sh_eth: check sh_eth_cpu_data::cexcr when dumping registers
[openwrt/staging/blogic.git] / drivers / net / ethernet / renesas / sh_eth.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* SuperH Ethernet device driver
3 *
4 * Copyright (C) 2014 Renesas Electronics Corporation
5 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
6 * Copyright (C) 2008-2014 Renesas Solutions Corp.
7 * Copyright (C) 2013-2017 Cogent Embedded, Inc.
8 * Copyright (C) 2014 Codethink Limited
9 */
10
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/etherdevice.h>
17 #include <linux/delay.h>
18 #include <linux/platform_device.h>
19 #include <linux/mdio-bitbang.h>
20 #include <linux/netdevice.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_net.h>
25 #include <linux/phy.h>
26 #include <linux/cache.h>
27 #include <linux/io.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/ethtool.h>
31 #include <linux/if_vlan.h>
32 #include <linux/sh_eth.h>
33 #include <linux/of_mdio.h>
34
35 #include "sh_eth.h"
36
37 #define SH_ETH_DEF_MSG_ENABLE \
38 (NETIF_MSG_LINK | \
39 NETIF_MSG_TIMER | \
40 NETIF_MSG_RX_ERR| \
41 NETIF_MSG_TX_ERR)
42
43 #define SH_ETH_OFFSET_INVALID ((u16)~0)
44
45 #define SH_ETH_OFFSET_DEFAULTS \
46 [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
47
48 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
49 SH_ETH_OFFSET_DEFAULTS,
50
51 [EDSR] = 0x0000,
52 [EDMR] = 0x0400,
53 [EDTRR] = 0x0408,
54 [EDRRR] = 0x0410,
55 [EESR] = 0x0428,
56 [EESIPR] = 0x0430,
57 [TDLAR] = 0x0010,
58 [TDFAR] = 0x0014,
59 [TDFXR] = 0x0018,
60 [TDFFR] = 0x001c,
61 [RDLAR] = 0x0030,
62 [RDFAR] = 0x0034,
63 [RDFXR] = 0x0038,
64 [RDFFR] = 0x003c,
65 [TRSCER] = 0x0438,
66 [RMFCR] = 0x0440,
67 [TFTR] = 0x0448,
68 [FDR] = 0x0450,
69 [RMCR] = 0x0458,
70 [RPADIR] = 0x0460,
71 [FCFTR] = 0x0468,
72 [CSMR] = 0x04E4,
73
74 [ECMR] = 0x0500,
75 [ECSR] = 0x0510,
76 [ECSIPR] = 0x0518,
77 [PIR] = 0x0520,
78 [PSR] = 0x0528,
79 [PIPR] = 0x052c,
80 [RFLR] = 0x0508,
81 [APR] = 0x0554,
82 [MPR] = 0x0558,
83 [PFTCR] = 0x055c,
84 [PFRCR] = 0x0560,
85 [TPAUSER] = 0x0564,
86 [GECMR] = 0x05b0,
87 [BCULR] = 0x05b4,
88 [MAHR] = 0x05c0,
89 [MALR] = 0x05c8,
90 [TROCR] = 0x0700,
91 [CDCR] = 0x0708,
92 [LCCR] = 0x0710,
93 [CEFCR] = 0x0740,
94 [FRECR] = 0x0748,
95 [TSFRCR] = 0x0750,
96 [TLFRCR] = 0x0758,
97 [RFCR] = 0x0760,
98 [CERCR] = 0x0768,
99 [CEECR] = 0x0770,
100 [MAFCR] = 0x0778,
101 [RMII_MII] = 0x0790,
102
103 [ARSTR] = 0x0000,
104 [TSU_CTRST] = 0x0004,
105 [TSU_FWEN0] = 0x0010,
106 [TSU_FWEN1] = 0x0014,
107 [TSU_FCM] = 0x0018,
108 [TSU_BSYSL0] = 0x0020,
109 [TSU_BSYSL1] = 0x0024,
110 [TSU_PRISL0] = 0x0028,
111 [TSU_PRISL1] = 0x002c,
112 [TSU_FWSL0] = 0x0030,
113 [TSU_FWSL1] = 0x0034,
114 [TSU_FWSLC] = 0x0038,
115 [TSU_QTAGM0] = 0x0040,
116 [TSU_QTAGM1] = 0x0044,
117 [TSU_FWSR] = 0x0050,
118 [TSU_FWINMK] = 0x0054,
119 [TSU_ADQT0] = 0x0048,
120 [TSU_ADQT1] = 0x004c,
121 [TSU_VTAG0] = 0x0058,
122 [TSU_VTAG1] = 0x005c,
123 [TSU_ADSBSY] = 0x0060,
124 [TSU_TEN] = 0x0064,
125 [TSU_POST1] = 0x0070,
126 [TSU_POST2] = 0x0074,
127 [TSU_POST3] = 0x0078,
128 [TSU_POST4] = 0x007c,
129 [TSU_ADRH0] = 0x0100,
130
131 [TXNLCR0] = 0x0080,
132 [TXALCR0] = 0x0084,
133 [RXNLCR0] = 0x0088,
134 [RXALCR0] = 0x008c,
135 [FWNLCR0] = 0x0090,
136 [FWALCR0] = 0x0094,
137 [TXNLCR1] = 0x00a0,
138 [TXALCR1] = 0x00a4,
139 [RXNLCR1] = 0x00a8,
140 [RXALCR1] = 0x00ac,
141 [FWNLCR1] = 0x00b0,
142 [FWALCR1] = 0x00b4,
143 };
144
145 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
146 SH_ETH_OFFSET_DEFAULTS,
147
148 [EDSR] = 0x0000,
149 [EDMR] = 0x0400,
150 [EDTRR] = 0x0408,
151 [EDRRR] = 0x0410,
152 [EESR] = 0x0428,
153 [EESIPR] = 0x0430,
154 [TDLAR] = 0x0010,
155 [TDFAR] = 0x0014,
156 [TDFXR] = 0x0018,
157 [TDFFR] = 0x001c,
158 [RDLAR] = 0x0030,
159 [RDFAR] = 0x0034,
160 [RDFXR] = 0x0038,
161 [RDFFR] = 0x003c,
162 [TRSCER] = 0x0438,
163 [RMFCR] = 0x0440,
164 [TFTR] = 0x0448,
165 [FDR] = 0x0450,
166 [RMCR] = 0x0458,
167 [RPADIR] = 0x0460,
168 [FCFTR] = 0x0468,
169 [CSMR] = 0x04E4,
170
171 [ECMR] = 0x0500,
172 [RFLR] = 0x0508,
173 [ECSR] = 0x0510,
174 [ECSIPR] = 0x0518,
175 [PIR] = 0x0520,
176 [APR] = 0x0554,
177 [MPR] = 0x0558,
178 [PFTCR] = 0x055c,
179 [PFRCR] = 0x0560,
180 [TPAUSER] = 0x0564,
181 [MAHR] = 0x05c0,
182 [MALR] = 0x05c8,
183 [CEFCR] = 0x0740,
184 [FRECR] = 0x0748,
185 [TSFRCR] = 0x0750,
186 [TLFRCR] = 0x0758,
187 [RFCR] = 0x0760,
188 [MAFCR] = 0x0778,
189
190 [ARSTR] = 0x0000,
191 [TSU_CTRST] = 0x0004,
192 [TSU_FWSLC] = 0x0038,
193 [TSU_VTAG0] = 0x0058,
194 [TSU_ADSBSY] = 0x0060,
195 [TSU_TEN] = 0x0064,
196 [TSU_POST1] = 0x0070,
197 [TSU_POST2] = 0x0074,
198 [TSU_POST3] = 0x0078,
199 [TSU_POST4] = 0x007c,
200 [TSU_ADRH0] = 0x0100,
201
202 [TXNLCR0] = 0x0080,
203 [TXALCR0] = 0x0084,
204 [RXNLCR0] = 0x0088,
205 [RXALCR0] = 0x008C,
206 };
207
208 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
209 SH_ETH_OFFSET_DEFAULTS,
210
211 [ECMR] = 0x0300,
212 [RFLR] = 0x0308,
213 [ECSR] = 0x0310,
214 [ECSIPR] = 0x0318,
215 [PIR] = 0x0320,
216 [PSR] = 0x0328,
217 [RDMLR] = 0x0340,
218 [IPGR] = 0x0350,
219 [APR] = 0x0354,
220 [MPR] = 0x0358,
221 [RFCF] = 0x0360,
222 [TPAUSER] = 0x0364,
223 [TPAUSECR] = 0x0368,
224 [MAHR] = 0x03c0,
225 [MALR] = 0x03c8,
226 [TROCR] = 0x03d0,
227 [CDCR] = 0x03d4,
228 [LCCR] = 0x03d8,
229 [CNDCR] = 0x03dc,
230 [CEFCR] = 0x03e4,
231 [FRECR] = 0x03e8,
232 [TSFRCR] = 0x03ec,
233 [TLFRCR] = 0x03f0,
234 [RFCR] = 0x03f4,
235 [MAFCR] = 0x03f8,
236
237 [EDMR] = 0x0200,
238 [EDTRR] = 0x0208,
239 [EDRRR] = 0x0210,
240 [TDLAR] = 0x0218,
241 [RDLAR] = 0x0220,
242 [EESR] = 0x0228,
243 [EESIPR] = 0x0230,
244 [TRSCER] = 0x0238,
245 [RMFCR] = 0x0240,
246 [TFTR] = 0x0248,
247 [FDR] = 0x0250,
248 [RMCR] = 0x0258,
249 [TFUCR] = 0x0264,
250 [RFOCR] = 0x0268,
251 [RMIIMODE] = 0x026c,
252 [FCFTR] = 0x0270,
253 [TRIMD] = 0x027c,
254 };
255
256 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
257 SH_ETH_OFFSET_DEFAULTS,
258
259 [ECMR] = 0x0100,
260 [RFLR] = 0x0108,
261 [ECSR] = 0x0110,
262 [ECSIPR] = 0x0118,
263 [PIR] = 0x0120,
264 [PSR] = 0x0128,
265 [RDMLR] = 0x0140,
266 [IPGR] = 0x0150,
267 [APR] = 0x0154,
268 [MPR] = 0x0158,
269 [TPAUSER] = 0x0164,
270 [RFCF] = 0x0160,
271 [TPAUSECR] = 0x0168,
272 [BCFRR] = 0x016c,
273 [MAHR] = 0x01c0,
274 [MALR] = 0x01c8,
275 [TROCR] = 0x01d0,
276 [CDCR] = 0x01d4,
277 [LCCR] = 0x01d8,
278 [CNDCR] = 0x01dc,
279 [CEFCR] = 0x01e4,
280 [FRECR] = 0x01e8,
281 [TSFRCR] = 0x01ec,
282 [TLFRCR] = 0x01f0,
283 [RFCR] = 0x01f4,
284 [MAFCR] = 0x01f8,
285 [RTRATE] = 0x01fc,
286
287 [EDMR] = 0x0000,
288 [EDTRR] = 0x0008,
289 [EDRRR] = 0x0010,
290 [TDLAR] = 0x0018,
291 [RDLAR] = 0x0020,
292 [EESR] = 0x0028,
293 [EESIPR] = 0x0030,
294 [TRSCER] = 0x0038,
295 [RMFCR] = 0x0040,
296 [TFTR] = 0x0048,
297 [FDR] = 0x0050,
298 [RMCR] = 0x0058,
299 [TFUCR] = 0x0064,
300 [RFOCR] = 0x0068,
301 [FCFTR] = 0x0070,
302 [RPADIR] = 0x0078,
303 [TRIMD] = 0x007c,
304 [RBWAR] = 0x00c8,
305 [RDFAR] = 0x00cc,
306 [TBRAR] = 0x00d4,
307 [TDFAR] = 0x00d8,
308 };
309
310 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
311 SH_ETH_OFFSET_DEFAULTS,
312
313 [EDMR] = 0x0000,
314 [EDTRR] = 0x0004,
315 [EDRRR] = 0x0008,
316 [TDLAR] = 0x000c,
317 [RDLAR] = 0x0010,
318 [EESR] = 0x0014,
319 [EESIPR] = 0x0018,
320 [TRSCER] = 0x001c,
321 [RMFCR] = 0x0020,
322 [TFTR] = 0x0024,
323 [FDR] = 0x0028,
324 [RMCR] = 0x002c,
325 [EDOCR] = 0x0030,
326 [FCFTR] = 0x0034,
327 [RPADIR] = 0x0038,
328 [TRIMD] = 0x003c,
329 [RBWAR] = 0x0040,
330 [RDFAR] = 0x0044,
331 [TBRAR] = 0x004c,
332 [TDFAR] = 0x0050,
333
334 [ECMR] = 0x0160,
335 [ECSR] = 0x0164,
336 [ECSIPR] = 0x0168,
337 [PIR] = 0x016c,
338 [MAHR] = 0x0170,
339 [MALR] = 0x0174,
340 [RFLR] = 0x0178,
341 [PSR] = 0x017c,
342 [TROCR] = 0x0180,
343 [CDCR] = 0x0184,
344 [LCCR] = 0x0188,
345 [CNDCR] = 0x018c,
346 [CEFCR] = 0x0194,
347 [FRECR] = 0x0198,
348 [TSFRCR] = 0x019c,
349 [TLFRCR] = 0x01a0,
350 [RFCR] = 0x01a4,
351 [MAFCR] = 0x01a8,
352 [IPGR] = 0x01b4,
353 [APR] = 0x01b8,
354 [MPR] = 0x01bc,
355 [TPAUSER] = 0x01c4,
356 [BCFR] = 0x01cc,
357
358 [ARSTR] = 0x0000,
359 [TSU_CTRST] = 0x0004,
360 [TSU_FWEN0] = 0x0010,
361 [TSU_FWEN1] = 0x0014,
362 [TSU_FCM] = 0x0018,
363 [TSU_BSYSL0] = 0x0020,
364 [TSU_BSYSL1] = 0x0024,
365 [TSU_PRISL0] = 0x0028,
366 [TSU_PRISL1] = 0x002c,
367 [TSU_FWSL0] = 0x0030,
368 [TSU_FWSL1] = 0x0034,
369 [TSU_FWSLC] = 0x0038,
370 [TSU_QTAGM0] = 0x0040,
371 [TSU_QTAGM1] = 0x0044,
372 [TSU_ADQT0] = 0x0048,
373 [TSU_ADQT1] = 0x004c,
374 [TSU_FWSR] = 0x0050,
375 [TSU_FWINMK] = 0x0054,
376 [TSU_ADSBSY] = 0x0060,
377 [TSU_TEN] = 0x0064,
378 [TSU_POST1] = 0x0070,
379 [TSU_POST2] = 0x0074,
380 [TSU_POST3] = 0x0078,
381 [TSU_POST4] = 0x007c,
382
383 [TXNLCR0] = 0x0080,
384 [TXALCR0] = 0x0084,
385 [RXNLCR0] = 0x0088,
386 [RXALCR0] = 0x008c,
387 [FWNLCR0] = 0x0090,
388 [FWALCR0] = 0x0094,
389 [TXNLCR1] = 0x00a0,
390 [TXALCR1] = 0x00a4,
391 [RXNLCR1] = 0x00a8,
392 [RXALCR1] = 0x00ac,
393 [FWNLCR1] = 0x00b0,
394 [FWALCR1] = 0x00b4,
395
396 [TSU_ADRH0] = 0x0100,
397 };
398
399 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
400 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
401
402 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
403 {
404 struct sh_eth_private *mdp = netdev_priv(ndev);
405 u16 offset = mdp->reg_offset[enum_index];
406
407 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
408 return;
409
410 iowrite32(data, mdp->addr + offset);
411 }
412
413 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
414 {
415 struct sh_eth_private *mdp = netdev_priv(ndev);
416 u16 offset = mdp->reg_offset[enum_index];
417
418 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
419 return ~0U;
420
421 return ioread32(mdp->addr + offset);
422 }
423
424 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
425 u32 set)
426 {
427 sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
428 enum_index);
429 }
430
431 static u16 sh_eth_tsu_get_offset(struct sh_eth_private *mdp, int enum_index)
432 {
433 return mdp->reg_offset[enum_index];
434 }
435
436 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
437 int enum_index)
438 {
439 u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
440
441 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
442 return;
443
444 iowrite32(data, mdp->tsu_addr + offset);
445 }
446
447 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
448 {
449 u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
450
451 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
452 return ~0U;
453
454 return ioread32(mdp->tsu_addr + offset);
455 }
456
457 static void sh_eth_soft_swap(char *src, int len)
458 {
459 #ifdef __LITTLE_ENDIAN
460 u32 *p = (u32 *)src;
461 u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32));
462
463 for (; p < maxp; p++)
464 *p = swab32(*p);
465 #endif
466 }
467
468 static void sh_eth_select_mii(struct net_device *ndev)
469 {
470 struct sh_eth_private *mdp = netdev_priv(ndev);
471 u32 value;
472
473 switch (mdp->phy_interface) {
474 case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID:
475 value = 0x3;
476 break;
477 case PHY_INTERFACE_MODE_GMII:
478 value = 0x2;
479 break;
480 case PHY_INTERFACE_MODE_MII:
481 value = 0x1;
482 break;
483 case PHY_INTERFACE_MODE_RMII:
484 value = 0x0;
485 break;
486 default:
487 netdev_warn(ndev,
488 "PHY interface mode was not setup. Set to MII.\n");
489 value = 0x1;
490 break;
491 }
492
493 sh_eth_write(ndev, value, RMII_MII);
494 }
495
496 static void sh_eth_set_duplex(struct net_device *ndev)
497 {
498 struct sh_eth_private *mdp = netdev_priv(ndev);
499
500 sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
501 }
502
503 static void sh_eth_chip_reset(struct net_device *ndev)
504 {
505 struct sh_eth_private *mdp = netdev_priv(ndev);
506
507 /* reset device */
508 sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
509 mdelay(1);
510 }
511
512 static int sh_eth_soft_reset(struct net_device *ndev)
513 {
514 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
515 mdelay(3);
516 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
517
518 return 0;
519 }
520
521 static int sh_eth_check_soft_reset(struct net_device *ndev)
522 {
523 int cnt;
524
525 for (cnt = 100; cnt > 0; cnt--) {
526 if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
527 return 0;
528 mdelay(1);
529 }
530
531 netdev_err(ndev, "Device reset failed\n");
532 return -ETIMEDOUT;
533 }
534
535 static int sh_eth_soft_reset_gether(struct net_device *ndev)
536 {
537 struct sh_eth_private *mdp = netdev_priv(ndev);
538 int ret;
539
540 sh_eth_write(ndev, EDSR_ENALL, EDSR);
541 sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
542
543 ret = sh_eth_check_soft_reset(ndev);
544 if (ret)
545 return ret;
546
547 /* Table Init */
548 sh_eth_write(ndev, 0, TDLAR);
549 sh_eth_write(ndev, 0, TDFAR);
550 sh_eth_write(ndev, 0, TDFXR);
551 sh_eth_write(ndev, 0, TDFFR);
552 sh_eth_write(ndev, 0, RDLAR);
553 sh_eth_write(ndev, 0, RDFAR);
554 sh_eth_write(ndev, 0, RDFXR);
555 sh_eth_write(ndev, 0, RDFFR);
556
