pseudo header which is an input function if necessary.
3950 * First we try to validate without any computation (checksum unnecessary) and
3951 * then calculate based on checksum complete calling the function to compute
3952 * pseudo header.
3953 *
3954 * Return values:
3955 * 0: checksum is validated or try to in skb_checksum_complete
3956 * non-zero: value of invalid checksum
3957 */
3958 #define __skb_checksum_validate(skb, proto, complete, \
3959 zero_okay, check, compute_pseudo) \
3960 ({ \
3961 __sum16 __ret = 0; \
3962 skb->csum_valid = 0; \
3963 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3964 __ret = __skb_checksum_validate_complete(skb, \
3965 complete, compute_pseudo(skb, proto)); \
3966 __ret; \
3967 })
3968
3969 #define skb_checksum_init(skb, proto, compute_pseudo) \
3970 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3971
3972 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3973 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3974
3975 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3976 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3977
3978 #define skb_checksum_validate_zero_check(skb, proto, check, \
3979 compute_pseudo) \
3980 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3981
3982 #define skb_checksum_simple_validate(skb) \
3983 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3984
3985 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3986 {
3987 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3988 }
3989
3990 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
3991 {
3992 skb->csum = ~pseudo;
3993 skb->ip_summed = CHECKSUM_COMPLETE;
3994 }
3995
3996 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \
3997 do { \
3998 if (__skb_checksum_convert_check(skb)) \
3999 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4000 } while (0)
4001
4002 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4003 u16 start, u16 offset)
4004 {
4005 skb->ip_summed = CHECKSUM_PARTIAL;
4006 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4007 skb->csum_offset = offset - start;
4008 }
4009
4010 /* Update skbuf and packet to reflect the remote checksum offload operation.
4011 * When called, ptr indicates the starting point for skb->csum when
4012 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4013 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4014 */
4015 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4016 int start, int offset, bool nopartial)
4017 {
4018 __wsum delta;
4019
4020 if (!nopartial) {
4021 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4022 return;
4023 }
4024
4025 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4026 __skb_checksum_complete(skb);
4027 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4028 }
4029
4030 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4031
4032 /* Adjust skb->csum since we changed the packet */
4033 skb->csum = csum_add(skb->csum, delta);
4034 }
4035
4036 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4037 {
4038 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4039 return (void *)(skb->_nfct & NFCT_PTRMASK);
4040 #else
4041 return NULL;
4042 #endif
4043 }
4044
4045 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4046 {
4047 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4048 return skb->_nfct;
4049 #else
4050 return 0UL;
4051 #endif
4052 }
4053
4054 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4055 {
4056 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4057 skb->_nfct = nfct;
4058 #endif
4059 }
4060
4061 #ifdef CONFIG_SKB_EXTENSIONS
4062 enum skb_ext_id {
4063 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4064 SKB_EXT_BRIDGE_NF,
4065 #endif
4066 #ifdef CONFIG_XFRM
4067 SKB_EXT_SEC_PATH,
4068 #endif
4069 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4070 TC_SKB_EXT,
4071 #endif
4072 SKB_EXT_NUM, /* must be last */
4073 };
4074
4075 /**
4076 * struct skb_ext - sk_buff extensions
4077 * @refcnt: 1 on allocation, deallocated on 0
4078 * @offset: offset to add to @data to obtain extension address
4079 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4080 * @data: start of extension data, variable sized
4081 *
4082 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4083 * to use 'u8' types while allowing up to 2kb worth of extension data.
