netdev: pass the stuck queue to the timeout handler
[openwrt/staging/blogic.git] / drivers / net / ethernet / marvell / skge.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
4 * Ethernet adapters. Based on earlier sk98lin, e100 and
5 * FreeBSD if_sk drivers.
6 *
7 * This driver intentionally does not support all the features
8 * of the original driver such as link fail-over and link management because
9 * those should be done at higher levels.
10 *
11 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/in.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/ethtool.h>
23 #include <linux/pci.h>
24 #include <linux/if_vlan.h>
25 #include <linux/ip.h>
26 #include <linux/delay.h>
27 #include <linux/crc32.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/mii.h>
33 #include <linux/slab.h>
34 #include <linux/dmi.h>
35 #include <linux/prefetch.h>
36 #include <asm/irq.h>
37
38 #include "skge.h"
39
40 #define DRV_NAME "skge"
41 #define DRV_VERSION "1.14"
42
43 #define DEFAULT_TX_RING_SIZE 128
44 #define DEFAULT_RX_RING_SIZE 512
45 #define MAX_TX_RING_SIZE 1024
46 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
47 #define MAX_RX_RING_SIZE 4096
48 #define RX_COPY_THRESHOLD 128
49 #define RX_BUF_SIZE 1536
50 #define PHY_RETRIES 1000
51 #define ETH_JUMBO_MTU 9000
52 #define TX_WATCHDOG (5 * HZ)
53 #define NAPI_WEIGHT 64
54 #define BLINK_MS 250
55 #define LINK_HZ HZ
56
57 #define SKGE_EEPROM_MAGIC 0x9933aabb
58
59
60 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
61 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
62 MODULE_LICENSE("GPL");
63 MODULE_VERSION(DRV_VERSION);
64
65 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
66 NETIF_MSG_LINK | NETIF_MSG_IFUP |
67 NETIF_MSG_IFDOWN);
68
69 static int debug = -1; /* defaults above */
70 module_param(debug, int, 0);
71 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
72
73 static const struct pci_device_id skge_id_table[] = {
74 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) }, /* 3Com 3C940 */
75 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) }, /* 3Com 3C940B */
76 #ifdef CONFIG_SKGE_GENESIS
77 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
78 #endif
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* D-Link DGE-530T (rev.B) */
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) }, /* D-Link DGE-530T */
82 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) }, /* D-Link DGE-530T Rev C1 */
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */
84 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
85 { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, /* CNet PowerG-2000 */
86 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) }, /* Linksys EG1064 v2 */
87 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
88 { 0 }
89 };
90 MODULE_DEVICE_TABLE(pci, skge_id_table);
91
92 static int skge_up(struct net_device *dev);
93 static int skge_down(struct net_device *dev);
94 static void skge_phy_reset(struct skge_port *skge);
95 static void skge_tx_clean(struct net_device *dev);
96 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
98 static void genesis_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_get_stats(struct skge_port *skge, u64 *data);
100 static void yukon_init(struct skge_hw *hw, int port);
101 static void genesis_mac_init(struct skge_hw *hw, int port);
102 static void genesis_link_up(struct skge_port *skge);
103 static void skge_set_multicast(struct net_device *dev);
104 static irqreturn_t skge_intr(int irq, void *dev_id);
105
106 /* Avoid conditionals by using array */
107 static const int txqaddr[] = { Q_XA1, Q_XA2 };
108 static const int rxqaddr[] = { Q_R1, Q_R2 };
109 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
110 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
111 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
112 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
113
114 static inline bool is_genesis(const struct skge_hw *hw)
115 {
116 #ifdef CONFIG_SKGE_GENESIS
117 return hw->chip_id == CHIP_ID_GENESIS;
118 #else
119 return false;
120 #endif
121 }
122
123 static int skge_get_regs_len(struct net_device *dev)
124 {
125 return 0x4000;
126 }
127
128 /*
129 * Returns copy of whole control register region
130 * Note: skip RAM address register because accessing it will
131 * cause bus hangs!
132 */
133 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
134 void *p)
135 {
136 const struct skge_port *skge = netdev_priv(dev);
137 const void __iomem *io = skge->hw->regs;
138
139 regs->version = 1;
140 memset(p, 0, regs->len);
141 memcpy_fromio(p, io, B3_RAM_ADDR);
142
143 if (regs->len > B3_RI_WTO_R1) {
144 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
145 regs->len - B3_RI_WTO_R1);
146 }
147 }
148
149 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
150 static u32 wol_supported(const struct skge_hw *hw)
151 {
152 if (is_genesis(hw))
153 return 0;
154
155 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
156 return 0;
157
158 return WAKE_MAGIC | WAKE_PHY;
159 }
160
161 static void skge_wol_init(struct skge_port *skge)
162 {
163 struct skge_hw *hw = skge->hw;
164 int port = skge->port;
165 u16 ctrl;
166
167 skge_write16(hw, B0_CTST, CS_RST_CLR);
168 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
169
170 /* Turn on Vaux */
171 skge_write8(hw, B0_POWER_CTRL,
172 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
173
174 /* WA code for COMA mode -- clear PHY reset */
175 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
176 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
177 u32 reg = skge_read32(hw, B2_GP_IO);
178 reg |= GP_DIR_9;
179 reg &= ~GP_IO_9;
180 skge_write32(hw, B2_GP_IO, reg);
181 }
182
183 skge_write32(hw, SK_REG(port, GPHY_CTRL),
184 GPC_DIS_SLEEP |
185 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
186 GPC_ANEG_1 | GPC_RST_SET);
187
188 skge_write32(hw, SK_REG(port, GPHY_CTRL),
189 GPC_DIS_SLEEP |
190 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
191 GPC_ANEG_1 | GPC_RST_CLR);
192
193 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
194
195 /* Force to 10/100 skge_reset will re-enable on resume */
196 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
197 (PHY_AN_100FULL | PHY_AN_100HALF |
198 PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
199 /* no 1000 HD/FD */
200 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
201 gm_phy_write(hw, port, PHY_MARV_CTRL,
202 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
203 PHY_CT_RE_CFG | PHY_CT_DUP_MD);
204
205
206 /* Set GMAC to no flow control and auto update for speed/duplex */
207 gma_write16(hw, port, GM_GP_CTRL,
208 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
209 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
210
211 /* Set WOL address */
212 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
213 skge->netdev->dev_addr, ETH_ALEN);
214
215 /* Turn on appropriate WOL control bits */
216 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
217 ctrl = 0;
218 if (skge->wol & WAKE_PHY)
219 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
220 else
221 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
222
223 if (skge->wol & WAKE_MAGIC)
224 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
225 else
226 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
227
228 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
229 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
230
231 /* block receiver */
232 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
233 }
234
235 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
236 {
237 struct skge_port *skge = netdev_priv(dev);
238
239 wol->supported = wol_supported(skge->hw);
240 wol->wolopts = skge->wol;
241 }
242
243 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
244 {
245 struct skge_port *skge = netdev_priv(dev);
246 struct skge_hw *hw = skge->hw;
247
248 if ((wol->wolopts & ~wol_supported(hw)) ||
249 !device_can_wakeup(&hw->pdev->dev))
250 return -EOPNOTSUPP;
251
252 skge->wol = wol->wolopts;
253
254 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
255
256 return 0;
257 }
258
259 /* Determine supported/advertised modes based on hardware.