557 /* Reset HW CRC register */
558 if (mdp->cd->csmr)
559 sh_eth_write(ndev, 0, CSMR);
560
561 /* Select MII mode */
562 if (mdp->cd->select_mii)
563 sh_eth_select_mii(ndev);
564
565 return ret;
566 }
567
568 static void sh_eth_set_rate_gether(struct net_device *ndev)
569 {
570 struct sh_eth_private *mdp = netdev_priv(ndev);
571
572 switch (mdp->speed) {
573 case 10: /* 10BASE */
574 sh_eth_write(ndev, GECMR_10, GECMR);
575 break;
576 case 100:/* 100BASE */
577 sh_eth_write(ndev, GECMR_100, GECMR);
578 break;
579 case 1000: /* 1000BASE */
580 sh_eth_write(ndev, GECMR_1000, GECMR);
581 break;
582 }
583 }
584
585 #ifdef CONFIG_OF
586 /* R7S72100 */
587 static struct sh_eth_cpu_data r7s72100_data = {
588 .soft_reset = sh_eth_soft_reset_gether,
589
590 .chip_reset = sh_eth_chip_reset,
591 .set_duplex = sh_eth_set_duplex,
592
593 .register_type = SH_ETH_REG_FAST_RZ,
594
595 .edtrr_trns = EDTRR_TRNS_GETHER,
596 .ecsr_value = ECSR_ICD,
597 .ecsipr_value = ECSIPR_ICDIP,
598 .eesipr_value = EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
599 EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
600 EESIPR_ECIIP |
601 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
602 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
603 EESIPR_RMAFIP | EESIPR_RRFIP |
604 EESIPR_RTLFIP | EESIPR_RTSFIP |
605 EESIPR_PREIP | EESIPR_CERFIP,
606
607 .tx_check = EESR_TC1 | EESR_FTC,
608 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
609 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
610 EESR_TDE,
611 .fdr_value = 0x0000070f,
612
613 .no_psr = 1,
614 .apr = 1,
615 .mpr = 1,
616 .tpauser = 1,
617 .hw_swap = 1,
618 .rpadir = 1,
619 .no_trimd = 1,
620 .no_ade = 1,
621 .xdfar_rw = 1,
622 .csmr = 1,
623 .rx_csum = 1,
624 .tsu = 1,
625 .no_tx_cntrs = 1,
626 };
627
628 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
629 {
630 sh_eth_chip_reset(ndev);
631
632 sh_eth_select_mii(ndev);
633 }
634
635 /* R8A7740 */
636 static struct sh_eth_cpu_data r8a7740_data = {
637 .soft_reset = sh_eth_soft_reset_gether,
638
639 .chip_reset = sh_eth_chip_reset_r8a7740,
640 .set_duplex = sh_eth_set_duplex,
641 .set_rate = sh_eth_set_rate_gether,
642
643 .register_type = SH_ETH_REG_GIGABIT,
644
645 .edtrr_trns = EDTRR_TRNS_GETHER,
646 .ecsr_value = ECSR_ICD | ECSR_MPD,
647 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
648 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
649 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
650 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
651 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
652 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
653 EESIPR_CEEFIP | EESIPR_CELFIP |
654 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
655 EESIPR_PREIP | EESIPR_CERFIP,
656
657 .tx_check = EESR_TC1 | EESR_FTC,
658 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
659 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
660 EESR_TDE,
661 .fdr_value = 0x0000070f,
662
663 .apr = 1,
664 .mpr = 1,
665 .tpauser = 1,
666 .bculr = 1,
667 .hw_swap = 1,
668 .rpadir = 1,
669 .no_trimd = 1,
670 .no_ade = 1,
671 .xdfar_rw = 1,
672 .csmr = 1,
673 .rx_csum = 1,
674 .tsu = 1,
675 .select_mii = 1,
676 .magic = 1,
677 .cexcr = 1,
678 };
679
680 /* There is CPU dependent code */
681 static void sh_eth_set_rate_rcar(struct net_device *ndev)
682 {
683 struct sh_eth_private *mdp = netdev_priv(ndev);
684
685 switch (mdp->speed) {
686 case 10: /* 10BASE */
687 sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
688 break;
689 case 100:/* 100BASE */
690 sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
691 break;
692 }
693 }
694
695 /* R-Car Gen1 */
696 static struct sh_eth_cpu_data rcar_gen1_data = {
697 .soft_reset = sh_eth_soft_reset,
698
699 .set_duplex = sh_eth_set_duplex,
700 .set_rate = sh_eth_set_rate_rcar,
701
702 .register_type = SH_ETH_REG_FAST_RCAR,
703
704 .edtrr_trns = EDTRR_TRNS_ETHER,
705 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
706 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
707 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
708 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
709 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
710 EESIPR_RMAFIP | EESIPR_RRFIP |
711 EESIPR_RTLFIP | EESIPR_RTSFIP |
712 EESIPR_PREIP | EESIPR_CERFIP,
713
714 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
715 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
716 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
717 .fdr_value = 0x00000f0f,
718
719 .apr = 1,
720 .mpr = 1,
721 .tpauser = 1,
722 .hw_swap = 1,
723 .no_xdfar = 1,
724 };
725
726 /* R-Car Gen2 and RZ/G1 */
727 static struct sh_eth_cpu_data rcar_gen2_data = {
728 .soft_reset = sh_eth_soft_reset,
729
730 .set_duplex = sh_eth_set_duplex,
731 .set_rate = sh_eth_set_rate_rcar,
732
733 .register_type = SH_ETH_REG_FAST_RCAR,
734
735 .edtrr_trns = EDTRR_TRNS_ETHER,
736 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
737 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
738 ECSIPR_MPDIP,
739 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
740 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
741 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
742 EESIPR_RMAFIP | EESIPR_RRFIP |
743 EESIPR_RTLFIP | EESIPR_RTSFIP |
744 EESIPR_PREIP | EESIPR_CERFIP,
745
746 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
747 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
748 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
749 .fdr_value = 0x00000f0f,
750
751 .trscer_err_mask = DESC_I_RINT8,
752
753 .apr = 1,
754 .mpr = 1,
755 .tpauser = 1,
756 .hw_swap = 1,
757 .no_xdfar = 1,
758 .rmiimode = 1,
759 .magic = 1,
760 };
761
762 /* R8A77980 */
763 static struct sh_eth_cpu_data r8a77980_data = {
764 .soft_reset = sh_eth_soft_reset_gether,
765
766 .set_duplex = sh_eth_set_duplex,
767 .set_rate = sh_eth_set_rate_gether,
768
769 .register_type = SH_ETH_REG_GIGABIT,
770
771 .edtrr_trns = EDTRR_TRNS_GETHER,
772 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
773 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
774 ECSIPR_MPDIP,
775 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
776 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
777 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
778 EESIPR_RMAFIP | EESIPR_RRFIP |
779 EESIPR_RTLFIP | EESIPR_RTSFIP |
780 EESIPR_PREIP | EESIPR_CERFIP,
781
782 .tx_check = EESR_FTC | EESR_CD | EESR_TRO,
783 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
784 EESR_RFE | EESR_RDE | EESR_RFRMER |
785 EESR_TFE | EESR_TDE | EESR_ECI,
786 .fdr_value = 0x0000070f,
787
788 .apr = 1,
789 .mpr = 1,
790 .tpauser = 1,
791 .bculr = 1,
792 .hw_swap = 1,
793 .nbst = 1,
794 .rpadir = 1,
795 .no_trimd = 1,
796 .no_ade = 1,
797 .xdfar_rw = 1,
798 .csmr = 1,
799 .rx_csum = 1,
800 .select_mii = 1,
801 .magic = 1,
802 .cexcr = 1,
803 };
804
805 /* R7S9210 */
806 static struct sh_eth_cpu_data r7s9210_data = {
807 .soft_reset = sh_eth_soft_reset,
808
809 .set_duplex = sh_eth_set_duplex,
810 .set_rate = sh_eth_set_rate_rcar,
811
812 .register_type = SH_ETH_REG_FAST_SH4,
813
814 .edtrr_trns = EDTRR_TRNS_ETHER,
815 .ecsr_value = ECSR_ICD,
816 .ecsipr_value = ECSIPR_ICDIP,
817 .eesipr_value = EESIPR_TWBIP | EESIPR_TABTIP | EESIPR_RABTIP |
818 EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP |
819 EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP |
820 EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_CNDIP |
821 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
822 EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP |
823 EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP,
824
825 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
826 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
827 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
828
829 .fdr_value = 0x0000070f,
830
831 .apr = 1,
832 .mpr = 1,
833 .tpauser = 1,
834 .hw_swap = 1,
835 .rpadir = 1,
836 .no_ade = 1,
837 .xdfar_rw = 1,
838 };
839 #endif /* CONFIG_OF */
840
841 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
842 {
843 struct sh_eth_private *mdp = netdev_priv(ndev);
844
845 switch (mdp->speed) {
846 case 10: /* 10BASE */
847 sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
848 break;
849 case 100:/* 100BASE */
850 sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
851 break;
852 }
853 }
854
855 /* SH7724 */
856 static struct sh_eth_cpu_data sh7724_data = {
857 .soft_reset = sh_eth_soft_reset,
858
859 .set_duplex = sh_eth_set_duplex,
860 .set_rate = sh_eth_set_rate_sh7724,
861
862 .register_type = SH_ETH_REG_FAST_SH4,
863
864 .edtrr_trns = EDTRR_TRNS_ETHER,
865 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
866 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
867 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
868 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
869 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
870 EESIPR_RMAFIP | EESIPR_RRFIP |
871 EESIPR_RTLFIP | EESIPR_RTSFIP |
872 EESIPR_PREIP | EESIPR_CERFIP,
873
874 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
875 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
876 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
877
878 .apr = 1,
879 .mpr = 1,
880 .tpauser = 1,
881 .hw_swap = 1,
882 .rpadir = 1,
883 };
884
885 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
886 {
887 struct sh_eth_private *mdp = netdev_priv(ndev);
888
889 switch (mdp->speed) {
890 case 10: /* 10BASE */
891 sh_eth_write(ndev, 0, RTRATE);
892 break;
893 case 100:/* 100BASE */
894 sh_eth_write(ndev, 1, RTRATE);
895 break;
896 }
897 }
898
899 /* SH7757 */
900 static struct sh_eth_cpu_data sh7757_data = {
901 .soft_reset = sh_eth_soft_reset,
902
903 .set_duplex = sh_eth_set_duplex,
904 .set_rate = sh_eth_set_rate_sh7757,
905
906 .register_type = SH_ETH_REG_FAST_SH4,
907
908 .edtrr_trns = EDTRR_TRNS_ETHER,
909 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
910 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
911 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
912 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
913 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
914 EESIPR_CEEFIP | EESIPR_CELFIP |
915 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
916 EESIPR_PREIP | EESIPR_CERFIP,
917
918 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
919 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
920 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
921
922 .irq_flags = IRQF_SHARED,
923 .apr = 1,
924 .mpr = 1,
925 .tpauser = 1,
926 .hw_swap = 1,
927 .no_ade = 1,
928 .rpadir = 1,
929 .rtrate = 1,
930 .dual_port = 1,
931 };
932
933 #define SH_GIGA_ETH_BASE 0xfee00000UL
934 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
935 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
936 static void sh_eth_chip_reset_giga(struct net_device *ndev)
937 {
938 u32 mahr[2], malr[2];
939 int i;
940
941 /* save MAHR and MALR */
942 for (i = 0; i < 2; i++) {
943 malr[i] = ioread32((void *)GIGA_MALR(i));
944 mahr[i] = ioread32((void *)GIGA_MAHR(i));
945 }
946
947 sh_eth_chip_reset(ndev);
948
949 /* restore MAHR and MALR */
950 for (i = 0; i < 2; i++) {
951 iowrite32(malr[i], (void *)GIGA_MALR(i));
952 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
953 }
954 }
955
956 static void sh_eth_set_rate_giga(struct net_device *ndev)
957 {
958 struct sh_eth_private *mdp = netdev_priv(ndev);
959
960 switch (mdp->speed) {
961 case 10: /* 10BASE */
962 sh_eth_write(ndev, 0x00000000, GECMR);
963 break;
964 case 100:/* 100BASE */
965 sh_eth_write(ndev, 0x00000010, GECMR);
966 break;
967 case 1000: /* 1000BASE */
968 sh_eth_write(ndev, 0x00000020, GECMR);
969 break;
970 }
971 }
972
973 /* SH7757(GETHERC) */
974 static struct sh_eth_cpu_data sh7757_data_giga = {
975 .soft_reset = sh_eth_soft_reset_gether,
976
977 .chip_reset = sh_eth_chip_reset_giga,
978 .set_duplex = sh_eth_set_duplex,
979 .set_rate = sh_eth_set_rate_giga,
980
981 .register_type = SH_ETH_REG_GIGABIT,
982
983 .edtrr_trns = EDTRR_TRNS_GETHER,
984 .ecsr_value = ECSR_ICD | ECSR_MPD,
985 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
986 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
987 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
988 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
989 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
990 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
991 EESIPR_CEEFIP | EESIPR_CELFIP |
992 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
993 EESIPR_PREIP | EESIPR_CERFIP,
994
995 .tx_check = EESR_TC1 | EESR_FTC,
996 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
997 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
998 EESR_TDE,
999 .fdr_value = 0x0000072f,
1000
1001 .irq_flags = IRQF_SHARED,
1002 .apr = 1,
1003 .mpr = 1,
1004 .tpauser = 1,
1005 .bculr = 1,
1006 .hw_swap = 1,
1007 .rpadir = 1,
1008 .no_trimd = 1,