4084 */
4085 struct skb_ext {
4086 refcount_t refcnt;
4087 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4088 u8 chunks; /* same */
4089 char data[0] __aligned(8);
4090 };
4091
4092 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4093 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4094 void __skb_ext_put(struct skb_ext *ext);
4095
4096 static inline void skb_ext_put(struct sk_buff *skb)
4097 {
4098 if (skb->active_extensions)
4099 __skb_ext_put(skb->extensions);
4100 }
4101
4102 static inline void __skb_ext_copy(struct sk_buff *dst,
4103 const struct sk_buff *src)
4104 {
4105 dst->active_extensions = src->active_extensions;
4106
4107 if (src->active_extensions) {
4108 struct skb_ext *ext = src->extensions;
4109
4110 refcount_inc(&ext->refcnt);
4111 dst->extensions = ext;
4112 }
4113 }
4114
4115 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4116 {
4117 skb_ext_put(dst);
4118 __skb_ext_copy(dst, src);
4119 }
4120
4121 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4122 {
4123 return !!ext->offset[i];
4124 }
4125
4126 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4127 {
4128 return skb->active_extensions & (1 << id);
4129 }
4130
4131 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4132 {
4133 if (skb_ext_exist(skb, id))
4134 __skb_ext_del(skb, id);
4135 }
4136
4137 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4138 {
4139 if (skb_ext_exist(skb, id)) {
4140 struct skb_ext *ext = skb->extensions;
4141
4142 return (void *)ext + (ext->offset[id] << 3);
4143 }
4144
4145 return NULL;
4146 }
4147
4148 static inline void skb_ext_reset(struct sk_buff *skb)
4149 {
4150 if (unlikely(skb->active_extensions)) {
4151 __skb_ext_put(skb->extensions);
4152 skb->active_extensions = 0;
4153 }
4154 }
4155 #else
4156 static inline void skb_ext_put(struct sk_buff *skb) {}
4157 static inline void skb_ext_reset(struct sk_buff *skb) {}
4158 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4159 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4160 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4161 #endif /* CONFIG_SKB_EXTENSIONS */
4162
4163 static inline void nf_reset_ct(struct sk_buff *skb)
4164 {
4165 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4166 nf_conntrack_put(skb_nfct(skb));
4167 skb->_nfct = 0;
4168 #endif
4169 }
4170
4171 static inline void nf_reset_trace(struct sk_buff *skb)
4172 {
4173 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4174 skb->nf_trace = 0;
4175 #endif
4176 }
4177
4178 static inline void ipvs_reset(struct sk_buff *skb)
4179 {
4180 #if IS_ENABLED(CONFIG_IP_VS)
4181 skb->ipvs_property = 0;
4182 #endif
4183 }
4184
4185 /* Note: This doesn't put any conntrack info in dst. */
4186 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4187 bool copy)
4188 {
4189 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4190 dst->_nfct = src->_nfct;
4191 nf_conntrack_get(skb_nfct(src));
4192 #endif
4193 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4194 if (copy)
4195 dst->nf_trace = src->nf_trace;
4196 #endif
4197 }
4198
4199 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4200 {
4201 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4202 nf_conntrack_put(skb_nfct(dst));
4203 #endif
4204 __nf_copy(dst, src, true);
4205 }
4206
4207 #ifdef CONFIG_NETWORK_SECMARK
4208 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4209 {
4210 to->secmark = from->secmark;
4211 }
4212
4213 static inline void skb_init_secmark(struct sk_buff *skb)
4214 {
4215 skb->secmark = 0;
4216 }
4217 #else
4218 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4219 { }
4220
4221 static inline void skb_init_secmark(struct sk_buff *skb)
4222 { }
4223 #endif
4224
4225 static inline int secpath_exists(const struct sk_buff *skb)
4226 {
4227 #ifdef CONFIG_XFRM
4228 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4229 #else
4230 return 0;
4231 #endif
4232 }
4233
4234 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4235 {
4236 return !skb->destructor &&
4237 !secpath_exists(skb) &&
4238 !skb_nfct(skb) &&
4239 !skb->_skb_refdst &&
4240 !skb_has_frag_list(skb);
4241 }
4242
4243 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4244 {
4245 skb->queue_mapping = queue_mapping;
4246 }
4247
4248 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4249 {
4250 return skb->queue_mapping;
4251 }
4252
4253 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4254 {
4255 to->queue_mapping = from->queue_mapping;
4256 }
4257
4258 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4259 {
4260 skb->queue_mapping = rx_queue + 1;
4261 }
4262
4263 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4264 {
4265 return skb->queue_mapping - 1;
4266 }
4267
4268 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4269 {
4270 return skb->queue_mapping != 0;
4271 }
4272
4273 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4274 {
4275 skb->dst_pending_confirm = val;
4276 }
4277
4278 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4279 {
4280 return skb->dst_pending_confirm != 0;
4281 }
4282
4283 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4284 {
4285 #ifdef CONFIG_XFRM
4286 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4287 #else
4288 return NULL;
4289 #endif
4290 }
4291
4292 /* Keeps track of mac header offset relative to skb->head.
4293 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4294 * For non-tunnel skb it points to skb_mac_header() and for
4295 * tunnel skb it points to outer mac header.
4296 * Keeps track of level of encapsulation of network headers.
4297 */
4298 struct skb_gso_cb {
4299 union {
4300 int mac_offset;
4301 int data_offset;
4302 };
4303 int encap_level;
4304 __wsum csum;
4305 __u16 csum_start;
4306 };
4307 #define SKB_SGO_CB_OFFSET 32
4308 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4309
4310 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4311 {
4312 return (skb_mac_header(inner_skb) - inner_skb->head) -
4313 SKB_GSO_CB(inner_skb)->mac_offset;
4314 }
4315
4316 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4317 {
4318 int new_headroom, headroom;
4319 int ret;
4320
4321 headroom = skb_headroom(skb);
4322 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4323 if (ret)
4324 return ret;
4325
4326 new_headroom = skb_headroom(skb);
4327 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4328 return 0;
4329 }
4330
4331 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4332 {
4333 /* Do not update partial checksums if remote checksum is enabled. */
4334 if (skb->remcsum_offload)
4335 return;
4336
4337 SKB_GSO_CB(skb)->csum = res;
4338 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4339 }
4340
4341 /* Compute the checksum for a gso segment. First compute the checksum value
4342 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4343 * then add in skb->csum (checksum from csum_start to end of packet).