260 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
261 */
262 static u32 skge_supported_modes(const struct skge_hw *hw)
263 {
264 u32 supported;
265
266 if (hw->copper) {
267 supported = (SUPPORTED_10baseT_Half |
268 SUPPORTED_10baseT_Full |
269 SUPPORTED_100baseT_Half |
270 SUPPORTED_100baseT_Full |
271 SUPPORTED_1000baseT_Half |
272 SUPPORTED_1000baseT_Full |
273 SUPPORTED_Autoneg |
274 SUPPORTED_TP);
275
276 if (is_genesis(hw))
277 supported &= ~(SUPPORTED_10baseT_Half |
278 SUPPORTED_10baseT_Full |
279 SUPPORTED_100baseT_Half |
280 SUPPORTED_100baseT_Full);
281
282 else if (hw->chip_id == CHIP_ID_YUKON)
283 supported &= ~SUPPORTED_1000baseT_Half;
284 } else
285 supported = (SUPPORTED_1000baseT_Full |
286 SUPPORTED_1000baseT_Half |
287 SUPPORTED_FIBRE |
288 SUPPORTED_Autoneg);
289
290 return supported;
291 }
292
293 static int skge_get_link_ksettings(struct net_device *dev,
294 struct ethtool_link_ksettings *cmd)
295 {
296 struct skge_port *skge = netdev_priv(dev);
297 struct skge_hw *hw = skge->hw;
298 u32 supported, advertising;
299
300 supported = skge_supported_modes(hw);
301
302 if (hw->copper) {
303 cmd->base.port = PORT_TP;
304 cmd->base.phy_address = hw->phy_addr;
305 } else
306 cmd->base.port = PORT_FIBRE;
307
308 advertising = skge->advertising;
309 cmd->base.autoneg = skge->autoneg;
310 cmd->base.speed = skge->speed;
311 cmd->base.duplex = skge->duplex;
312
313 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
314 supported);
315 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
316 advertising);
317
318 return 0;
319 }
320
321 static int skge_set_link_ksettings(struct net_device *dev,
322 const struct ethtool_link_ksettings *cmd)
323 {
324 struct skge_port *skge = netdev_priv(dev);
325 const struct skge_hw *hw = skge->hw;
326 u32 supported = skge_supported_modes(hw);
327 int err = 0;
328 u32 advertising;
329
330 ethtool_convert_link_mode_to_legacy_u32(&advertising,
331 cmd->link_modes.advertising);
332
333 if (cmd->base.autoneg == AUTONEG_ENABLE) {
334 advertising = supported;
335 skge->duplex = -1;
336 skge->speed = -1;
337 } else {
338 u32 setting;
339 u32 speed = cmd->base.speed;
340
341 switch (speed) {
342 case SPEED_1000:
343 if (cmd->base.duplex == DUPLEX_FULL)
344 setting = SUPPORTED_1000baseT_Full;
345 else if (cmd->base.duplex == DUPLEX_HALF)
346 setting = SUPPORTED_1000baseT_Half;
347 else
348 return -EINVAL;
349 break;
350 case SPEED_100:
351 if (cmd->base.duplex == DUPLEX_FULL)
352 setting = SUPPORTED_100baseT_Full;
353 else if (cmd->base.duplex == DUPLEX_HALF)
354 setting = SUPPORTED_100baseT_Half;
355 else
356 return -EINVAL;
357 break;
358
359 case SPEED_10:
360 if (cmd->base.duplex == DUPLEX_FULL)
361 setting = SUPPORTED_10baseT_Full;
362 else if (cmd->base.duplex == DUPLEX_HALF)
363 setting = SUPPORTED_10baseT_Half;
364 else
365 return -EINVAL;
366 break;
367 default:
368 return -EINVAL;
369 }
370
371 if ((setting & supported) == 0)
372 return -EINVAL;
373
374 skge->speed = speed;
375 skge->duplex = cmd->base.duplex;
376 }
377
378 skge->autoneg = cmd->base.autoneg;
379 skge->advertising = advertising;
380
381 if (netif_running(dev)) {
382 skge_down(dev);
383 err = skge_up(dev);
384 if (err) {
385 dev_close(dev);
386 return err;
387 }
388 }
389
390 return 0;
391 }
392
393 static void skge_get_drvinfo(struct net_device *dev,
394 struct ethtool_drvinfo *info)
395 {
396 struct skge_port *skge = netdev_priv(dev);
397
398 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
399 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
400 strlcpy(info->bus_info, pci_name(skge->hw->pdev),
401 sizeof(info->bus_info));
402 }
403
404 static const struct skge_stat {
405 char name[ETH_GSTRING_LEN];
406 u16 xmac_offset;
407 u16 gma_offset;
408 } skge_stats[] = {
409 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
410 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
411
412 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
413 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
414 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
415 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
416 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
417 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
418 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
419 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
420
421 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
422 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
423 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
424 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
425 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
426 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
427
428 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
429 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
430 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
431 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
432 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
433 };
434
435 static int skge_get_sset_count(struct net_device *dev, int sset)
436 {
437 switch (sset) {
438 case ETH_SS_STATS:
439 return ARRAY_SIZE(skge_stats);
440 default:
441 return -EOPNOTSUPP;
442 }
443 }
444
445 static void skge_get_ethtool_stats(struct net_device *dev,
446 struct ethtool_stats *stats, u64 *data)
447 {
448 struct skge_port *skge = netdev_priv(dev);
449
450 if (is_genesis(skge->hw))
451 genesis_get_stats(skge, data);
452 else
453 yukon_get_stats(skge, data);
454 }
455
456 /* Use hardware MIB variables for critical path statistics and
457 * transmit feedback not reported at interrupt.
458 * Other errors are accounted for in interrupt handler.