1009 .no_ade = 1,
1010 .xdfar_rw = 1,
1011 .tsu = 1,
1012 .cexcr = 1,
1013 .dual_port = 1,
1014 };
1015
1016 /* SH7734 */
1017 static struct sh_eth_cpu_data sh7734_data = {
1018 .soft_reset = sh_eth_soft_reset_gether,
1019
1020 .chip_reset = sh_eth_chip_reset,
1021 .set_duplex = sh_eth_set_duplex,
1022 .set_rate = sh_eth_set_rate_gether,
1023
1024 .register_type = SH_ETH_REG_GIGABIT,
1025
1026 .edtrr_trns = EDTRR_TRNS_GETHER,
1027 .ecsr_value = ECSR_ICD | ECSR_MPD,
1028 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1029 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1030 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1031 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1032 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1033 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1034 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1035 EESIPR_PREIP | EESIPR_CERFIP,
1036
1037 .tx_check = EESR_TC1 | EESR_FTC,
1038 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1039 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
1040 EESR_TDE,
1041
1042 .apr = 1,
1043 .mpr = 1,
1044 .tpauser = 1,
1045 .bculr = 1,
1046 .hw_swap = 1,
1047 .no_trimd = 1,
1048 .no_ade = 1,
1049 .xdfar_rw = 1,
1050 .tsu = 1,
1051 .csmr = 1,
1052 .rx_csum = 1,
1053 .select_mii = 1,
1054 .magic = 1,
1055 .cexcr = 1,
1056 };
1057
1058 /* SH7763 */
1059 static struct sh_eth_cpu_data sh7763_data = {
1060 .soft_reset = sh_eth_soft_reset_gether,
1061
1062 .chip_reset = sh_eth_chip_reset,
1063 .set_duplex = sh_eth_set_duplex,
1064 .set_rate = sh_eth_set_rate_gether,
1065
1066 .register_type = SH_ETH_REG_GIGABIT,
1067
1068 .edtrr_trns = EDTRR_TRNS_GETHER,
1069 .ecsr_value = ECSR_ICD | ECSR_MPD,
1070 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1071 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1072 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1073 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1074 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1075 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1076 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1077 EESIPR_PREIP | EESIPR_CERFIP,
1078
1079 .tx_check = EESR_TC1 | EESR_FTC,
1080 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1081 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
1082
1083 .apr = 1,
1084 .mpr = 1,
1085 .tpauser = 1,
1086 .bculr = 1,
1087 .hw_swap = 1,
1088 .no_trimd = 1,
1089 .no_ade = 1,
1090 .xdfar_rw = 1,
1091 .tsu = 1,
1092 .irq_flags = IRQF_SHARED,
1093 .magic = 1,
1094 .cexcr = 1,
1095 .rx_csum = 1,
1096 .dual_port = 1,
1097 };
1098
1099 static struct sh_eth_cpu_data sh7619_data = {
1100 .soft_reset = sh_eth_soft_reset,
1101
1102 .register_type = SH_ETH_REG_FAST_SH3_SH2,
1103
1104 .edtrr_trns = EDTRR_TRNS_ETHER,
1105 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1106 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1107 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1108 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1109 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1110 EESIPR_CEEFIP | EESIPR_CELFIP |
1111 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1112 EESIPR_PREIP | EESIPR_CERFIP,
1113
1114 .apr = 1,
1115 .mpr = 1,
1116 .tpauser = 1,
1117 .hw_swap = 1,
1118 };
1119
1120 static struct sh_eth_cpu_data sh771x_data = {
1121 .soft_reset = sh_eth_soft_reset,
1122
1123 .register_type = SH_ETH_REG_FAST_SH3_SH2,
1124
1125 .edtrr_trns = EDTRR_TRNS_ETHER,
1126 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1127 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1128 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1129 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1130 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1131 EESIPR_CEEFIP | EESIPR_CELFIP |
1132 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1133 EESIPR_PREIP | EESIPR_CERFIP,
1134 .tsu = 1,
1135 .dual_port = 1,
1136 };
1137
1138 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1139 {
1140 if (!cd->ecsr_value)
1141 cd->ecsr_value = DEFAULT_ECSR_INIT;
1142
1143 if (!cd->ecsipr_value)
1144 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1145
1146 if (!cd->fcftr_value)
1147 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1148 DEFAULT_FIFO_F_D_RFD;
1149
1150 if (!cd->fdr_value)
1151 cd->fdr_value = DEFAULT_FDR_INIT;
1152
1153 if (!cd->tx_check)
1154 cd->tx_check = DEFAULT_TX_CHECK;
1155
1156 if (!cd->eesr_err_check)
1157 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1158
1159 if (!cd->trscer_err_mask)
1160 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1161 }
1162
1163 static void sh_eth_set_receive_align(struct sk_buff *skb)
1164 {
1165 uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1166
1167 if (reserve)
1168 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1169 }
1170
1171 /* Program the hardware MAC address from dev->dev_addr. */
1172 static void update_mac_address(struct net_device *ndev)
1173 {
1174 sh_eth_write(ndev,
1175 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1176 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1177 sh_eth_write(ndev,
1178 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1179 }
1180
1181 /* Get MAC address from SuperH MAC address register
1182 *
1183 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1184 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1185 * When you want use this device, you must set MAC address in bootloader.
1186 *
1187 */
1188 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1189 {
1190 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1191 memcpy(ndev->dev_addr, mac, ETH_ALEN);
1192 } else {
1193 u32 mahr = sh_eth_read(ndev, MAHR);
1194 u32 malr = sh_eth_read(ndev, MALR);
1195
1196 ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1197 ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1198 ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
1199 ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
1200 ndev->dev_addr[4] = (malr >> 8) & 0xFF;
1201 ndev->dev_addr[5] = (malr >> 0) & 0xFF;
1202 }
1203 }
1204
1205 struct bb_info {
1206 void (*set_gate)(void *addr);
1207 struct mdiobb_ctrl ctrl;
1208 void *addr;
1209 };
1210
1211 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1212 {
1213 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1214 u32 pir;
1215
1216 if (bitbang->set_gate)
1217 bitbang->set_gate(bitbang->addr);
1218
1219 pir = ioread32(bitbang->addr);
1220 if (set)
1221 pir |= mask;
1222 else
1223 pir &= ~mask;
1224 iowrite32(pir, bitbang->addr);
1225 }
1226
1227 /* Data I/O pin control */
1228 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1229 {
1230 sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1231 }
1232
1233 /* Set bit data*/
1234 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1235 {
1236 sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1237 }
1238
1239 /* Get bit data*/
1240 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1241 {
1242 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1243
1244 if (bitbang->set_gate)
1245 bitbang->set_gate(bitbang->addr);
1246
1247 return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1248 }
1249
1250 /* MDC pin control */
1251 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1252 {
1253 sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1254 }
1255
1256 /* mdio bus control struct */
1257 static struct mdiobb_ops bb_ops = {
1258 .owner = THIS_MODULE,
1259 .set_mdc = sh_mdc_ctrl,
1260 .set_mdio_dir = sh_mmd_ctrl,
1261 .set_mdio_data = sh_set_mdio,
1262 .get_mdio_data = sh_get_mdio,
1263 };
1264
1265 /* free Tx skb function */
1266 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1267 {
1268 struct sh_eth_private *mdp = netdev_priv(ndev);
1269 struct sh_eth_txdesc *txdesc;
1270 int free_num = 0;
1271 int entry;
1272 bool sent;
1273
1274 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1275 entry = mdp->dirty_tx % mdp->num_tx_ring;
1276 txdesc = &mdp->tx_ring[entry];
1277 sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1278 if (sent_only && !sent)
1279 break;
1280 /* TACT bit must be checked before all the following reads */
1281 dma_rmb();
1282 netif_info(mdp, tx_done, ndev,
1283 "tx entry %d status 0x%08x\n",
1284 entry, le32_to_cpu(txdesc->status));
1285 /* Free the original skb. */
1286 if (mdp->tx_skbuff[entry]) {
1287 dma_unmap_single(&mdp->pdev->dev,
1288 le32_to_cpu(txdesc->addr),
1289 le32_to_cpu(txdesc->len) >> 16,
1290 DMA_TO_DEVICE);
1291 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1292 mdp->tx_skbuff[entry] = NULL;
1293 free_num++;
1294 }
1295 txdesc->status = cpu_to_le32(TD_TFP);
1296 if (entry >= mdp->num_tx_ring - 1)
1297 txdesc->status |= cpu_to_le32(TD_TDLE);
1298
1299 if (sent) {
1300 ndev->stats.tx_packets++;
1301 ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1302 }
1303 }
1304 return free_num;
1305 }
1306
1307 /* free skb and descriptor buffer */
1308 static void sh_eth_ring_free(struct net_device *ndev)
1309 {
1310 struct sh_eth_private *mdp = netdev_priv(ndev);
1311 int ringsize, i;
1312
1313 if (mdp->rx_ring) {
1314 for (i = 0; i < mdp->num_rx_ring; i++) {
1315 if (mdp->rx_skbuff[i]) {
1316 struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1317
1318 dma_unmap_single(&mdp->pdev->dev,
1319 le32_to_cpu(rxdesc->addr),
1320 ALIGN(mdp->rx_buf_sz, 32),
1321 DMA_FROM_DEVICE);
1322 }
1323 }
1324 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1325 dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1326 mdp->rx_desc_dma);
1327 mdp->rx_ring = NULL;
1328 }
1329
1330 /* Free Rx skb ringbuffer */
1331 if (mdp->rx_skbuff) {
1332 for (i = 0; i < mdp->num_rx_ring; i++)
1333 dev_kfree_skb(mdp->rx_skbuff[i]);
1334 }
1335 kfree(mdp->rx_skbuff);
1336 mdp->rx_skbuff = NULL;
1337
1338 if (mdp->tx_ring) {
1339 sh_eth_tx_free(ndev, false);
1340
1341 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1342 dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1343 mdp->tx_desc_dma);
1344 mdp->tx_ring = NULL;
1345 }
1346
1347 /* Free Tx skb ringbuffer */
1348 kfree(mdp->tx_skbuff);
1349 mdp->tx_skbuff = NULL;
1350 }
1351
1352 /* format skb and descriptor buffer */
1353 static void sh_eth_ring_format(struct net_device *ndev)
1354 {
1355 struct sh_eth_private *mdp = netdev_priv(ndev);
1356 int i;
1357 struct sk_buff *skb;
1358 struct sh_eth_rxdesc *rxdesc = NULL;
1359 struct sh_eth_txdesc *txdesc = NULL;
1360 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1361 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1362 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1363 dma_addr_t dma_addr;
1364 u32 buf_len;
1365
1366 mdp->cur_rx = 0;
1367 mdp->cur_tx = 0;
1368 mdp->dirty_rx = 0;
1369 mdp->dirty_tx = 0;
1370
1371 memset(mdp->rx_ring, 0, rx_ringsize);
1372
1373 /* build Rx ring buffer */
1374 for (i = 0; i < mdp->num_rx_ring; i++) {
1375 /* skb */
1376 mdp->rx_skbuff[i] = NULL;
1377 skb = netdev_alloc_skb(ndev, skbuff_size);
1378 if (skb == NULL)
1379 break;
1380 sh_eth_set_receive_align(skb);
1381
1382 /* The size of the buffer is a multiple of 32 bytes. */
1383 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1384 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1385 DMA_FROM_DEVICE);
1386 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1387 kfree_skb(skb);
1388 break;
1389 }
1390 mdp->rx_skbuff[i] = skb;
1391
1392 /* RX descriptor */
1393 rxdesc = &mdp->rx_ring[i];
1394 rxdesc->len = cpu_to_le32(buf_len << 16);
1395 rxdesc->addr = cpu_to_le32(dma_addr);
1396 rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1397
1398 /* Rx descriptor address set */
1399 if (i == 0) {
1400 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1401 if (mdp->cd->xdfar_rw)
1402 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1403 }
1404 }
1405
1406 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1407
1408 /* Mark the last entry as wrapping the ring. */
1409 if (rxdesc)
1410 rxdesc->status |= cpu_to_le32(RD_RDLE);
1411
1412 memset(mdp->tx_ring, 0, tx_ringsize);
1413
1414 /* build Tx ring buffer */
1415 for (i = 0; i < mdp->num_tx_ring; i++) {
1416 mdp->tx_skbuff[i] = NULL;
1417 txdesc = &mdp->tx_ring[i];
1418 txdesc->status = cpu_to_le32(TD_TFP);
1419 txdesc->len = cpu_to_le32(0);
1420 if (i == 0) {
1421 /* Tx descriptor address set */
1422 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1423 if (mdp->cd->xdfar_rw)
1424 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1425 }
1426 }
1427
1428 txdesc->status |= cpu_to_le32(TD_TDLE);
1429 }
1430
1431 /* Get skb and descriptor buffer */
1432 static int sh_eth_ring_init(struct net_device *ndev)
1433 {
1434 struct sh_eth_private *mdp = netdev_priv(ndev);
1435 int rx_ringsize, tx_ringsize;
1436
1437 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1438 * card needs room to do 8 byte alignment, +2 so we can reserve
1439 * the first 2 bytes, and +16 gets room for the status word from the
1440 * card.