4344 * skb->csum and csum_start are then updated to reflect the checksum of the
4345 * resultant packet starting from the transport header-- the resultant checksum
4346 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4347 * header.
4348 */
4349 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4350 {
4351 unsigned char *csum_start = skb_transport_header(skb);
4352 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4353 __wsum partial = SKB_GSO_CB(skb)->csum;
4354
4355 SKB_GSO_CB(skb)->csum = res;
4356 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4357
4358 return csum_fold(csum_partial(csum_start, plen, partial));
4359 }
4360
4361 static inline bool skb_is_gso(const struct sk_buff *skb)
4362 {
4363 return skb_shinfo(skb)->gso_size;
4364 }
4365
4366 /* Note: Should be called only if skb_is_gso(skb) is true */
4367 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4368 {
4369 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4370 }
4371
4372 /* Note: Should be called only if skb_is_gso(skb) is true */
4373 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4374 {
4375 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4376 }
4377
4378 /* Note: Should be called only if skb_is_gso(skb) is true */
4379 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4380 {
4381 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4382 }
4383
4384 static inline void skb_gso_reset(struct sk_buff *skb)
4385 {
4386 skb_shinfo(skb)->gso_size = 0;
4387 skb_shinfo(skb)->gso_segs = 0;
4388 skb_shinfo(skb)->gso_type = 0;
4389 }
4390
4391 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4392 u16 increment)
4393 {
4394 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4395 return;
4396 shinfo->gso_size += increment;
4397 }
4398
4399 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4400 u16 decrement)
4401 {
4402 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4403 return;
4404 shinfo->gso_size -= decrement;
4405 }
4406
4407 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4408
4409 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4410 {
4411 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4412 * wanted then gso_type will be set. */
4413 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4414
4415 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4416 unlikely(shinfo->gso_type == 0)) {
4417 __skb_warn_lro_forwarding(skb);
4418 return true;
4419 }
4420 return false;
4421 }
4422
4423 static inline void skb_forward_csum(struct sk_buff *skb)
4424 {
4425 /* Unfortunately we don't support this one. Any brave souls? */
4426 if (skb->ip_summed == CHECKSUM_COMPLETE)
4427 skb->ip_summed = CHECKSUM_NONE;
4428 }
4429
4430 /**
4431 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4432 * @skb: skb to check
4433 *
4434 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4435 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4436 * use this helper, to document places where we make this assertion.
4437 */
4438 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4439 {
4440 #ifdef DEBUG
4441 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4442 #endif
4443 }
4444
4445 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4446
4447 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4448 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4449 unsigned int transport_len,
4450 __sum16(*skb_chkf)(struct sk_buff *skb));
4451
4452 /**
4453 * skb_head_is_locked - Determine if the skb->head is locked down
4454 * @skb: skb to check
4455 *
4456 * The head on skbs build around a head frag can be removed if they are
4457 * not cloned. This function returns true if the skb head is locked down
4458 * due to either being allocated via kmalloc, or by being a clone with
4459 * multiple references to the head.
4460 */
4461 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4462 {
4463 return !skb->head_frag || skb_cloned(skb);
4464 }
4465
4466 /* Local Checksum Offload.
4467 * Compute outer checksum based on the assumption that the
4468 * inner checksum will be offloaded later.
4469 * See Documentation/networking/checksum-offloads.rst for
4470 * explanation of how this works.
4471 * Fill in outer checksum adjustment (e.g. with sum of outer
4472 * pseudo-header) before calling.
4473 * Also ensure that inner checksum is in linear data area.
4474 */
4475 static inline __wsum lco_csum(struct sk_buff *skb)
4476 {
4477 unsigned char *csum_start = skb_checksum_start(skb);
4478 unsigned char *l4_hdr = skb_transport_header(skb);
4479 __wsum partial;
4480
4481 /* Start with complement of inner checksum adjustment */
4482 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4483 skb->csum_offset));
4484
4485 /* Add in checksum of our headers (incl. outer checksum
4486 * adjustment filled in by caller) and return result.
4487 */
4488 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4489 }
4490
4491 #endif /* __KERNEL__ */
4492 #endif /* _LINUX_SKBUFF_H */