459 */
460 static struct net_device_stats *skge_get_stats(struct net_device *dev)
461 {
462 struct skge_port *skge = netdev_priv(dev);
463 u64 data[ARRAY_SIZE(skge_stats)];
464
465 if (is_genesis(skge->hw))
466 genesis_get_stats(skge, data);
467 else
468 yukon_get_stats(skge, data);
469
470 dev->stats.tx_bytes = data[0];
471 dev->stats.rx_bytes = data[1];
472 dev->stats.tx_packets = data[2] + data[4] + data[6];
473 dev->stats.rx_packets = data[3] + data[5] + data[7];
474 dev->stats.multicast = data[3] + data[5];
475 dev->stats.collisions = data[10];
476 dev->stats.tx_aborted_errors = data[12];
477
478 return &dev->stats;
479 }
480
481 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
482 {
483 int i;
484
485 switch (stringset) {
486 case ETH_SS_STATS:
487 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
488 memcpy(data + i * ETH_GSTRING_LEN,
489 skge_stats[i].name, ETH_GSTRING_LEN);
490 break;
491 }
492 }
493
494 static void skge_get_ring_param(struct net_device *dev,
495 struct ethtool_ringparam *p)
496 {
497 struct skge_port *skge = netdev_priv(dev);
498
499 p->rx_max_pending = MAX_RX_RING_SIZE;
500 p->tx_max_pending = MAX_TX_RING_SIZE;
501
502 p->rx_pending = skge->rx_ring.count;
503 p->tx_pending = skge->tx_ring.count;
504 }
505
506 static int skge_set_ring_param(struct net_device *dev,
507 struct ethtool_ringparam *p)
508 {
509 struct skge_port *skge = netdev_priv(dev);
510 int err = 0;
511
512 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
513 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
514 return -EINVAL;
515
516 skge->rx_ring.count = p->rx_pending;
517 skge->tx_ring.count = p->tx_pending;
518
519 if (netif_running(dev)) {
520 skge_down(dev);
521 err = skge_up(dev);
522 if (err)
523 dev_close(dev);
524 }
525
526 return err;
527 }
528
529 static u32 skge_get_msglevel(struct net_device *netdev)
530 {
531 struct skge_port *skge = netdev_priv(netdev);
532 return skge->msg_enable;
533 }
534
535 static void skge_set_msglevel(struct net_device *netdev, u32 value)
536 {
537 struct skge_port *skge = netdev_priv(netdev);
538 skge->msg_enable = value;
539 }
540
541 static int skge_nway_reset(struct net_device *dev)
542 {
543 struct skge_port *skge = netdev_priv(dev);
544
545 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
546 return -EINVAL;
547
548 skge_phy_reset(skge);
549 return 0;
550 }
551
552 static void skge_get_pauseparam(struct net_device *dev,
553 struct ethtool_pauseparam *ecmd)
554 {
555 struct skge_port *skge = netdev_priv(dev);
556
557 ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
558 (skge->flow_control == FLOW_MODE_SYM_OR_REM));
559 ecmd->tx_pause = (ecmd->rx_pause ||
560 (skge->flow_control == FLOW_MODE_LOC_SEND));
561
562 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
563 }
564
565 static int skge_set_pauseparam(struct net_device *dev,
566 struct ethtool_pauseparam *ecmd)
567 {
568 struct skge_port *skge = netdev_priv(dev);
569 struct ethtool_pauseparam old;
570 int err = 0;
571
572 skge_get_pauseparam(dev, &old);
573
574 if (ecmd->autoneg != old.autoneg)
575 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
576 else {
577 if (ecmd->rx_pause && ecmd->tx_pause)
578 skge->flow_control = FLOW_MODE_SYMMETRIC;
579 else if (ecmd->rx_pause && !ecmd->tx_pause)
580 skge->flow_control = FLOW_MODE_SYM_OR_REM;
581 else if (!ecmd->rx_pause && ecmd->tx_pause)
582 skge->flow_control = FLOW_MODE_LOC_SEND;
583 else
584 skge->flow_control = FLOW_MODE_NONE;
585 }
586
587 if (netif_running(dev)) {
588 skge_down(dev);
589 err = skge_up(dev);
590 if (err) {
591 dev_close(dev);
592 return err;
593 }
594 }
595
596 return 0;
597 }
598
599 /* Chip internal frequency for clock calculations */
600 static inline u32 hwkhz(const struct skge_hw *hw)
601 {
602 return is_genesis(hw) ? 53125 : 78125;
603 }
604
605 /* Chip HZ to microseconds */
606 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
607 {
608 return (ticks * 1000) / hwkhz(hw);
609 }
610
611 /* Microseconds to chip HZ */
612 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
613 {
614 return hwkhz(hw) * usec / 1000;
615 }
616
617 static int skge_get_coalesce(struct net_device *dev,
618 struct ethtool_coalesce *ecmd)
619 {
620 struct skge_port *skge = netdev_priv(dev);
621 struct skge_hw *hw = skge->hw;
622 int port = skge->port;
623
624 ecmd->rx_coalesce_usecs = 0;
625 ecmd->tx_coalesce_usecs = 0;
626
627 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
628 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
629 u32 msk = skge_read32(hw, B2_IRQM_MSK);
630
631 if (msk & rxirqmask[port])
632 ecmd->rx_coalesce_usecs = delay;
633 if (msk & txirqmask[port])
634 ecmd->tx_coalesce_usecs = delay;
635 }
636
637 return 0;
638 }
639
640 /* Note: interrupt timer is per board, but can turn on/off per port */
641 static int skge_set_coalesce(struct net_device *dev,
642 struct ethtool_coalesce *ecmd)
643 {
644 struct skge_port *skge = netdev_priv(dev);
645 struct skge_hw *hw = skge->hw;
646 int port = skge->port;
647 u32 msk = skge_read32(hw, B2_IRQM_MSK);
648 u32 delay = 25;
649
650 if (ecmd->rx_coalesce_usecs == 0)
651 msk &= ~rxirqmask[port];
652 else if (ecmd->rx_coalesce_usecs < 25 ||
653 ecmd->rx_coalesce_usecs > 33333)
654 return -EINVAL;
655 else {
656 msk |= rxirqmask[port];
657 delay = ecmd->rx_coalesce_usecs;
658 }
659
660 if (ecmd->tx_coalesce_usecs == 0)
661 msk &= ~txirqmask[port];
662 else if (ecmd->tx_coalesce_usecs < 25 ||
663 ecmd->tx_coalesce_usecs > 33333)
664 return -EINVAL;
665 else {
666 msk |= txirqmask[port];
667 delay = min(delay, ecmd->rx_coalesce_usecs);
668 }
669
670 skge_write32(hw, B2_IRQM_MSK, msk);
671 if (msk == 0)
672 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
673 else {
674 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
675 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
676 }
677 return 0;
678 }
679
680 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
681 static void skge_led(struct skge_port *skge, enum led_mode mode)
682 {
683 struct skge_hw *hw = skge->hw;
684 int port = skge->port;
685
686 spin_lock_bh(&hw->phy_lock);
687 if (is_genesis(hw)) {
688 switch (mode) {
689 case LED_MODE_OFF:
690 if (hw->phy_type == SK_PHY_BCOM)
691 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
692 else {
693 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
694 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
695 }
696 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
697 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
698 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
699 break;
700
701 case LED_MODE_ON:
702 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
703 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
704
705 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
706 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
707
708 break;
709
710 case LED_MODE_TST:
711 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
712 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
713 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
714
715 if (hw->phy_type == SK_PHY_BCOM)
716 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
717 else {
718 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
719 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
720 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
721 }
722
723 }
724 } else {
725 switch (mode) {
726 case LED_MODE_OFF:
727 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
728 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
729 PHY_M_LED_MO_DUP(MO_LED_OFF) |
730 PHY_M_LED_MO_10(MO_LED_OFF) |
731 PHY_M_LED_MO_100(MO_LED_OFF) |
732 PHY_M_LED_MO_1000(MO_LED_OFF) |
733 PHY_M_LED_MO_RX(MO_LED_OFF));
734 break;
735 case LED_MODE_ON:
736 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
737 PHY_M_LED_PULS_DUR(PULS_170MS) |
738 PHY_M_LED_BLINK_RT(BLINK_84MS) |
739 PHY_M_LEDC_TX_CTRL |
740 PHY_M_LEDC_DP_CTRL);
741
742 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
743 PHY_M_LED_MO_RX(MO_LED_OFF) |
744 (skge->speed == SPEED_100 ?