1441 */
1442 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1443 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1444 if (mdp->cd->rpadir)
1445 mdp->rx_buf_sz += NET_IP_ALIGN;
1446
1447 /* Allocate RX and TX skb rings */
1448 mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1449 GFP_KERNEL);
1450 if (!mdp->rx_skbuff)
1451 return -ENOMEM;
1452
1453 mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1454 GFP_KERNEL);
1455 if (!mdp->tx_skbuff)
1456 goto ring_free;
1457
1458 /* Allocate all Rx descriptors. */
1459 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1460 mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1461 &mdp->rx_desc_dma, GFP_KERNEL);
1462 if (!mdp->rx_ring)
1463 goto ring_free;
1464
1465 mdp->dirty_rx = 0;
1466
1467 /* Allocate all Tx descriptors. */
1468 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1469 mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1470 &mdp->tx_desc_dma, GFP_KERNEL);
1471 if (!mdp->tx_ring)
1472 goto ring_free;
1473 return 0;
1474
1475 ring_free:
1476 /* Free Rx and Tx skb ring buffer and DMA buffer */
1477 sh_eth_ring_free(ndev);
1478
1479 return -ENOMEM;
1480 }
1481
1482 static int sh_eth_dev_init(struct net_device *ndev)
1483 {
1484 struct sh_eth_private *mdp = netdev_priv(ndev);
1485 int ret;
1486
1487 /* Soft Reset */
1488 ret = mdp->cd->soft_reset(ndev);
1489 if (ret)
1490 return ret;
1491
1492 if (mdp->cd->rmiimode)
1493 sh_eth_write(ndev, 0x1, RMIIMODE);
1494
1495 /* Descriptor format */
1496 sh_eth_ring_format(ndev);
1497 if (mdp->cd->rpadir)
1498 sh_eth_write(ndev, NET_IP_ALIGN << 16, RPADIR);
1499
1500 /* all sh_eth int mask */
1501 sh_eth_write(ndev, 0, EESIPR);
1502
1503 #if defined(__LITTLE_ENDIAN)
1504 if (mdp->cd->hw_swap)
1505 sh_eth_write(ndev, EDMR_EL, EDMR);
1506 else
1507 #endif
1508 sh_eth_write(ndev, 0, EDMR);
1509
1510 /* FIFO size set */
1511 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1512 sh_eth_write(ndev, 0, TFTR);
1513
1514 /* Frame recv control (enable multiple-packets per rx irq) */
1515 sh_eth_write(ndev, RMCR_RNC, RMCR);
1516
1517 sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1518
1519 /* DMA transfer burst mode */
1520 if (mdp->cd->nbst)
1521 sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST);
1522
1523 /* Burst cycle count upper-limit */
1524 if (mdp->cd->bculr)
1525 sh_eth_write(ndev, 0x800, BCULR);
1526
1527 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1528
1529 if (!mdp->cd->no_trimd)
1530 sh_eth_write(ndev, 0, TRIMD);
1531
1532 /* Recv frame limit set register */
1533 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1534 RFLR);
1535
1536 sh_eth_modify(ndev, EESR, 0, 0);
1537 mdp->irq_enabled = true;
1538 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1539
1540 /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
1541 sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1542 (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
1543 ECMR_TE | ECMR_RE, ECMR);
1544
1545 if (mdp->cd->set_rate)
1546 mdp->cd->set_rate(ndev);
1547
1548 /* E-MAC Status Register clear */
1549 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1550
1551 /* E-MAC Interrupt Enable register */
1552 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1553
1554 /* Set MAC address */
1555 update_mac_address(ndev);
1556
1557 /* mask reset */
1558 if (mdp->cd->apr)
1559 sh_eth_write(ndev, 1, APR);
1560 if (mdp->cd->mpr)
1561 sh_eth_write(ndev, 1, MPR);
1562 if (mdp->cd->tpauser)
1563 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1564
1565 /* Setting the Rx mode will start the Rx process. */
1566 sh_eth_write(ndev, EDRRR_R, EDRRR);
1567
1568 return ret;
1569 }
1570
1571 static void sh_eth_dev_exit(struct net_device *ndev)
1572 {
1573 struct sh_eth_private *mdp = netdev_priv(ndev);
1574 int i;
1575
1576 /* Deactivate all TX descriptors, so DMA should stop at next
1577 * packet boundary if it's currently running
1578 */
1579 for (i = 0; i < mdp->num_tx_ring; i++)
1580 mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1581
1582 /* Disable TX FIFO egress to MAC */
1583 sh_eth_rcv_snd_disable(ndev);
1584
1585 /* Stop RX DMA at next packet boundary */
1586 sh_eth_write(ndev, 0, EDRRR);
1587
1588 /* Aside from TX DMA, we can't tell when the hardware is
1589 * really stopped, so we need to reset to make sure.
1590 * Before doing that, wait for long enough to *probably*
1591 * finish transmitting the last packet and poll stats.
1592 */
1593 msleep(2); /* max frame time at 10 Mbps < 1250 us */
1594 sh_eth_get_stats(ndev);
1595 mdp->cd->soft_reset(ndev);
1596
1597 /* Set the RMII mode again if required */
1598 if (mdp->cd->rmiimode)
1599 sh_eth_write(ndev, 0x1, RMIIMODE);
1600
1601 /* Set MAC address again */
1602 update_mac_address(ndev);
1603 }
1604
1605 static void sh_eth_rx_csum(struct sk_buff *skb)
1606 {
1607 u8 *hw_csum;
1608
1609 /* The hardware checksum is 2 bytes appended to packet data */
1610 if (unlikely(skb->len < sizeof(__sum16)))
1611 return;
1612 hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
1613 skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
1614 skb->ip_summed = CHECKSUM_COMPLETE;
1615 skb_trim(skb, skb->len - sizeof(__sum16));
1616 }
1617
1618 /* Packet receive function */
1619 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1620 {
1621 struct sh_eth_private *mdp = netdev_priv(ndev);
1622 struct sh_eth_rxdesc *rxdesc;
1623
1624 int entry = mdp->cur_rx % mdp->num_rx_ring;
1625 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1626 int limit;
1627 struct sk_buff *skb;
1628 u32 desc_status;
1629 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1630 dma_addr_t dma_addr;
1631 u16 pkt_len;
1632 u32 buf_len;
1633
1634 boguscnt = min(boguscnt, *quota);
1635 limit = boguscnt;
1636 rxdesc = &mdp->rx_ring[entry];
1637 while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1638 /* RACT bit must be checked before all the following reads */
1639 dma_rmb();
1640 desc_status = le32_to_cpu(rxdesc->status);
1641 pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1642
1643 if (--boguscnt < 0)
1644 break;
1645
1646 netif_info(mdp, rx_status, ndev,
1647 "rx entry %d status 0x%08x len %d\n",
1648 entry, desc_status, pkt_len);
1649
1650 if (!(desc_status & RDFEND))
1651 ndev->stats.rx_length_errors++;
1652
1653 /* In case of almost all GETHER/ETHERs, the Receive Frame State
1654 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1655 * bit 0. However, in case of the R8A7740 and R7S72100
1656 * the RFS bits are from bit 25 to bit 16. So, the
1657 * driver needs right shifting by 16.