745 PHY_M_LED_MO_100(MO_LED_ON) : 0));
746 break;
747 case LED_MODE_TST:
748 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
749 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
750 PHY_M_LED_MO_DUP(MO_LED_ON) |
751 PHY_M_LED_MO_10(MO_LED_ON) |
752 PHY_M_LED_MO_100(MO_LED_ON) |
753 PHY_M_LED_MO_1000(MO_LED_ON) |
754 PHY_M_LED_MO_RX(MO_LED_ON));
755 }
756 }
757 spin_unlock_bh(&hw->phy_lock);
758 }
759
760 /* blink LED's for finding board */
761 static int skge_set_phys_id(struct net_device *dev,
762 enum ethtool_phys_id_state state)
763 {
764 struct skge_port *skge = netdev_priv(dev);
765
766 switch (state) {
767 case ETHTOOL_ID_ACTIVE:
768 return 2; /* cycle on/off twice per second */
769
770 case ETHTOOL_ID_ON:
771 skge_led(skge, LED_MODE_TST);
772 break;
773
774 case ETHTOOL_ID_OFF:
775 skge_led(skge, LED_MODE_OFF);
776 break;
777
778 case ETHTOOL_ID_INACTIVE:
779 /* back to regular LED state */
780 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
781 }
782
783 return 0;
784 }
785
786 static int skge_get_eeprom_len(struct net_device *dev)
787 {
788 struct skge_port *skge = netdev_priv(dev);
789 u32 reg2;
790
791 pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
792 return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
793 }
794
795 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
796 {
797 u32 val;
798
799 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
800
801 do {
802 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
803 } while (!(offset & PCI_VPD_ADDR_F));
804
805 pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
806 return val;
807 }
808
809 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
810 {
811 pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
812 pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
813 offset | PCI_VPD_ADDR_F);
814
815 do {
816 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
817 } while (offset & PCI_VPD_ADDR_F);
818 }
819
820 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
821 u8 *data)
822 {
823 struct skge_port *skge = netdev_priv(dev);
824 struct pci_dev *pdev = skge->hw->pdev;
825 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
826 int length = eeprom->len;
827 u16 offset = eeprom->offset;
828
829 if (!cap)
830 return -EINVAL;
831
832 eeprom->magic = SKGE_EEPROM_MAGIC;
833
834 while (length > 0) {
835 u32 val = skge_vpd_read(pdev, cap, offset);
836 int n = min_t(int, length, sizeof(val));
837
838 memcpy(data, &val, n);
839 length -= n;
840 data += n;
841 offset += n;
842 }
843 return 0;
844 }
845
846 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
847 u8 *data)
848 {
849 struct skge_port *skge = netdev_priv(dev);
850 struct pci_dev *pdev = skge->hw->pdev;
851 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
852 int length = eeprom->len;
853 u16 offset = eeprom->offset;
854
855 if (!cap)
856 return -EINVAL;
857
858 if (eeprom->magic != SKGE_EEPROM_MAGIC)
859 return -EINVAL;
860
861 while (length > 0) {
862 u32 val;
863 int n = min_t(int, length, sizeof(val));
864
865 if (n < sizeof(val))
866 val = skge_vpd_read(pdev, cap, offset);
867 memcpy(&val, data, n);
868
869 skge_vpd_write(pdev, cap, offset, val);
870
871 length -= n;
872 data += n;
873 offset += n;
874 }
875 return 0;
876 }
877
878 static const struct ethtool_ops skge_ethtool_ops = {
879 .get_drvinfo = skge_get_drvinfo,
880 .get_regs_len = skge_get_regs_len,
881 .get_regs = skge_get_regs,
882 .get_wol = skge_get_wol,
883 .set_wol = skge_set_wol,
884 .get_msglevel = skge_get_msglevel,
885 .set_msglevel = skge_set_msglevel,
886 .nway_reset = skge_nway_reset,
887 .get_link = ethtool_op_get_link,
888 .get_eeprom_len = skge_get_eeprom_len,
889 .get_eeprom = skge_get_eeprom,
890 .set_eeprom = skge_set_eeprom,
891 .get_ringparam = skge_get_ring_param,
892 .set_ringparam = skge_set_ring_param,
893 .get_pauseparam = skge_get_pauseparam,
894 .set_pauseparam = skge_set_pauseparam,
895 .get_coalesce = skge_get_coalesce,
896 .set_coalesce = skge_set_coalesce,
897 .get_strings = skge_get_strings,
898 .set_phys_id = skge_set_phys_id,
899 .get_sset_count = skge_get_sset_count,
900 .get_ethtool_stats = skge_get_ethtool_stats,
901 .get_link_ksettings = skge_get_link_ksettings,
902 .set_link_ksettings = skge_set_link_ksettings,
903 };
904
905 /*
906 * Allocate ring elements and chain them together
907 * One-to-one association of board descriptors with ring elements
908 */
909 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
910 {
911 struct skge_tx_desc *d;
912 struct skge_element *e;
913 int i;
914
915 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
916 if (!ring->start)
917 return -ENOMEM;
918
919 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
920 e->desc = d;
921 if (i == ring->count - 1) {
922 e->next = ring->start;
923 d->next_offset = base;
924 } else {
925 e->next = e + 1;
926 d->next_offset = base + (i+1) * sizeof(*d);
927 }
928 }
929 ring->to_use = ring->to_clean = ring->start;
930
931 return 0;
932 }
933
934 /* Allocate and setup a new buffer for receiving */
935 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
936 struct sk_buff *skb, unsigned int bufsize)
937 {
938 struct skge_rx_desc *rd = e->desc;
939 dma_addr_t map;
940
941 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
942 PCI_DMA_FROMDEVICE);
943
944 if (pci_dma_mapping_error(skge->hw->pdev, map))
945 return -1;
946
947 rd->dma_lo = lower_32_bits(map);
948 rd->dma_hi = upper_32_bits(map);
949 e->skb = skb;
950 rd->csum1_start = ETH_HLEN;
951 rd->csum2_start = ETH_HLEN;
952 rd->csum1 = 0;
953 rd->csum2 = 0;
954
955 wmb();
956
957 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
958 dma_unmap_addr_set(e, mapaddr, map);
959 dma_unmap_len_set(e, maplen, bufsize);
960 return 0;
961 }
962
963 /* Resume receiving using existing skb,
964 * Note: DMA address is not changed by chip.
965 * MTU not changed while receiver active.
966 */
967 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
968 {
969 struct skge_rx_desc *rd = e->desc;
970
971 rd->csum2 = 0;
972 rd->csum2_start = ETH_HLEN;
973
974 wmb();
975
976 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
977 }
978
979
980 /* Free all buffers in receive ring, assumes receiver stopped */
981 static void skge_rx_clean(struct skge_port *skge)
982 {
983 struct skge_hw *hw = skge->hw;
984 struct skge_ring *ring = &skge->rx_ring;
985 struct skge_element *e;
986
987 e = ring->start;
988 do {
989 struct skge_rx_desc *rd = e->desc;
990 rd->control = 0;
991 if (e->skb) {
992 pci_unmap_single(hw->pdev,
993 dma_unmap_addr(e, mapaddr),
994 dma_unmap_len(e, maplen),
995 PCI_DMA_FROMDEVICE);
996 dev_kfree_skb(e->skb);
997 e->skb = NULL;
998 }
999 } while ((e = e->next) != ring->start);
1000 }
1001
1002
1003 /* Allocate buffers for receive ring
1004 * For receive: to_clean is next received frame.
1005 */
1006 static int skge_rx_fill(struct net_device *dev)
1007 {
1008 struct skge_port *skge = netdev_priv(dev);
1009 struct skge_ring *ring = &skge->rx_ring;
1010 struct skge_element *e;
1011
1012 e = ring->start;
1013 do {
1014 struct sk_buff *skb;
1015
1016 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1017 GFP_KERNEL);
1018 if (!skb)
1019 return -ENOMEM;
1020
1021 skb_reserve(skb, NET_IP_ALIGN);
1022 if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1023 dev_kfree_skb(skb);
1024 return -EIO;
1025 }
1026 } while ((e = e->next) != ring->start);
1027
1028 ring->to_clean = ring->start;
1029 return 0;
1030 }
1031
1032 static const char *skge_pause(enum pause_status status)
1033 {
1034 switch (status) {
1035 case FLOW_STAT_NONE:
1036 return "none";
1037 case FLOW_STAT_REM_SEND:
1038 return "rx only";
1039 case FLOW_STAT_LOC_SEND:
1040 return "tx_only";
1041 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
1042 return "both";
1043 default:
1044 return "indeterminated";
1045 }
1046 }
1047
1048
1049 static void skge_link_up(struct skge_port *skge)
1050 {
1051 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1052 LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1053
1054 netif_carrier_on(skge->netdev);
1055 netif_wake_queue(skge->netdev);
1056
1057 netif_info(skge, link, skge->netdev,
1058 "Link is up at %d Mbps, %s duplex, flow control %s\n",
1059 skge->speed,
1060 skge->duplex == DUPLEX_FULL ? "full" : "half",
1061 skge_pause(skge->flow_status));
1062 }
1063
1064 static void skge_link_down(struct skge_port *skge)
1065 {
1066 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1067 netif_carrier_off(skge->netdev);
1068 netif_stop_queue(skge->netdev);
1069
1070 netif_info(skge, link, skge->netdev, "Link is down\n");
1071 }
1072
1073 static void xm_link_down(struct skge_hw *hw, int port)
1074 {
1075 struct net_device *dev = hw->dev[port];
1076 struct skge_port *skge = netdev_priv(dev);
1077
1078 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1079
1080 if (netif_carrier_ok(dev))
1081 skge_link_down(skge);
1082 }
1083
1084 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1085 {
1086 int i;
1087
1088 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1089 *val = xm_read16(hw, port, XM_PHY_DATA);
1090
1091 if (hw->phy_type == SK_PHY_XMAC)
1092 goto ready;
1093
1094 for (i = 0; i < PHY_RETRIES; i++) {
1095 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1096 goto ready;
1097 udelay(1);
1098 }
1099
1100 return -ETIMEDOUT;
1101 ready:
1102 *val = xm_read16(hw, port, XM_PHY_DATA);
1103
1104 return 0;
1105 }
1106
1107 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1108 {
1109 u16 v = 0;
1110 if (__xm_phy_read(hw, port, reg, &v))
1111 pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1112 return v;
1113 }
1114
1115 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1116 {
1117 int i;
1118
1119 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1120 for (i = 0; i < PHY_RETRIES; i++) {
1121 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1122 goto ready;
1123 udelay(1);
1124 }
1125 return -EIO;
1126
1127 ready:
1128 xm_write16(hw, port, XM_PHY_DATA, val);
1129 for (i = 0; i < PHY_RETRIES; i++) {
1130 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1131 return 0;
1132 udelay(1);
1133 }
1134 return -ETIMEDOUT;
1135 }
1136
1137 static void genesis_init(struct skge_hw *hw)
1138 {
1139 /* set blink source counter */
1140 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1141 skge_write8(hw, B2_BSC_CTRL, BSC_START);
1142
1143 /* configure mac arbiter */
1144 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1145
1146 /* configure mac arbiter timeout values */
1147 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1148 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1149 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1150 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1151
1152 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1153 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1154 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1155 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1156
1157 /* configure packet arbiter timeout */
1158 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1159 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1160 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1161 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1162 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1163 }
1164
1165 static void genesis_reset(struct skge_hw *hw, int port)
1166 {
1167 static const u8 zero[8] = { 0 };
1168 u32 reg;
1169
1170 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1171
1172 /* reset the statistics module */
1173 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1174 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1175 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1176 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1177 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1178
1179 /* disable Broadcom PHY IRQ */
1180 if (hw->phy_type == SK_PHY_BCOM)
1181 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1182
1183 xm_outhash(hw, port, XM_HSM, zero);
1184
1185 /* Flush TX and RX fifo */
1186 reg = xm_read32(hw, port, XM_MODE);
1187 xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1188 xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1189 }
1190
1191 /* Convert mode to MII values */
1192 static const u16 phy_pause_map[] = {
1193 [FLOW_MODE_NONE] = 0,
1194 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1195 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1196 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1197 };
1198
1199 /* special defines for FIBER (88E1011S only) */
1200 static const u16 fiber_pause_map[] = {
1201 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1202 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1203 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1204 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1205 };
1206
1207
1208 /* Check status of Broadcom phy link */
1209 static void bcom_check_link(struct skge_hw *hw, int port)
1210 {
1211 struct net_device *dev = hw->dev[port];
1212 struct skge_port *skge = netdev_priv(dev);
1213 u16 status;
1214
1215 /* read twice because of latch */
1216 xm_phy_read(hw, port, PHY_BCOM_STAT);
1217 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1218
1219 if ((status & PHY_ST_LSYNC) == 0) {
1220 xm_link_down(hw, port);
1221 return;
1222 }
1223
1224 if (skge->autoneg == AUTONEG_ENABLE) {
1225 u16 lpa, aux;
1226
1227 if (!(status & PHY_ST_AN_OVER))
1228 return;
1229
1230 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1231 if (lpa & PHY_B_AN_RF) {
1232 netdev_notice(dev, "remote fault\n");
1233 return;
1234 }
1235
1236 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1237
1238 /* Check Duplex mismatch */
1239 switch (aux & PHY_B_AS_AN_RES_MSK) {
1240 case PHY_B_RES_1000FD:
1241 skge->duplex = DUPLEX_FULL;
1242 break;
1243 case PHY_B_RES_1000HD:
1244 skge->duplex = DUPLEX_HALF;
1245 break;
1246 default:
1247 netdev_notice(dev, "duplex mismatch\n");
1248 return;
1249 }
1250
1251 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1252 switch (aux & PHY_B_AS_PAUSE_MSK) {
1253 case PHY_B_AS_PAUSE_MSK:
1254 skge->flow_status = FLOW_STAT_SYMMETRIC;
1255 break;
1256 case PHY_B_AS_PRR:
1257 skge->flow_status = FLOW_STAT_REM_SEND;
1258 break;
1259 case PHY_B_AS_PRT:
1260 skge->flow_status = FLOW_STAT_LOC_SEND;
1261 break;
1262 default:
1263 skge->flow_status = FLOW_STAT_NONE;
1264 }
1265 skge->speed = SPEED_1000;
1266 }
1267
1268 if (!netif_carrier_ok(dev))
1269 genesis_link_up(skge);
1270 }
1271
1272 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1273 * Phy on for 100 or 10Mbit operation
1274 */
1275 static void bcom_phy_init(struct skge_port *skge)
1276 {
1277 struct skge_hw *hw = skge->hw;
1278 int port = skge->port;
1279 int i;
1280 u16 id1, r, ext, ctl;
1281
1282 /* magic workaround patterns for Broadcom */
1283 static const struct {
1284 u16 reg;
1285 u16 val;
1286 } A1hack[] = {
1287 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1288 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1289 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1290 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1291 }, C0hack[] = {
1292 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1293 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1294 };
1295
1296 /* read Id from external PHY (all have the same address) */
1297 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1298
1299 /* Optimize MDIO transfer by suppressing preamble. */
1300 r = xm_read16(hw, port, XM_MMU_CMD);
1301 r |= XM_MMU_NO_PRE;
1302 xm_write16(hw, port, XM_MMU_CMD, r);
1303
1304 switch (id1) {
1305 case PHY_BCOM_ID1_C0:
1306 /*
1307 * Workaround BCOM Errata for the C0 type.
1308 * Write magic patterns to reserved registers.
1309 */
1310 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1311 xm_phy_write(hw, port,
1312 C0hack[i].reg, C0hack[i].val);
1313
1314 break;
1315 case PHY_BCOM_ID1_A1:
1316 /*
1317 * Workaround BCOM Errata for the A1 type.
1318 * Write magic patterns to reserved registers.
1319 */
1320 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1321 xm_phy_write(hw, port,
1322 A1hack[i].reg, A1hack[i].val);
1323 break;
1324 }
1325
1326 /*
1327 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1328 * Disable Power Management after reset.