1658 */
1659 if (mdp->cd->csmr)
1660 desc_status >>= 16;
1661
1662 skb = mdp->rx_skbuff[entry];
1663 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1664 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1665 ndev->stats.rx_errors++;
1666 if (desc_status & RD_RFS1)
1667 ndev->stats.rx_crc_errors++;
1668 if (desc_status & RD_RFS2)
1669 ndev->stats.rx_frame_errors++;
1670 if (desc_status & RD_RFS3)
1671 ndev->stats.rx_length_errors++;
1672 if (desc_status & RD_RFS4)
1673 ndev->stats.rx_length_errors++;
1674 if (desc_status & RD_RFS6)
1675 ndev->stats.rx_missed_errors++;
1676 if (desc_status & RD_RFS10)
1677 ndev->stats.rx_over_errors++;
1678 } else if (skb) {
1679 dma_addr = le32_to_cpu(rxdesc->addr);
1680 if (!mdp->cd->hw_swap)
1681 sh_eth_soft_swap(
1682 phys_to_virt(ALIGN(dma_addr, 4)),
1683 pkt_len + 2);
1684 mdp->rx_skbuff[entry] = NULL;
1685 if (mdp->cd->rpadir)
1686 skb_reserve(skb, NET_IP_ALIGN);
1687 dma_unmap_single(&mdp->pdev->dev, dma_addr,
1688 ALIGN(mdp->rx_buf_sz, 32),
1689 DMA_FROM_DEVICE);
1690 skb_put(skb, pkt_len);
1691 skb->protocol = eth_type_trans(skb, ndev);
1692 if (ndev->features & NETIF_F_RXCSUM)
1693 sh_eth_rx_csum(skb);
1694 netif_receive_skb(skb);
1695 ndev->stats.rx_packets++;
1696 ndev->stats.rx_bytes += pkt_len;
1697 if (desc_status & RD_RFS8)
1698 ndev->stats.multicast++;
1699 }
1700 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1701 rxdesc = &mdp->rx_ring[entry];
1702 }
1703
1704 /* Refill the Rx ring buffers. */
1705 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1706 entry = mdp->dirty_rx % mdp->num_rx_ring;
1707 rxdesc = &mdp->rx_ring[entry];
1708 /* The size of the buffer is 32 byte boundary. */
1709 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1710 rxdesc->len = cpu_to_le32(buf_len << 16);
1711
1712 if (mdp->rx_skbuff[entry] == NULL) {
1713 skb = netdev_alloc_skb(ndev, skbuff_size);
1714 if (skb == NULL)
1715 break; /* Better luck next round. */
1716 sh_eth_set_receive_align(skb);
1717 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1718 buf_len, DMA_FROM_DEVICE);
1719 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1720 kfree_skb(skb);
1721 break;
1722 }
1723 mdp->rx_skbuff[entry] = skb;
1724
1725 skb_checksum_none_assert(skb);
1726 rxdesc->addr = cpu_to_le32(dma_addr);
1727 }
1728 dma_wmb(); /* RACT bit must be set after all the above writes */
1729 if (entry >= mdp->num_rx_ring - 1)
1730 rxdesc->status |=
1731 cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1732 else
1733 rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1734 }
1735
1736 /* Restart Rx engine if stopped. */
1737 /* If we don't need to check status, don't. -KDU */
1738 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1739 /* fix the values for the next receiving if RDE is set */
1740 if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1741 u32 count = (sh_eth_read(ndev, RDFAR) -
1742 sh_eth_read(ndev, RDLAR)) >> 4;
1743
1744 mdp->cur_rx = count;
1745 mdp->dirty_rx = count;
1746 }
1747 sh_eth_write(ndev, EDRRR_R, EDRRR);
1748 }
1749
1750 *quota -= limit - boguscnt - 1;
1751
1752 return *quota <= 0;
1753 }
1754
1755 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1756 {
1757 /* disable tx and rx */
1758 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1759 }
1760
1761 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1762 {
1763 /* enable tx and rx */
1764 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1765 }
1766
1767 /* E-MAC interrupt handler */
1768 static void sh_eth_emac_interrupt(struct net_device *ndev)
1769 {
1770 struct sh_eth_private *mdp = netdev_priv(ndev);
1771 u32 felic_stat;
1772 u32 link_stat;
1773
1774 felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1775 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1776 if (felic_stat & ECSR_ICD)
1777 ndev->stats.tx_carrier_errors++;
1778 if (felic_stat & ECSR_MPD)
1779 pm_wakeup_event(&mdp->pdev->dev, 0);
1780 if (felic_stat & ECSR_LCHNG) {
1781 /* Link Changed */
1782 if (mdp->cd->no_psr || mdp->no_ether_link)
1783 return;
1784 link_stat = sh_eth_read(ndev, PSR);
1785 if (mdp->ether_link_active_low)
1786 link_stat = ~link_stat;
1787 if (!(link_stat & PHY_ST_LINK)) {
1788 sh_eth_rcv_snd_disable(ndev);
1789 } else {
1790 /* Link Up */
1791 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1792 /* clear int */
1793 sh_eth_modify(ndev, ECSR, 0, 0);
1794 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1795 /* enable tx and rx */
1796 sh_eth_rcv_snd_enable(ndev);
1797 }
1798 }
1799 }
1800
1801 /* error control function */
1802 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1803 {
1804 struct sh_eth_private *mdp = netdev_priv(ndev);
1805 u32 mask;
1806
1807 if (intr_status & EESR_TWB) {
1808 /* Unused write back interrupt */
1809 if (intr_status & EESR_TABT) { /* Transmit Abort int */
1810 ndev->stats.tx_aborted_errors++;
1811 netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1812 }
1813 }
1814
1815 if (intr_status & EESR_RABT) {
1816 /* Receive Abort int */
1817 if (intr_status & EESR_RFRMER) {
1818 /* Receive Frame Overflow int */
1819 ndev->stats.rx_frame_errors++;
1820 }
1821 }
1822
1823 if (intr_status & EESR_TDE) {
1824 /* Transmit Descriptor Empty int */
1825 ndev->stats.tx_fifo_errors++;
1826 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1827 }
1828
1829 if (intr_status & EESR_TFE) {
1830 /* FIFO under flow */
1831 ndev->stats.tx_fifo_errors++;
1832 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1833 }
1834
1835 if (intr_status & EESR_RDE) {
1836 /* Receive Descriptor Empty int */
1837 ndev->stats.rx_over_errors++;
1838 }
1839
1840 if (intr_status & EESR_RFE) {
1841 /* Receive FIFO Overflow int */
1842 ndev->stats.rx_fifo_errors++;
1843 }
1844
1845 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1846 /* Address Error */
1847 ndev->stats.tx_fifo_errors++;
1848 netif_err(mdp, tx_err, ndev, "Address Error\n");
1849 }
1850
1851 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1852 if (mdp->cd->no_ade)
1853 mask &= ~EESR_ADE;
1854 if (intr_status & mask) {
1855 /* Tx error */
1856 u32 edtrr = sh_eth_read(ndev, EDTRR);
1857
1858 /* dmesg */
1859 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1860 intr_status, mdp->cur_tx, mdp->dirty_tx,
1861 (u32)ndev->state, edtrr);
1862 /* dirty buffer free */
1863 sh_eth_tx_free(ndev, true);
1864
1865 /* SH7712 BUG */
1866 if (edtrr ^ mdp->cd->edtrr_trns) {
1867 /* tx dma start */
1868 sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1869 }
1870 /* wakeup */
1871 netif_wake_queue(ndev);
1872 }
1873 }
1874
1875 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1876 {
1877 struct net_device *ndev = netdev;
1878 struct sh_eth_private *mdp = netdev_priv(ndev);
1879 struct sh_eth_cpu_data *cd = mdp->cd;
1880 irqreturn_t ret = IRQ_NONE;
1881 u32 intr_status, intr_enable;
1882
1883 spin_lock(&mdp->lock);
1884
1885 /* Get interrupt status */
1886 intr_status = sh_eth_read(ndev, EESR);
1887 /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1888 * enabled since it's the one that comes thru regardless of the mask,
1889 * and we need to fully handle it in sh_eth_emac_interrupt() in order
1890 * to quench it as it doesn't get cleared by just writing 1 to the ECI
1891 * bit...
1892 */
1893 intr_enable = sh_eth_read(ndev, EESIPR);
1894 intr_status &= intr_enable | EESIPR_ECIIP;
1895 if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1896 cd->eesr_err_check))
1897 ret = IRQ_HANDLED;
1898 else
1899 goto out;
1900
1901 if (unlikely(!mdp->irq_enabled)) {
1902 sh_eth_write(ndev, 0, EESIPR);
1903 goto out;
1904 }
1905
1906 if (intr_status & EESR_RX_CHECK) {
1907 if (napi_schedule_prep(&mdp->napi)) {
1908 /* Mask Rx interrupts */
1909 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1910 EESIPR);
1911 __napi_schedule(&mdp->napi);
1912 } else {
1913 netdev_warn(ndev,
1914 "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1915 intr_status, intr_enable);
1916 }
1917 }
1918
1919 /* Tx Check */
1920 if (intr_status & cd->tx_check) {
1921 /* Clear Tx interrupts */
1922 sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1923
1924 sh_eth_tx_free(ndev, true);
1925 netif_wake_queue(ndev);
1926 }
1927
1928 /* E-MAC interrupt */
1929 if (intr_status & EESR_ECI)
1930 sh_eth_emac_interrupt(ndev);
1931
1932 if (intr_status & cd->eesr_err_check) {
1933 /* Clear error interrupts */
1934 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1935
1936 sh_eth_error(ndev, intr_status);
1937 }
1938
1939 out:
1940 spin_unlock(&mdp->lock);
1941
1942 return ret;
1943 }
1944
1945 static int sh_eth_poll(struct napi_struct *napi, int budget)
1946 {
1947 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1948 napi);
1949 struct net_device *ndev = napi->dev;
1950 int quota = budget;
1951 u32 intr_status;
1952
1953 for (;;) {
1954 intr_status = sh_eth_read(ndev, EESR);
1955 if (!(intr_status & EESR_RX_CHECK))
1956 break;
1957 /* Clear Rx interrupts */
1958 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1959
1960 if (sh_eth_rx(ndev, intr_status, &quota))
1961 goto out;
1962 }
1963
1964 napi_complete(napi);
1965
1966 /* Reenable Rx interrupts */
1967 if (mdp->irq_enabled)
1968 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1969 out:
1970 return budget - quota;
1971 }
1972
1973 /* PHY state control function */
1974 static void sh_eth_adjust_link(struct net_device *ndev)
1975 {
1976 struct sh_eth_private *mdp = netdev_priv(ndev);
1977 struct phy_device *phydev = ndev->phydev;
1978 unsigned long flags;
1979 int new_state = 0;
1980
1981 spin_lock_irqsave(&mdp->lock, flags);
1982
1983 /* Disable TX and RX right over here, if E-MAC change is ignored */
1984 if (mdp->cd->no_psr || mdp->no_ether_link)
1985 sh_eth_rcv_snd_disable(ndev);
1986
1987 if (phydev->link) {
1988 if (phydev->duplex != mdp->duplex) {
1989 new_state = 1;
1990 mdp->duplex = phydev->duplex;
1991 if (mdp->cd->set_duplex)
1992 mdp->cd->set_duplex(ndev);
1993 }
1994
1995 if (phydev->speed != mdp->speed) {
1996 new_state = 1;
1997 mdp->speed = phydev->speed;
1998 if (mdp->cd->set_rate)
1999 mdp->cd->set_rate(ndev);
2000 }
2001 if (!mdp->link) {
2002 sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
2003 new_state = 1;
2004 mdp->link = phydev->link;
2005 }
2006 } else if (mdp->link) {
2007 new_state = 1;
2008 mdp->link = 0;
2009 mdp->speed = 0;
2010 mdp->duplex = -1;
2011 }
2012
2013 /* Enable TX and RX right over here, if E-MAC change is ignored */
2014 if ((mdp->cd->no_psr || mdp->no_ether_link) && phydev->link)
2015 sh_eth_rcv_snd_enable(ndev);
2016
2017 spin_unlock_irqrestore(&mdp->lock, flags);
2018
2019 if (new_state && netif_msg_link(mdp))
2020 phy_print_status(phydev);
2021 }
2022
2023 /* PHY init function */
2024 static int sh_eth_phy_init(struct net_device *ndev)
2025 {
2026 struct device_node *np = ndev->dev.parent->of_node;
2027 struct sh_eth_private *mdp = netdev_priv(ndev);
2028 struct phy_device *phydev;
2029
2030 mdp->link = 0;
2031 mdp->speed = 0;
2032 mdp->duplex = -1;
2033
2034 /* Try connect to PHY */
2035 if (np) {
2036 struct device_node *pn;
2037
2038 pn = of_parse_phandle(np, "phy-handle", 0);
2039 phydev = of_phy_connect(ndev, pn,
2040 sh_eth_adjust_link, 0,
2041 mdp->phy_interface);
2042
2043 of_node_put(pn);
2044 if (!phydev)
2045 phydev = ERR_PTR(-ENOENT);
2046 } else {
2047 char phy_id[MII_BUS_ID_SIZE + 3];
2048
2049 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
2050 mdp->mii_bus->id, mdp->phy_id);
2051
2052 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
2053 mdp->phy_interface);
2054 }
2055
2056 if (IS_ERR(phydev)) {
2057 netdev_err(ndev, "failed to connect PHY\n");
2058 return PTR_ERR(phydev);
2059 }
2060
2061 /* mask with MAC supported features */
2062 if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
2063 int err = phy_set_max_speed(phydev, SPEED_100);
2064 if (err) {
2065 netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
2066 phy_disconnect(phydev);
2067 return err;
2068 }
2069 }
2070
2071 phy_attached_info(phydev);
2072
2073 return 0;
2074 }
2075
2076 /* PHY control start function */
2077 static int sh_eth_phy_start(struct net_device *ndev)
2078 {
2079 int ret;
2080
2081 ret = sh_eth_phy_init(ndev);
2082 if (ret)
2083 return ret;
2084
2085 phy_start(ndev->phydev);
2086
2087 return 0;
2088 }
2089
2090 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2091 * version must be bumped as well. Just adding registers up to that
2092 * limit is fine, as long as the existing register indices don't
2093 * change.
2094 */
2095 #define SH_ETH_REG_DUMP_VERSION 1
2096 #define SH_ETH_REG_DUMP_MAX_REGS 256
2097
2098 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2099 {
2100 struct sh_eth_private *mdp = netdev_priv(ndev);
2101 struct sh_eth_cpu_data *cd = mdp->cd;
2102 u32 *valid_map;
2103 size_t len;
2104
2105 BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2106
2107 /* Dump starts with a bitmap that tells ethtool which
2108 * registers are defined for this chip.
2109 */
2110 len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2111 if (buf) {
2112 valid_map = buf;
2113 buf += len;
2114 } else {
2115 valid_map = NULL;
2116 }
2117
2118 /* Add a register to the dump, if it has a defined offset.
2119 * This automatically skips most undefined registers, but for
2120 * some it is also necessary to check a capability flag in
2121 * struct sh_eth_cpu_data.
2122 */
2123 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2124 #define add_reg_from(reg, read_expr) do { \
2125 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) { \
2126 if (buf) { \
2127 mark_reg_valid(reg); \
2128 *buf++ = read_expr; \
2129 } \
2130 ++len; \
2131 } \
2132 } while (0)
2133 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2134 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2135
2136 add_reg(EDSR);
2137 add_reg(EDMR);
2138 add_reg(EDTRR);
2139 add_reg(EDRRR);
2140 add_reg(EESR);
2141 add_reg(EESIPR);
2142 add_reg(TDLAR);
2143 add_reg(TDFAR);
2144 add_reg(TDFXR);
2145 add_reg(TDFFR);
2146 add_reg(RDLAR);
2147 add_reg(RDFAR);
2148 add_reg(RDFXR);
2149 add_reg(RDFFR);
2150 add_reg(TRSCER);
2151 add_reg(RMFCR);
2152 add_reg(TFTR);
2153 add_reg(FDR);
2154 add_reg(RMCR);
2155 add_reg(TFUCR);
2156 add_reg(RFOCR);
2157 if (cd->rmiimode)
2158 add_reg(RMIIMODE);
2159 add_reg(FCFTR);
2160 if (cd->rpadir)
2161 add_reg(RPADIR);
2162 if (!cd->no_trimd)
2163 add_reg(TRIMD);
2164 add_reg(ECMR);
2165 add_reg(ECSR);
2166 add_reg(ECSIPR);
2167 add_reg(PIR);
2168 if (!cd->no_psr)
2169 add_reg(PSR);
2170 add_reg(RDMLR);
2171 add_reg(RFLR);
2172 add_reg(IPGR);
2173 if (cd->apr)
2174 add_reg(APR);
2175 if (cd->mpr)
2176 add_reg(MPR);
2177 add_reg(RFCR);
2178 add_reg(RFCF);
2179 if (cd->tpauser)
2180 add_reg(TPAUSER);
2181 add_reg(TPAUSECR);
2182 add_reg(GECMR);
2183 if (cd->bculr)
2184 add_reg(BCULR);
2185 add_reg(MAHR);
2186 add_reg(MALR);
2187 if (!cd->no_tx_cntrs) {
2188 add_reg(TROCR);
2189 add_reg(CDCR);
2190 add_reg(LCCR);
2191 add_reg(CNDCR);
2192 }
2193 add_reg(CEFCR);
2194 add_reg(FRECR);
2195 add_reg(TSFRCR);
2196 add_reg(TLFRCR);
2197 if (cd->cexcr) {
2198 add_reg(CERCR);
2199 add_reg(CEECR);
2200 }
2201 add_reg(MAFCR);
2202 if (cd->rtrate)
2203 add_reg(RTRATE);
2204 if (cd->csmr)
2205 add_reg(CSMR);
2206 if (cd->select_mii)
2207 add_reg(RMII_MII);
2208 if (cd->tsu) {
2209 add_tsu_reg(ARSTR);
2210 add_tsu_reg(TSU_CTRST);
2211 if (cd->dual_port) {
2212 add_tsu_reg(TSU_FWEN0);
2213 add_tsu_reg(TSU_FWEN1);
2214 add_tsu_reg(TSU_FCM);
2215 add_tsu_reg(TSU_BSYSL0);
2216 add_tsu_reg(TSU_BSYSL1);
2217 add_tsu_reg(TSU_PRISL0);
2218 add_tsu_reg(TSU_PRISL1);
2219 add_tsu_reg(TSU_FWSL0);
2220 add_tsu_reg(TSU_FWSL1);
2221 }
2222 add_tsu_reg(TSU_FWSLC);
2223 if (cd->dual_port) {
2224 add_tsu_reg(TSU_QTAGM0);
2225 add_tsu_reg(TSU_QTAGM1);
2226 add_tsu_reg(TSU_FWSR);
2227 add_tsu_reg(TSU_FWINMK);
2228 add_tsu_reg(TSU_ADQT0);
2229 add_tsu_reg(TSU_ADQT1);
2230 add_tsu_reg(TSU_VTAG0);
2231 add_tsu_reg(TSU_VTAG1);
2232 }
2233 add_tsu_reg(TSU_ADSBSY);
2234 add_tsu_reg(TSU_TEN);
2235 add_tsu_reg(TSU_POST1);
2236 add_tsu_reg(TSU_POST2);
2237 add_tsu_reg(TSU_POST3);
2238 add_tsu_reg(TSU_POST4);
2239 /* This is the start of a table, not just a single register. */
2240 if (buf) {
2241 unsigned int i;
2242
2243 mark_reg_valid(TSU_ADRH0);
2244 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2245 *buf++ = ioread32(mdp->tsu_addr +
2246 mdp->reg_offset[TSU_ADRH0] +
2247 i * 4);
2248 }
2249 len += SH_ETH_TSU_CAM_ENTRIES * 2;
2250 }
2251
2252 #undef mark_reg_valid
2253 #undef add_reg_from
2254 #undef add_reg
2255 #undef add_tsu_reg
2256
2257 return len * 4;
2258 }
2259
2260 static int sh_eth_get_regs_len(struct net_device *ndev)
2261 {
2262 return __sh_eth_get_regs(ndev, NULL);
2263 }
2264
2265 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2266 void *buf)
2267 {
2268 struct sh_eth_private *mdp = netdev_priv(ndev);
2269
2270 regs->version = SH_ETH_REG_DUMP_VERSION;
2271
2272 pm_runtime_get_sync(&mdp->pdev->dev);
2273 __sh_eth_get_regs(ndev, buf);
2274 pm_runtime_put_sync(&mdp->pdev->dev);
2275 }
2276
2277 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2278 {
2279 struct sh_eth_private *mdp = netdev_priv(ndev);
2280 return mdp->msg_enable;
2281 }
2282
2283 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2284 {
2285 struct sh_eth_private *mdp = netdev_priv(ndev);
2286 mdp->msg_enable = value;
2287 }
2288
2289 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2290 "rx_current", "tx_current",
2291 "rx_dirty", "tx_dirty",
2292 };
2293 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
2294
2295 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2296 {
2297 switch (sset) {
2298 case ETH_SS_STATS:
2299 return SH_ETH_STATS_LEN;
2300 default:
2301 return -EOPNOTSUPP;
2302 }
2303 }
2304
2305 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2306 struct ethtool_stats *stats, u64 *data)
2307 {
2308 struct sh_eth_private *mdp = netdev_priv(ndev);
2309 int i = 0;
2310
2311 /* device-specific stats */
2312 data[i++] = mdp->cur_rx;
2313 data[i++] = mdp->cur_tx;
2314 data[i++] = mdp->dirty_rx;
2315 data[i++] = mdp->dirty_tx;
2316 }
2317
2318 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2319 {
2320 switch (stringset) {
2321 case ETH_SS_STATS:
2322 memcpy(data, *sh_eth_gstrings_stats,
2323 sizeof(sh_eth_gstrings_stats));
2324 break;
2325 }
2326 }
2327
2328 static void sh_eth_get_ringparam(struct net_device *ndev,
2329 struct ethtool_ringparam *ring)
2330 {
2331 struct sh_eth_private *mdp = netdev_priv(ndev);
2332
2333 ring->rx_max_pending = RX_RING_MAX;
2334 ring->tx_max_pending = TX_RING_MAX;
2335 ring->rx_pending = mdp->num_rx_ring;
2336 ring->tx_pending = mdp->num_tx_ring;
2337 }
2338
2339 static int sh_eth_set_ringparam(struct net_device *ndev,
2340 struct ethtool_ringparam *ring)
2341 {
2342 struct sh_eth_private *mdp = netdev_priv(ndev);
2343 int ret;
2344
2345 if (ring->tx_pending > TX_RING_MAX ||
2346 ring->rx_pending > RX_RING_MAX ||
2347 ring->tx_pending < TX_RING_MIN ||
2348 ring->rx_pending < RX_RING_MIN)
2349 return -EINVAL;
2350 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2351 return -EINVAL;
2352
2353 if (netif_running(ndev)) {
2354 netif_device_detach(ndev);
2355 netif_tx_disable(ndev);
2356
2357 /* Serialise with the interrupt handler and NAPI, then
2358 * disable interrupts. We have to clear the
2359 * irq_enabled flag first to ensure that interrupts
2360 * won't be re-enabled.
2361 */
2362 mdp->irq_enabled = false;
2363 synchronize_irq(ndev->irq);
2364 napi_synchronize(&mdp->napi);
2365 sh_eth_write(ndev, 0x0000, EESIPR);
2366
2367 sh_eth_dev_exit(ndev);
2368
2369 /* Free all the skbuffs in the Rx queue and the DMA buffers. */
2370 sh_eth_ring_free(ndev);
2371 }
2372
2373 /* Set new parameters */
2374 mdp->num_rx_ring = ring->rx_pending;
2375 mdp->num_tx_ring = ring->tx_pending;
2376
2377 if (netif_running(ndev)) {
2378 ret = sh_eth_ring_init(ndev);
2379 if (ret < 0) {
2380 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2381 __func__);
2382 return ret;
2383 }
2384 ret = sh_eth_dev_init(ndev);
2385 if (ret < 0) {
2386 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2387 __func__);
2388 return ret;
2389 }
2390
2391 netif_device_attach(ndev);
2392 }
2393
2394 return 0;
2395 }
2396
2397 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2398 {
2399 struct sh_eth_private *mdp = netdev_priv(ndev);
2400
2401 wol->supported = 0;
2402 wol->wolopts = 0;
2403
2404 if (mdp->cd->magic) {
2405 wol->supported = WAKE_MAGIC;
2406 wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2407 }
2408 }
2409
2410 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2411 {
2412 struct sh_eth_private *mdp = netdev_priv(ndev);
2413
2414 if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2415 return -EOPNOTSUPP;
2416
2417 mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2418
2419 device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2420
2421 return 0;
2422 }
2423
2424 static const struct ethtool_ops sh_eth_ethtool_ops = {
2425 .get_regs_len = sh_eth_get_regs_len,
2426 .get_regs = sh_eth_get_regs,
2427 .nway_reset = phy_ethtool_nway_reset,
2428 .get_msglevel = sh_eth_get_msglevel,
2429 .set_msglevel = sh_eth_set_msglevel,
2430 .get_link = ethtool_op_get_link,
2431 .get_strings = sh_eth_get_strings,
2432 .get_ethtool_stats = sh_eth_get_ethtool_stats,
2433 .get_sset_count = sh_eth_get_sset_count,
2434 .get_ringparam = sh_eth_get_ringparam,
2435 .set_ringparam = sh_eth_set_ringparam,
2436 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2437 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2438 .get_wol = sh_eth_get_wol,
2439 .set_wol = sh_eth_set_wol,
2440 };
2441
2442 /* network device open function */
2443 static int sh_eth_open(struct net_device *ndev)
2444 {
2445 struct sh_eth_private *mdp = netdev_priv(ndev);
2446 int ret;
2447
2448 pm_runtime_get_sync(&mdp->pdev->dev);
2449
2450 napi_enable(&mdp->napi);
2451
2452 ret = request_irq(ndev->irq, sh_eth_interrupt,
2453 mdp->cd->irq_flags, ndev->name, ndev);
2454 if (ret) {
2455 netdev_err(ndev, "Can not assign IRQ number\n");
2456 goto out_napi_off;
2457 }
2458
2459 /* Descriptor set */
2460 ret = sh_eth_ring_init(ndev);
2461 if (ret)
2462 goto out_free_irq;
2463
2464 /* device init */
2465 ret = sh_eth_dev_init(ndev);
2466 if (ret)
2467 goto out_free_irq;
2468
2469 /* PHY control start*/
2470 ret = sh_eth_phy_start(ndev);
2471 if (ret)
2472 goto out_free_irq;
2473
2474 netif_start_queue(ndev);
2475
2476 mdp->is_opened = 1;
2477
2478 return ret;
2479
2480 out_free_irq:
2481 free_irq(ndev->irq, ndev);
2482 out_napi_off:
2483 napi_disable(&mdp->napi);
2484 pm_runtime_put_sync(&mdp->pdev->dev);
2485 return ret;
2486 }
2487
2488 /* Timeout function */
2489 static void sh_eth_tx_timeout(struct net_device *ndev, unsigned int txqueue)
2490 {
2491 struct sh_eth_private *mdp = netdev_priv(ndev);
2492 struct sh_eth_rxdesc *rxdesc;
2493 int i;
2494
2495 netif_stop_queue(ndev);
2496
2497 netif_err(mdp, timer, ndev,
2498 "transmit timed out, status %8.8x, resetting...\n",
2499 sh_eth_read(ndev, EESR));
2500
2501 /* tx_errors count up */
2502 ndev->stats.tx_errors++;
2503
2504 /* Free all the skbuffs in the Rx queue. */
2505 for (i = 0; i < mdp->num_rx_ring; i++) {
2506 rxdesc = &mdp->rx_ring[i];
2507 rxdesc->status = cpu_to_le32(0);
2508 rxdesc->addr = cpu_to_le32(0xBADF00D0);
2509 dev_kfree_skb(mdp->rx_skbuff[i]);
2510 mdp->rx_skbuff[i] = NULL;
2511 }
2512 for (i = 0; i < mdp->num_tx_ring; i++) {
2513 dev_kfree_skb(mdp->tx_skbuff[i]);
2514 mdp->tx_skbuff[i] = NULL;
2515 }
2516
2517 /* device init */
2518 sh_eth_dev_init(ndev);
2519
2520 netif_start_queue(ndev);
2521 }
2522
2523 /* Packet transmit function */
2524 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2525 {
2526 struct sh_eth_private *mdp = netdev_priv(ndev);
2527 struct sh_eth_txdesc *txdesc;
2528 dma_addr_t dma_addr;
2529 u32 entry;
2530 unsigned long flags;
2531
2532 spin_lock_irqsave(&mdp->lock, flags);
2533 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2534 if (!sh_eth_tx_free(ndev, true)) {
2535 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2536 netif_stop_queue(ndev);
2537 spin_unlock_irqrestore(&mdp->lock, flags);
2538 return NETDEV_TX_BUSY;
2539 }
2540 }
2541 spin_unlock_irqrestore(&mdp->lock, flags);
2542
2543 if (skb_put_padto(skb, ETH_ZLEN))
2544 return NETDEV_TX_OK;
2545
2546 entry = mdp->cur_tx % mdp->num_tx_ring;
2547 mdp->tx_skbuff[entry] = skb;
2548 txdesc = &mdp->tx_ring[entry];
2549 /* soft swap. */
2550 if (!mdp->cd->hw_swap)
2551 sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2552 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2553 DMA_TO_DEVICE);
2554 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2555 kfree_skb(skb);
2556 return NETDEV_TX_OK;
2557 }
2558 txdesc->addr = cpu_to_le32(dma_addr);
2559 txdesc->len = cpu_to_le32(skb->len << 16);
2560
2561 dma_wmb(); /* TACT bit must be set after all the above writes */
2562 if (entry >= mdp->num_tx_ring - 1)
2563 txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2564 else
2565 txdesc->status |= cpu_to_le32(TD_TACT);
2566
2567 mdp->cur_tx++;
2568
2569 if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2570 sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2571
2572 return NETDEV_TX_OK;
2573 }
2574
2575 /* The statistics registers have write-clear behaviour, which means we
2576 * will lose any increment between the read and write. We mitigate
2577 * this by only clearing when we read a non-zero value, so we will
2578 * never falsely report a total of zero.
2579 */
2580 static void
2581 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2582 {
2583 u32 delta = sh_eth_read(ndev, reg);
2584
2585 if (delta) {
2586 *stat += delta;
2587 sh_eth_write(ndev, 0, reg);
2588 }
2589 }
2590
2591 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2592 {
2593 struct sh_eth_private *mdp = netdev_priv(ndev);
2594
2595 if (mdp->cd->no_tx_cntrs)
2596 return &ndev->stats;
2597
2598 if (!mdp->is_opened)
2599 return &ndev->stats;
2600
2601 sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2602 sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2603 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2604
2605 if (mdp->cd->cexcr) {
2606 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2607 CERCR);
2608 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2609 CEECR);
2610 } else {
2611 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2612 CNDCR);
2613 }
2614
2615 return &ndev->stats;
2616 }
2617
2618 /* device close function */
2619 static int sh_eth_close(struct net_device *ndev)
2620 {
2621 struct sh_eth_private *mdp = netdev_priv(ndev);
2622
2623 netif_stop_queue(ndev);
2624
2625 /* Serialise with the interrupt handler and NAPI, then disable
2626 * interrupts. We have to clear the irq_enabled flag first to
2627 * ensure that interrupts won't be re-enabled.