1329 */
1330 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1331 r |= PHY_B_AC_DIS_PM;
1332 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1333
1334 /* Dummy read */
1335 xm_read16(hw, port, XM_ISRC);
1336
1337 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1338 ctl = PHY_CT_SP1000; /* always 1000mbit */
1339
1340 if (skge->autoneg == AUTONEG_ENABLE) {
1341 /*
1342 * Workaround BCOM Errata #1 for the C5 type.
1343 * 1000Base-T Link Acquisition Failure in Slave Mode
1344 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1345 */
1346 u16 adv = PHY_B_1000C_RD;
1347 if (skge->advertising & ADVERTISED_1000baseT_Half)
1348 adv |= PHY_B_1000C_AHD;
1349 if (skge->advertising & ADVERTISED_1000baseT_Full)
1350 adv |= PHY_B_1000C_AFD;
1351 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1352
1353 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1354 } else {
1355 if (skge->duplex == DUPLEX_FULL)
1356 ctl |= PHY_CT_DUP_MD;
1357 /* Force to slave */
1358 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1359 }
1360
1361 /* Set autonegotiation pause parameters */
1362 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1363 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1364
1365 /* Handle Jumbo frames */
1366 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1367 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1368 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1369
1370 ext |= PHY_B_PEC_HIGH_LA;
1371
1372 }
1373
1374 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1375 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1376
1377 /* Use link status change interrupt */
1378 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1379 }
1380
1381 static void xm_phy_init(struct skge_port *skge)
1382 {
1383 struct skge_hw *hw = skge->hw;
1384 int port = skge->port;
1385 u16 ctrl = 0;
1386
1387 if (skge->autoneg == AUTONEG_ENABLE) {
1388 if (skge->advertising & ADVERTISED_1000baseT_Half)
1389 ctrl |= PHY_X_AN_HD;
1390 if (skge->advertising & ADVERTISED_1000baseT_Full)
1391 ctrl |= PHY_X_AN_FD;
1392
1393 ctrl |= fiber_pause_map[skge->flow_control];
1394
1395 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1396
1397 /* Restart Auto-negotiation */
1398 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1399 } else {
1400 /* Set DuplexMode in Config register */
1401 if (skge->duplex == DUPLEX_FULL)
1402 ctrl |= PHY_CT_DUP_MD;
1403 /*
1404 * Do NOT enable Auto-negotiation here. This would hold
1405 * the link down because no IDLEs are transmitted
1406 */
1407 }
1408
1409 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1410
1411 /* Poll PHY for status changes */
1412 mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1413 }
1414
1415 static int xm_check_link(struct net_device *dev)
1416 {
1417 struct skge_port *skge = netdev_priv(dev);
1418 struct skge_hw *hw = skge->hw;
1419 int port = skge->port;
1420 u16 status;
1421
1422 /* read twice because of latch */
1423 xm_phy_read(hw, port, PHY_XMAC_STAT);
1424 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1425
1426 if ((status & PHY_ST_LSYNC) == 0) {
1427 xm_link_down(hw, port);
1428 return 0;
1429 }
1430
1431 if (skge->autoneg == AUTONEG_ENABLE) {
1432 u16 lpa, res;
1433
1434 if (!(status & PHY_ST_AN_OVER))
1435 return 0;
1436
1437 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1438 if (lpa & PHY_B_AN_RF) {
1439 netdev_notice(dev, "remote fault\n");
1440 return 0;
1441 }
1442
1443 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1444
1445 /* Check Duplex mismatch */
1446 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1447 case PHY_X_RS_FD:
1448 skge->duplex = DUPLEX_FULL;
1449 break;
1450 case PHY_X_RS_HD:
1451 skge->duplex = DUPLEX_HALF;
1452 break;
1453 default:
1454 netdev_notice(dev, "duplex mismatch\n");
1455 return 0;
1456 }
1457
1458 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1459 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1460 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1461 (lpa & PHY_X_P_SYM_MD))
1462 skge->flow_status = FLOW_STAT_SYMMETRIC;
1463 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1464 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1465 /* Enable PAUSE receive, disable PAUSE transmit */
1466 skge->flow_status = FLOW_STAT_REM_SEND;
1467 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1468 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1469 /* Disable PAUSE receive, enable PAUSE transmit */
1470 skge->flow_status = FLOW_STAT_LOC_SEND;
1471 else
1472 skge->flow_status = FLOW_STAT_NONE;
1473
1474 skge->speed = SPEED_1000;
1475 }
1476
1477 if (!netif_carrier_ok(dev))
1478 genesis_link_up(skge);
1479 return 1;
1480 }
1481
1482 /* Poll to check for link coming up.
1483 *
1484 * Since internal PHY is wired to a level triggered pin, can't
1485 * get an interrupt when carrier is detected, need to poll for
1486 * link coming up.
1487 */
1488 static void xm_link_timer(struct timer_list *t)
1489 {
1490 struct skge_port *skge = from_timer(skge, t, link_timer);
1491 struct net_device *dev = skge->netdev;
1492 struct skge_hw *hw = skge->hw;
1493 int port = skge->port;
1494 int i;
1495 unsigned long flags;
1496
1497 if (!netif_running(dev))
1498 return;
1499
1500 spin_lock_irqsave(&hw->phy_lock, flags);
1501
1502 /*
1503 * Verify that the link by checking GPIO register three times.
1504 * This pin has the signal from the link_sync pin connected to it.
1505 */
1506 for (i = 0; i < 3; i++) {
1507 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1508 goto link_down;
1509 }
1510
1511 /* Re-enable interrupt to detect link down */
1512 if (xm_check_link(dev)) {
1513 u16 msk = xm_read16(hw, port, XM_IMSK);
1514 msk &= ~XM_IS_INP_ASS;
1515 xm_write16(hw, port, XM_IMSK, msk);
1516 xm_read16(hw, port, XM_ISRC);
1517 } else {
1518 link_down:
1519 mod_timer(&skge->link_timer,
1520 round_jiffies(jiffies + LINK_HZ));
1521 }
1522 spin_unlock_irqrestore(&hw->phy_lock, flags);
1523 }
1524
1525 static void genesis_mac_init(struct skge_hw *hw, int port)
1526 {
1527 struct net_device *dev = hw->dev[port];
1528 struct skge_port *skge = netdev_priv(dev);
1529 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1530 int i;
1531 u32 r;
1532 static const u8 zero[6] = { 0 };
1533
1534 for (i = 0; i < 10; i++) {
1535 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1536 MFF_SET_MAC_RST);
1537 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1538 goto reset_ok;
1539 udelay(1);
1540 }
1541
1542 netdev_warn(dev, "genesis reset failed\n");
1543
1544 reset_ok:
1545 /* Unreset the XMAC. */
1546 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1547
1548 /*
1549 * Perform additional initialization for external PHYs,
1550 * namely for the 1000baseTX cards that use the XMAC's
1551 * GMII mode.