2628 */
2629 mdp->irq_enabled = false;
2630 synchronize_irq(ndev->irq);
2631 napi_disable(&mdp->napi);
2632 sh_eth_write(ndev, 0x0000, EESIPR);
2633
2634 sh_eth_dev_exit(ndev);
2635
2636 /* PHY Disconnect */
2637 if (ndev->phydev) {
2638 phy_stop(ndev->phydev);
2639 phy_disconnect(ndev->phydev);
2640 }
2641
2642 free_irq(ndev->irq, ndev);
2643
2644 /* Free all the skbuffs in the Rx queue and the DMA buffer. */
2645 sh_eth_ring_free(ndev);
2646
2647 pm_runtime_put_sync(&mdp->pdev->dev);
2648
2649 mdp->is_opened = 0;
2650
2651 return 0;
2652 }
2653
2654 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2655 {
2656 if (netif_running(ndev))
2657 return -EBUSY;
2658
2659 ndev->mtu = new_mtu;
2660 netdev_update_features(ndev);
2661
2662 return 0;
2663 }
2664
2665 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2666 static u32 sh_eth_tsu_get_post_mask(int entry)
2667 {
2668 return 0x0f << (28 - ((entry % 8) * 4));
2669 }
2670
2671 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2672 {
2673 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2674 }
2675
2676 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2677 int entry)
2678 {
2679 struct sh_eth_private *mdp = netdev_priv(ndev);
2680 int reg = TSU_POST1 + entry / 8;
2681 u32 tmp;
2682
2683 tmp = sh_eth_tsu_read(mdp, reg);
2684 sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg);
2685 }
2686
2687 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2688 int entry)
2689 {
2690 struct sh_eth_private *mdp = netdev_priv(ndev);
2691 int reg = TSU_POST1 + entry / 8;
2692 u32 post_mask, ref_mask, tmp;
2693
2694 post_mask = sh_eth_tsu_get_post_mask(entry);
2695 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2696
2697 tmp = sh_eth_tsu_read(mdp, reg);
2698 sh_eth_tsu_write(mdp, tmp & ~post_mask, reg);
2699
2700 /* If other port enables, the function returns "true" */
2701 return tmp & ref_mask;
2702 }
2703
2704 static int sh_eth_tsu_busy(struct net_device *ndev)
2705 {
2706 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2707 struct sh_eth_private *mdp = netdev_priv(ndev);
2708
2709 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2710 udelay(10);
2711 timeout--;
2712 if (timeout <= 0) {
2713 netdev_err(ndev, "%s: timeout\n", __func__);
2714 return -ETIMEDOUT;
2715 }
2716 }
2717
2718 return 0;
2719 }
2720
2721 static int sh_eth_tsu_write_entry(struct net_device *ndev, u16 offset,
2722 const u8 *addr)
2723 {
2724 struct sh_eth_private *mdp = netdev_priv(ndev);
2725 u32 val;
2726
2727 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2728 iowrite32(val, mdp->tsu_addr + offset);
2729 if (sh_eth_tsu_busy(ndev) < 0)
2730 return -EBUSY;
2731
2732 val = addr[4] << 8 | addr[5];
2733 iowrite32(val, mdp->tsu_addr + offset + 4);
2734 if (sh_eth_tsu_busy(ndev) < 0)
2735 return -EBUSY;
2736
2737 return 0;
2738 }
2739
2740 static void sh_eth_tsu_read_entry(struct net_device *ndev, u16 offset, u8 *addr)
2741 {
2742 struct sh_eth_private *mdp = netdev_priv(ndev);
2743 u32 val;
2744
2745 val = ioread32(mdp->tsu_addr + offset);
2746 addr[0] = (val >> 24) & 0xff;
2747 addr[1] = (val >> 16) & 0xff;
2748 addr[2] = (val >> 8) & 0xff;
2749 addr[3] = val & 0xff;
2750 val = ioread32(mdp->tsu_addr + offset + 4);
2751 addr[4] = (val >> 8) & 0xff;
2752 addr[5] = val & 0xff;
2753 }
2754
2755
2756 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2757 {
2758 struct sh_eth_private *mdp = netdev_priv(ndev);
2759 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2760 int i;
2761 u8 c_addr[ETH_ALEN];
2762
2763 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2764 sh_eth_tsu_read_entry(ndev, reg_offset, c_addr);
2765 if (ether_addr_equal(addr, c_addr))
2766 return i;
2767 }
2768
2769 return -ENOENT;
2770 }
2771
2772 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2773 {
2774 u8 blank[ETH_ALEN];
2775 int entry;
2776
2777 memset(blank, 0, sizeof(blank));
2778 entry = sh_eth_tsu_find_entry(ndev, blank);
2779 return (entry < 0) ? -ENOMEM : entry;
2780 }
2781
2782 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2783 int entry)
2784 {
2785 struct sh_eth_private *mdp = netdev_priv(ndev);
2786 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2787 int ret;
2788 u8 blank[ETH_ALEN];
2789
2790 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2791 ~(1 << (31 - entry)), TSU_TEN);
2792
2793 memset(blank, 0, sizeof(blank));
2794 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2795 if (ret < 0)
2796 return ret;
2797 return 0;
2798 }
2799
2800 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2801 {
2802 struct sh_eth_private *mdp = netdev_priv(ndev);
2803 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2804 int i, ret;
2805
2806 if (!mdp->cd->tsu)
2807 return 0;
2808
2809 i = sh_eth_tsu_find_entry(ndev, addr);
2810 if (i < 0) {
2811 /* No entry found, create one */
2812 i = sh_eth_tsu_find_empty(ndev);
2813 if (i < 0)
2814 return -ENOMEM;
2815 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2816 if (ret < 0)
2817 return ret;
2818
2819 /* Enable the entry */
2820 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2821 (1 << (31 - i)), TSU_TEN);
2822 }
2823
2824 /* Entry found or created, enable POST */
2825 sh_eth_tsu_enable_cam_entry_post(ndev, i);
2826
2827 return 0;
2828 }
2829
2830 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2831 {
2832 struct sh_eth_private *mdp = netdev_priv(ndev);
2833 int i, ret;
2834
2835 if (!mdp->cd->tsu)
2836 return 0;
2837
2838 i = sh_eth_tsu_find_entry(ndev, addr);
2839 if (i) {
2840 /* Entry found */
2841 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2842 goto done;
2843
2844 /* Disable the entry if both ports was disabled */
2845 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2846 if (ret < 0)
2847 return ret;
2848 }
2849 done:
2850 return 0;
2851 }
2852
2853 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2854 {
2855 struct sh_eth_private *mdp = netdev_priv(ndev);
2856 int i, ret;
2857
2858 if (!mdp->cd->tsu)
2859 return 0;
2860
2861 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2862 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2863 continue;
2864
2865 /* Disable the entry if both ports was disabled */
2866 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2867 if (ret < 0)
2868 return ret;
2869 }
2870
2871 return 0;
2872 }
2873
2874 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2875 {
2876 struct sh_eth_private *mdp = netdev_priv(ndev);
2877 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2878 u8 addr[ETH_ALEN];
2879 int i;
2880
2881 if (!mdp->cd->tsu)
2882 return;
2883
2884 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2885 sh_eth_tsu_read_entry(ndev, reg_offset, addr);
2886 if (is_multicast_ether_addr(addr))
2887 sh_eth_tsu_del_entry(ndev, addr);
2888 }
2889 }
2890
2891 /* Update promiscuous flag and multicast filter */
2892 static void sh_eth_set_rx_mode(struct net_device *ndev)
2893 {
2894 struct sh_eth_private *mdp = netdev_priv(ndev);
2895 u32 ecmr_bits;
2896 int mcast_all = 0;
2897 unsigned long flags;
2898
2899 spin_lock_irqsave(&mdp->lock, flags);
2900 /* Initial condition is MCT = 1, PRM = 0.
2901 * Depending on ndev->flags, set PRM or clear MCT
2902 */
2903 ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2904 if (mdp->cd->tsu)
2905 ecmr_bits |= ECMR_MCT;
2906
2907 if (!(ndev->flags & IFF_MULTICAST)) {
2908 sh_eth_tsu_purge_mcast(ndev);
2909 mcast_all = 1;
2910 }
2911 if (ndev->flags & IFF_ALLMULTI) {
2912 sh_eth_tsu_purge_mcast(ndev);
2913 ecmr_bits &= ~ECMR_MCT;
2914 mcast_all = 1;
2915 }
2916
2917 if (ndev->flags & IFF_PROMISC) {
2918 sh_eth_tsu_purge_all(ndev);
2919 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2920 } else if (mdp->cd->tsu) {
2921 struct netdev_hw_addr *ha;
2922 netdev_for_each_mc_addr(ha, ndev) {
2923 if (mcast_all && is_multicast_ether_addr(ha->addr))
2924 continue;
2925
2926 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2927 if (!mcast_all) {
2928 sh_eth_tsu_purge_mcast(ndev);
2929 ecmr_bits &= ~ECMR_MCT;
2930 mcast_all = 1;
2931 }
2932 }
2933 }
2934 }
2935
2936 /* update the ethernet mode */
2937 sh_eth_write(ndev, ecmr_bits, ECMR);
2938
2939 spin_unlock_irqrestore(&mdp->lock, flags);
2940 }
2941
2942 static void sh_eth_set_rx_csum(struct net_device *ndev, bool enable)
2943 {
2944 struct sh_eth_private *mdp = netdev_priv(ndev);
2945 unsigned long flags;
2946
2947 spin_lock_irqsave(&mdp->lock, flags);
2948
2949 /* Disable TX and RX */
2950 sh_eth_rcv_snd_disable(ndev);
2951
2952 /* Modify RX Checksum setting */
2953 sh_eth_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2954
2955 /* Enable TX and RX */
2956 sh_eth_rcv_snd_enable(ndev);
2957
2958 spin_unlock_irqrestore(&mdp->lock, flags);
2959 }
2960
2961 static int sh_eth_set_features(struct net_device *ndev,
2962 netdev_features_t features)
2963 {
2964 netdev_features_t changed = ndev->features ^ features;
2965 struct sh_eth_private *mdp = netdev_priv(ndev);
2966
2967 if (changed & NETIF_F_RXCSUM && mdp->cd->rx_csum)
2968 sh_eth_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2969
2970 ndev->features = features;
2971
2972 return 0;
2973 }
2974
2975 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2976 {
2977 if (!mdp->port)
2978 return TSU_VTAG0;
2979 else
2980 return TSU_VTAG1;
2981 }
2982
2983 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2984 __be16 proto, u16 vid)
2985 {
2986 struct sh_eth_private *mdp = netdev_priv(ndev);
2987 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2988
2989 if (unlikely(!mdp->cd->tsu))
2990 return -EPERM;
2991
2992 /* No filtering if vid = 0 */
2993 if (!vid)
2994 return 0;
2995
2996 mdp->vlan_num_ids++;
2997
2998 /* The controller has one VLAN tag HW filter. So, if the filter is
2999 * already enabled, the driver disables it and the filte
3000 */
3001 if (mdp->vlan_num_ids > 1) {
3002 /* disable VLAN filter */
3003 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
3004 return 0;
3005 }
3006
3007 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
3008 vtag_reg_index);
3009
3010 return 0;
3011 }
3012
3013 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
3014 __be16 proto, u16 vid)
3015 {
3016 struct sh_eth_private *mdp = netdev_priv(ndev);
3017 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
3018
3019 if (unlikely(!mdp->cd->tsu))
3020 return -EPERM;
3021
3022 /* No filtering if vid = 0 */
3023 if (!vid)
3024 return 0;
3025
3026 mdp->vlan_num_ids--;
3027 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
3028
3029 return 0;
3030 }
3031
3032 /* SuperH's TSU register init function */
3033 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
3034 {
3035 if (!mdp->cd->dual_port) {
3036 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
3037 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
3038 TSU_FWSLC); /* Enable POST registers */
3039 return;
3040 }
3041
3042 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
3043 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
3044 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
3045 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
3046 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
3047 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
3048 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
3049 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
3050 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
3051 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
3052 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
3053 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
3054 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
3055 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
3056 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
3057 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
3058 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
3059 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
3060 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
3061 }
3062
3063 /* MDIO bus release function */
3064 static int sh_mdio_release(struct sh_eth_private *mdp)
3065 {
3066 /* unregister mdio bus */
3067 mdiobus_unregister(mdp->mii_bus);
3068
3069 /* free bitbang info */
3070 free_mdio_bitbang(mdp->mii_bus);
3071
3072 return 0;
3073 }
3074
3075 /* MDIO bus init function */
3076 static int sh_mdio_init(struct sh_eth_private *mdp,
3077 struct sh_eth_plat_data *pd)
3078 {
3079 int ret;
3080 struct bb_info *bitbang;
3081 struct platform_device *pdev = mdp->pdev;
3082 struct device *dev = &mdp->pdev->dev;
3083
3084 /* create bit control struct for PHY */
3085 bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3086 if (!bitbang)
3087 return -ENOMEM;
3088
3089 /* bitbang init */
3090 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3091 bitbang->set_gate = pd->set_mdio_gate;
3092 bitbang->ctrl.ops = &bb_ops;
3093
3094 /* MII controller setting */
3095 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3096 if (!mdp->mii_bus)
3097 return -ENOMEM;
3098
3099 /* Hook up MII support for ethtool */
3100 mdp->mii_bus->name = "sh_mii";
3101 mdp->mii_bus->parent = dev;
3102 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3103 pdev->name, pdev->id);
3104
3105 /* register MDIO bus */
3106 if (pd->phy_irq > 0)
3107 mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3108