1552 */
1553 if (hw->phy_type != SK_PHY_XMAC) {
1554 /* Take external Phy out of reset */
1555 r = skge_read32(hw, B2_GP_IO);
1556 if (port == 0)
1557 r |= GP_DIR_0|GP_IO_0;
1558 else
1559 r |= GP_DIR_2|GP_IO_2;
1560
1561 skge_write32(hw, B2_GP_IO, r);
1562
1563 /* Enable GMII interface */
1564 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1565 }
1566
1567
1568 switch (hw->phy_type) {
1569 case SK_PHY_XMAC:
1570 xm_phy_init(skge);
1571 break;
1572 case SK_PHY_BCOM:
1573 bcom_phy_init(skge);
1574 bcom_check_link(hw, port);
1575 }
1576
1577 /* Set Station Address */
1578 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1579
1580 /* We don't use match addresses so clear */
1581 for (i = 1; i < 16; i++)
1582 xm_outaddr(hw, port, XM_EXM(i), zero);
1583
1584 /* Clear MIB counters */
1585 xm_write16(hw, port, XM_STAT_CMD,
1586 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1587 /* Clear two times according to Errata #3 */
1588 xm_write16(hw, port, XM_STAT_CMD,
1589 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1590
1591 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1592 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1593
1594 /* We don't need the FCS appended to the packet. */
1595 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1596 if (jumbo)
1597 r |= XM_RX_BIG_PK_OK;
1598
1599 if (skge->duplex == DUPLEX_HALF) {
1600 /*
1601 * If in manual half duplex mode the other side might be in
1602 * full duplex mode, so ignore if a carrier extension is not seen
1603 * on frames received
1604 */
1605 r |= XM_RX_DIS_CEXT;
1606 }
1607 xm_write16(hw, port, XM_RX_CMD, r);
1608
1609 /* We want short frames padded to 60 bytes. */
1610 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1611
1612 /* Increase threshold for jumbo frames on dual port */
1613 if (hw->ports > 1 && jumbo)
1614 xm_write16(hw, port, XM_TX_THR, 1020);
1615 else
1616 xm_write16(hw, port, XM_TX_THR, 512);
1617
1618 /*
1619 * Enable the reception of all error frames. This is is
1620 * a necessary evil due to the design of the XMAC. The
1621 * XMAC's receive FIFO is only 8K in size, however jumbo
1622 * frames can be up to 9000 bytes in length. When bad
1623 * frame filtering is enabled, the XMAC's RX FIFO operates
1624 * in 'store and forward' mode. For this to work, the
1625 * entire frame has to fit into the FIFO, but that means
1626 * that jumbo frames larger than 8192 bytes will be
1627 * truncated. Disabling all bad frame filtering causes
1628 * the RX FIFO to operate in streaming mode, in which
1629 * case the XMAC will start transferring frames out of the
1630 * RX FIFO as soon as the FIFO threshold is reached.
1631 */
1632 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1633
1634
1635 /*
1636 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1637 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1638 * and 'Octets Rx OK Hi Cnt Ov'.
1639 */
1640 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1641
1642 /*
1643 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1644 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1645 * and 'Octets Tx OK Hi Cnt Ov'.
1646 */
1647 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1648
1649 /* Configure MAC arbiter */
1650 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1651
1652 /* configure timeout values */
1653 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1654 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1655 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1656 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1657
1658 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1659 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1660 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1661 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1662
1663 /* Configure Rx MAC FIFO */
1664 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1665 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1666 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1667
1668 /* Configure Tx MAC FIFO */
1669 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1670 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1671 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1672
1673 if (jumbo) {
1674 /* Enable frame flushing if jumbo frames used */
1675 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1676 } else {
1677 /* enable timeout timers if normal frames */
1678 skge_write16(hw, B3_PA_CTRL,
1679 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1680 }
1681 }
1682
1683 static void genesis_stop(struct skge_port *skge)
1684 {
1685 struct skge_hw *hw = skge->hw;
1686 int port = skge->port;
1687 unsigned retries = 1000;
1688 u16 cmd;
1689
1690 /* Disable Tx and Rx */
1691 cmd = xm_read16(hw, port, XM_MMU_CMD);
1692 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1693 xm_write16(hw, port, XM_MMU_CMD, cmd);
1694
1695 genesis_reset(hw, port);
1696
1697 /* Clear Tx packet arbiter timeout IRQ */
1698 skge_write16(hw, B3_PA_CTRL,
1699 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1700
1701 /* Reset the MAC */
1702 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1703 do {
1704 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1705 if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1706 break;
1707 } while (--retries > 0);
1708
1709 /* For external PHYs there must be special handling */
1710 if (hw->phy_type != SK_PHY_XMAC) {
1711 u32 reg = skge_read32(hw, B2_GP_IO);
1712 if (port == 0) {
1713 reg |= GP_DIR_0;
1714 reg &= ~GP_IO_0;
1715 } else {
1716 reg |= GP_DIR_2;
1717 reg &= ~GP_IO_2;
1718 }
1719 skge_write32(hw, B2_GP_IO, reg);
1720 skge_read32(hw, B2_GP_IO);
1721 }
1722
1723 xm_write16(hw, port, XM_MMU_CMD,
1724 xm_read16(hw, port, XM_MMU_CMD)
1725 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1726
1727 xm_read16(hw, port, XM_MMU_CMD);
1728 }
1729
1730
1731 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1732 {
1733 struct skge_hw *hw = skge->hw;
1734 int port = skge->port;
1735 int i;
1736 unsigned long timeout = jiffies + HZ;
1737
1738 xm_write16(hw, port,
1739 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1740
1741 /* wait for update to complete */
1742 while (xm_read16(hw, port, XM_STAT_CMD)
1743 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1744 if (time_after(jiffies, timeout))
1745 break;
1746 udelay(10);
1747 }
1748
1749 /* special case for 64 bit octet counter */
1750 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1751 | xm_read32(hw, port, XM_TXO_OK_LO);
1752 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1753 | xm_read32(hw, port, XM_RXO_OK_LO);
1754
1755 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1756 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1757 }
1758
1759 static void genesis_mac_intr(struct skge_hw *hw, int port)
1760 {
1761 struct net_device *dev = hw->dev[port];
1762 struct skge_port *skge = netdev_priv(dev);
1763 u16 status = xm_read16(hw, port, XM_ISRC);
1764
1765 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1766 "mac interrupt status 0x%x\n", status);
1767
1768 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1769 xm_link_down(hw, port);
1770 mod_timer(&skge->link_timer, jiffies + 1);
1771 }
1772
1773 if (status & XM_IS_TXF_UR) {
1774 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1775 ++dev->stats.tx_fifo_errors;
1776 }
1777 }
1778
1779 static void genesis_link_up(struct skge_port *skge)
1780 {
1781 struct skge_hw *hw = skge->hw;
1782 int port = skge->port;
1783 u16 cmd, msk;
1784 u32 mode;
1785
1786 cmd = xm_read16(hw, port, XM_MMU_CMD);
1787
1788 /*
1789 * enabling pause frame reception is required for 1000BT
1790 * because the XMAC is not reset if the link is going down
1791 */
1792 if (skge->flow_status == FLOW_STAT_NONE ||
1793 skge->flow_status == FLOW_STAT_LOC_SEND)
1794 /* Disable Pause Frame Reception */
1795 cmd |= XM_MMU_IGN_PF;
1796 else
1797 /* Enable Pause Frame Reception */
1798 cmd &= ~XM_MMU_IGN_PF;
1799
1800 xm_write16(hw, port, XM_MMU_CMD, cmd);
1801
1802 mode = xm_read32(hw, port, XM_MODE);
1803 if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1804 skge->flow_status == FLOW_STAT_LOC_SEND) {
1805 /*
1806 * Configure Pause Frame Generation
1807 * Use internal and external Pause Frame Generation.
1808 * Sending pause frames is edge triggered.
1809 * Send a Pause frame with the maximum pause time if
1810 * internal oder external FIFO full condition occurs.
1811 * Send a zero pause time frame to re-start transmission.