3109 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3110 if (ret)
3111 goto out_free_bus;
3112
3113 return 0;
3114
3115 out_free_bus:
3116 free_mdio_bitbang(mdp->mii_bus);
3117 return ret;
3118 }
3119
3120 static const u16 *sh_eth_get_register_offset(int register_type)
3121 {
3122 const u16 *reg_offset = NULL;
3123
3124 switch (register_type) {
3125 case SH_ETH_REG_GIGABIT:
3126 reg_offset = sh_eth_offset_gigabit;
3127 break;
3128 case SH_ETH_REG_FAST_RZ:
3129 reg_offset = sh_eth_offset_fast_rz;
3130 break;
3131 case SH_ETH_REG_FAST_RCAR:
3132 reg_offset = sh_eth_offset_fast_rcar;
3133 break;
3134 case SH_ETH_REG_FAST_SH4:
3135 reg_offset = sh_eth_offset_fast_sh4;
3136 break;
3137 case SH_ETH_REG_FAST_SH3_SH2:
3138 reg_offset = sh_eth_offset_fast_sh3_sh2;
3139 break;
3140 }
3141
3142 return reg_offset;
3143 }
3144
3145 static const struct net_device_ops sh_eth_netdev_ops = {
3146 .ndo_open = sh_eth_open,
3147 .ndo_stop = sh_eth_close,
3148 .ndo_start_xmit = sh_eth_start_xmit,
3149 .ndo_get_stats = sh_eth_get_stats,
3150 .ndo_set_rx_mode = sh_eth_set_rx_mode,
3151 .ndo_tx_timeout = sh_eth_tx_timeout,
3152 .ndo_do_ioctl = phy_do_ioctl_running,
3153 .ndo_change_mtu = sh_eth_change_mtu,
3154 .ndo_validate_addr = eth_validate_addr,
3155 .ndo_set_mac_address = eth_mac_addr,
3156 .ndo_set_features = sh_eth_set_features,
3157 };
3158
3159 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3160 .ndo_open = sh_eth_open,
3161 .ndo_stop = sh_eth_close,
3162 .ndo_start_xmit = sh_eth_start_xmit,
3163 .ndo_get_stats = sh_eth_get_stats,
3164 .ndo_set_rx_mode = sh_eth_set_rx_mode,
3165 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
3166 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
3167 .ndo_tx_timeout = sh_eth_tx_timeout,
3168 .ndo_do_ioctl = phy_do_ioctl_running,
3169 .ndo_change_mtu = sh_eth_change_mtu,
3170 .ndo_validate_addr = eth_validate_addr,
3171 .ndo_set_mac_address = eth_mac_addr,
3172 .ndo_set_features = sh_eth_set_features,
3173 };
3174
3175 #ifdef CONFIG_OF
3176 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3177 {
3178 struct device_node *np = dev->of_node;
3179 struct sh_eth_plat_data *pdata;
3180 phy_interface_t interface;
3181 const char *mac_addr;
3182 int ret;
3183
3184 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3185 if (!pdata)
3186 return NULL;
3187
3188 ret = of_get_phy_mode(np, &interface);
3189 if (ret)
3190 return NULL;
3191 pdata->phy_interface = interface;
3192
3193 mac_addr = of_get_mac_address(np);
3194 if (!IS_ERR(mac_addr))
3195 ether_addr_copy(pdata->mac_addr, mac_addr);
3196
3197 pdata->no_ether_link =
3198 of_property_read_bool(np, "renesas,no-ether-link");
3199 pdata->ether_link_active_low =
3200 of_property_read_bool(np, "renesas,ether-link-active-low");
3201
3202 return pdata;
3203 }
3204
3205 static const struct of_device_id sh_eth_match_table[] = {
3206 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3207 { .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3208 { .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3209 { .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3210 { .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3211 { .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3212 { .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3213 { .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3214 { .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3215 { .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data },
3216 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3217 { .compatible = "renesas,ether-r7s9210", .data = &r7s9210_data },
3218 { .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3219 { .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3220 { }
3221 };
3222 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3223 #else
3224 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3225 {
3226 return NULL;
3227 }
3228 #endif
3229
3230 static int sh_eth_drv_probe(struct platform_device *pdev)
3231 {
3232 struct resource *res;
3233 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3234 const struct platform_device_id *id = platform_get_device_id(pdev);
3235 struct sh_eth_private *mdp;
3236 struct net_device *ndev;
3237 int ret;
3238
3239 /* get base addr */
3240 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3241
3242 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3243 if (!ndev)
3244 return -ENOMEM;
3245
3246 pm_runtime_enable(&pdev->dev);
3247 pm_runtime_get_sync(&pdev->dev);
3248
3249 ret = platform_get_irq(pdev, 0);
3250 if (ret < 0)
3251 goto out_release;
3252 ndev->irq = ret;
3253
3254 SET_NETDEV_DEV(ndev, &pdev->dev);
3255
3256 mdp = netdev_priv(ndev);
3257 mdp->num_tx_ring = TX_RING_SIZE;
3258 mdp->num_rx_ring = RX_RING_SIZE;
3259 mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3260 if (IS_ERR(mdp->addr)) {
3261 ret = PTR_ERR(mdp->addr);
3262 goto out_release;
3263 }
3264
3265 ndev->base_addr = res->start;
3266
3267 spin_lock_init(&mdp->lock);
3268 mdp->pdev = pdev;
3269
3270 if (pdev->dev.of_node)
3271 pd = sh_eth_parse_dt(&pdev->dev);
3272 if (!pd) {
3273 dev_err(&pdev->dev, "no platform data\n");
3274 ret = -EINVAL;
3275 goto out_release;
3276 }
3277
3278 /* get PHY ID */
3279 mdp->phy_id = pd->phy;
3280 mdp->phy_interface = pd->phy_interface;
3281 mdp->no_ether_link = pd->no_ether_link;
3282 mdp->ether_link_active_low = pd->ether_link_active_low;
3283
3284 /* set cpu data */
3285 if (id)
3286 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3287 else
3288 mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3289
3290 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3291 if (!mdp->reg_offset) {
3292 dev_err(&pdev->dev, "Unknown register type (%d)\n",
3293 mdp->cd->register_type);
3294 ret = -EINVAL;
3295 goto out_release;
3296 }
3297 sh_eth_set_default_cpu_data(mdp->cd);
3298
3299 /* User's manual states max MTU should be 2048 but due to the
3300 * alignment calculations in sh_eth_ring_init() the practical
3301 * MTU is a bit less. Maybe this can be optimized some more.
3302 */
3303 ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3304 ndev->min_mtu = ETH_MIN_MTU;
3305
3306 if (mdp->cd->rx_csum) {
3307 ndev->features = NETIF_F_RXCSUM;
3308 ndev->hw_features = NETIF_F_RXCSUM;
3309 }
3310
3311 /* set function */
3312 if (mdp->cd->tsu)
3313 ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3314 else
3315 ndev->netdev_ops = &sh_eth_netdev_ops;
3316 ndev->ethtool_ops = &sh_eth_ethtool_ops;
3317 ndev->watchdog_timeo = TX_TIMEOUT;
3318
3319 /* debug message level */
3320 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3321
3322 /* read and set MAC address */
3323 read_mac_address(ndev, pd->mac_addr);
3324 if (!is_valid_ether_addr(ndev->dev_addr)) {
3325 dev_warn(&pdev->dev,
3326 "no valid MAC address supplied, using a random one.\n");
3327 eth_hw_addr_random(ndev);
3328 }
3329
3330 if (mdp->cd->tsu) {
3331 int port = pdev->id < 0 ? 0 : pdev->id % 2;
3332 struct resource *rtsu;
3333
3334 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3335 if (!rtsu) {
3336 dev_err(&pdev->dev, "no TSU resource\n");
3337 ret = -ENODEV;
3338 goto out_release;
3339 }
3340 /* We can only request the TSU region for the first port
3341 * of the two sharing this TSU for the probe to succeed...
3342 */
3343 if (port == 0 &&
3344 !devm_request_mem_region(&pdev->dev, rtsu->start,
3345 resource_size(rtsu),
3346 dev_name(&pdev->dev))) {
3347 dev_err(&pdev->dev, "can't request TSU resource.\n");
3348 ret = -EBUSY;
3349 goto out_release;
3350 }
3351 /* ioremap the TSU registers */
3352 mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3353 resource_size(rtsu));
3354 if (!mdp->tsu_addr) {
3355 dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3356 ret = -ENOMEM;
3357 goto out_release;
3358 }
3359 mdp->port = port;
3360 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3361
3362 /* Need to init only the first port of the two sharing a TSU */
3363 if (port == 0) {
3364 if (mdp->cd->chip_reset)
3365 mdp->cd->chip_reset(ndev);
3366
3367 /* TSU init (Init only)*/
3368 sh_eth_tsu_init(mdp);
3369 }
3370 }
3371
3372 if (mdp->cd->rmiimode)
3373 sh_eth_write(ndev, 0x1, RMIIMODE);
3374
3375 /* MDIO bus init */
3376 ret = sh_mdio_init(mdp, pd);
3377 if (ret) {
3378 if (ret != -EPROBE_DEFER)
3379 dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3380 goto out_release;
3381 }
3382
3383 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3384
3385 /* network device register */
3386 ret = register_netdev(ndev);
3387 if (ret)
3388 goto out_napi_del;
3389
3390 if (mdp->cd->magic)
3391 device_set_wakeup_capable(&pdev->dev, 1);
3392
3393 /* print device information */
3394 netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3395 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3396
3397 pm_runtime_put(&pdev->dev);
3398 platform_set_drvdata(pdev, ndev);
3399
3400 return ret;
3401
3402 out_napi_del:
3403 netif_napi_del(&mdp->napi);
3404 sh_mdio_release(mdp);
3405
3406 out_release:
3407 /* net_dev free */
3408 free_netdev(ndev);
3409
3410 pm_runtime_put(&pdev->dev);
3411 pm_runtime_disable(&pdev->dev);
3412 return ret;
3413 }
3414
3415 static int sh_eth_drv_remove(struct platform_device *pdev)
3416 {
3417 struct net_device *ndev = platform_get_drvdata(pdev);
3418 struct sh_eth_private *mdp = netdev_priv(ndev);
3419
3420 unregister_netdev(ndev);
3421 netif_napi_del(&mdp->napi);
3422 sh_mdio_release(mdp);
3423 pm_runtime_disable(&pdev->dev);
3424 free_netdev(ndev);
3425
3426 return 0;
3427 }
3428
3429 #ifdef CONFIG_PM
3430 #ifdef CONFIG_PM_SLEEP
3431 static int sh_eth_wol_setup(struct net_device *ndev)
3432 {
3433 struct sh_eth_private *mdp = netdev_priv(ndev);
3434
3435 /* Only allow ECI interrupts */
3436 synchronize_irq(ndev->irq);
3437 napi_disable(&mdp->napi);
3438 sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3439
3440 /* Enable MagicPacket */
3441 sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3442
3443 return enable_irq_wake(ndev->irq);
3444 }
3445
3446 static int sh_eth_wol_restore(struct net_device *ndev)
3447 {
3448 struct sh_eth_private *mdp = netdev_priv(ndev);
3449 int ret;
3450
3451 napi_enable(&mdp->napi);
3452
3453 /* Disable MagicPacket */
3454 sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3455
3456 /* The device needs to be reset to restore MagicPacket logic
3457 * for next wakeup. If we close and open the device it will
3458 * both be reset and all registers restored. This is what
3459 * happens during suspend and resume without WoL enabled.
3460 */
3461 ret = sh_eth_close(ndev);
3462 if (ret < 0)
3463 return ret;
3464 ret = sh_eth_open(ndev);
3465 if (ret < 0)
3466 return ret;
3467
3468 return disable_irq_wake(ndev->irq);
3469 }
3470
3471 static int sh_eth_suspend(struct device *dev)
3472 {
3473 struct net_device *ndev = dev_get_drvdata(dev);
3474 struct sh_eth_private *mdp = netdev_priv(ndev);
3475 int ret = 0;
3476
3477 if (!netif_running(ndev))
3478 return 0;
3479
3480 netif_device_detach(ndev);
3481
3482 if (mdp->wol_enabled)
3483 ret = sh_eth_wol_setup(ndev);
3484 else
3485 ret = sh_eth_close(ndev);
3486
3487 return ret;
3488 }
3489
3490 static int sh_eth_resume(struct device *dev)
3491 {
3492 struct net_device *ndev = dev_get_drvdata(dev);
3493 struct sh_eth_private *mdp = netdev_priv(ndev);
3494 int ret = 0;
3495
3496 if (!netif_running(ndev))
3497 return 0;
3498
3499 if (mdp->wol_enabled)
3500 ret = sh_eth_wol_restore(ndev);
3501 else
3502 ret = sh_eth_open(ndev);
3503
3504 if (ret < 0)
3505 return ret;
3506
3507 netif_device_attach(ndev);
3508
3509 return ret;
3510 }
3511 #endif
3512
3513 static int sh_eth_runtime_nop(struct device *dev)
3514 {
3515 /* Runtime PM callback shared between ->runtime_suspend()
3516 * and ->runtime_resume(). Simply returns success.
3517 *
3518 * This driver re-initializes all registers after
3519 * pm_runtime_get_sync() anyway so there is no need
3520 * to save and restore registers here.
3521 */
3522 return 0;
3523 }
3524
3525 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3526 SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3527 SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3528 };
3529 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3530 #else
3531 #define SH_ETH_PM_OPS NULL
3532 #endif
3533
3534 static const struct platform_device_id sh_eth_id_table[] = {
3535 { "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3536 { "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3537 { "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3538 { "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3539 { "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3540 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3541 { "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3542 { }
3543 };
3544 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3545
3546 static struct platform_driver sh_eth_driver = {
3547 .probe = sh_eth_drv_probe,
3548 .remove = sh_eth_drv_remove,
3549 .id_table = sh_eth_id_table,
3550 .driver = {
3551 .name = CARDNAME,
3552 .pm = SH_ETH_PM_OPS,
3553 .of_match_table = of_match_ptr(sh_eth_match_table),
3554 },
3555 };
3556
3557 module_platform_driver(sh_eth_driver);
3558
3559 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3560 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3561 MODULE_LICENSE("GPL v2");