1812 */
1813 /* XM_PAUSE_DA = '010000C28001' (default) */
1814 /* XM_MAC_PTIME = 0xffff (maximum) */
1815 /* remember this value is defined in big endian (!) */
1816 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1817
1818 mode |= XM_PAUSE_MODE;
1819 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1820 } else {
1821 /*
1822 * disable pause frame generation is required for 1000BT
1823 * because the XMAC is not reset if the link is going down
1824 */
1825 /* Disable Pause Mode in Mode Register */
1826 mode &= ~XM_PAUSE_MODE;
1827
1828 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1829 }
1830
1831 xm_write32(hw, port, XM_MODE, mode);
1832
1833 /* Turn on detection of Tx underrun */
1834 msk = xm_read16(hw, port, XM_IMSK);
1835 msk &= ~XM_IS_TXF_UR;
1836 xm_write16(hw, port, XM_IMSK, msk);
1837
1838 xm_read16(hw, port, XM_ISRC);
1839
1840 /* get MMU Command Reg. */
1841 cmd = xm_read16(hw, port, XM_MMU_CMD);
1842 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1843 cmd |= XM_MMU_GMII_FD;
1844
1845 /*
1846 * Workaround BCOM Errata (#10523) for all BCom Phys
1847 * Enable Power Management after link up
1848 */
1849 if (hw->phy_type == SK_PHY_BCOM) {
1850 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1851 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1852 & ~PHY_B_AC_DIS_PM);
1853 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1854 }
1855
1856 /* enable Rx/Tx */
1857 xm_write16(hw, port, XM_MMU_CMD,
1858 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1859 skge_link_up(skge);
1860 }
1861
1862
1863 static inline void bcom_phy_intr(struct skge_port *skge)
1864 {
1865 struct skge_hw *hw = skge->hw;
1866 int port = skge->port;
1867 u16 isrc;
1868
1869 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1870 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1871 "phy interrupt status 0x%x\n", isrc);
1872
1873 if (isrc & PHY_B_IS_PSE)
1874 pr_err("%s: uncorrectable pair swap error\n",
1875 hw->dev[port]->name);
1876
1877 /* Workaround BCom Errata:
1878 * enable and disable loopback mode if "NO HCD" occurs.
1879 */
1880 if (isrc & PHY_B_IS_NO_HDCL) {
1881 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1882 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1883 ctrl | PHY_CT_LOOP);
1884 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1885 ctrl & ~PHY_CT_LOOP);
1886 }
1887
1888 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1889 bcom_check_link(hw, port);
1890
1891 }
1892
1893 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1894 {
1895 int i;
1896
1897 gma_write16(hw, port, GM_SMI_DATA, val);
1898 gma_write16(hw, port, GM_SMI_CTRL,
1899 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1900 for (i = 0; i < PHY_RETRIES; i++) {
1901 udelay(1);
1902
1903 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1904 return 0;
1905 }
1906
1907 pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1908 return -EIO;
1909 }
1910
1911 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1912 {
1913 int i;
1914
1915 gma_write16(hw, port, GM_SMI_CTRL,
1916 GM_SMI_CT_PHY_AD(hw->phy_addr)
1917 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1918
1919 for (i = 0; i < PHY_RETRIES; i++) {
1920 udelay(1);
1921 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1922 goto ready;
1923 }
1924
1925 return -ETIMEDOUT;
1926 ready:
1927 *val = gma_read16(hw, port, GM_SMI_DATA);
1928 return 0;
1929 }
1930
1931 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1932 {
1933 u16 v = 0;
1934 if (__gm_phy_read(hw, port, reg, &v))
1935 pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1936 return v;
1937 }
1938
1939 /* Marvell Phy Initialization */
1940 static void yukon_init(struct skge_hw *hw, int port)
1941 {
1942 struct skge_port *skge = netdev_priv(hw->dev[port]);
1943 u16 ctrl, ct1000, adv;
1944
1945 if (skge->autoneg == AUTONEG_ENABLE) {
1946 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1947
1948 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1949 PHY_M_EC_MAC_S_MSK);
1950 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1951
1952 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1953
1954 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1955 }
1956
1957 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1958 if (skge->autoneg == AUTONEG_DISABLE)
1959 ctrl &= ~PHY_CT_ANE;
1960
1961 ctrl |= PHY_CT_RESET;
1962 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1963
1964 ctrl = 0;
1965 ct1000 = 0;
1966 adv = PHY_AN_CSMA;
1967
1968 if (skge->autoneg == AUTONEG_ENABLE) {
1969 if (hw->copper) {
1970 if (skge->advertising & ADVERTISED_1000baseT_Full)
1971 ct1000 |= PHY_M_1000C_AFD;
1972 if (skge->advertising & ADVERTISED_1000baseT_Half)
1973 ct1000 |= PHY_M_1000C_AHD;
1974 if (skge->advertising & ADVERTISED_100baseT_Full)
1975 adv |= PHY_M_AN_100_FD;
1976 if (skge->advertising & ADVERTISED_100baseT_Half)
1977 adv |= PHY_M_AN_100_HD;
1978 if (skge->advertising & ADVERTISED_10baseT_Full)
1979 adv |= PHY_M_AN_10_FD;
1980 if (skge->advertising & ADVERTISED_10baseT_Half)
1981 adv |= PHY_M_AN_10_HD;
1982
1983 /* Set Flow-control capabilities */
1984 adv |= phy_pause_map[skge->flow_control];
1985 } else {
1986 if (skge->advertising & ADVERTISED_1000baseT_Full)
1987 adv |= PHY_M_AN_1000X_AFD;
1988 if (skge->advertising & ADVERTISED_1000baseT_Half)
1989 adv |= PHY_M_AN_1000X_AHD;
1990
1991 adv |= fiber_pause_map[skge->flow_control];
1992 }
1993
1994 /* Restart Auto-negotiation */
1995 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1996 } else {
1997 /* forced speed/duplex settings */
1998 ct1000 = PHY_M_1000C_MSE;
1999
2000 if (skge->duplex == DUPLEX_FULL)
2001 ctrl |= PHY_CT_DUP_MD;
2002
2003 switch (skge->speed) {
2004 case SPEED_1000:
2005 ctrl |= PHY_CT_SP1000;
2006 break;
2007 case SPEED_100:
2008 ctrl |= PHY_CT_SP100;
2009 break;
2010 }
2011
2012 ctrl |= PHY_CT_RESET;
2013 }
2014
2015 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2016
2017 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2018 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2019
2020 /* Enable phy interrupt on autonegotiation complete (or link up) */
2021 if (skge->autoneg == AUTONEG_ENABLE)
2022 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2023 else
2024 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2025 }
2026
2027 static void yukon_reset(struct skge_hw *hw, int port)
2028 {
2029 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2030 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
2031 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2032 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2033 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2034
2035 gma_write16(hw, port, GM_RX_CTRL,
2036 gma_read16(hw, port, GM_RX_CTRL)
2037 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2038 }
2039
2040 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2041 static int is_yukon_lite_a0(struct skge_hw *hw)
2042 {
2043 u32 reg;
2044 int ret;
2045
2046 if (hw->chip_id != CHIP_ID_YUKON)
2047 return 0;
2048
2049 reg = skge_read32(hw, B2_FAR);
2050 skge_write8(hw, B2_FAR + 3, 0xff);
2051 ret = (skge_read8(hw, B2_FAR + 3) != 0);
2052 skge_write32(hw, B2_FAR, reg);
2053 return ret;
2054 }
2055
2056 static void yukon_mac_init(struct skge_hw *hw, int port)
2057 {
2058 struct skge_port *skge = netdev_priv(hw->dev[port]);
2059 int i;
2060 u32 reg;
2061 const u8 *addr = hw->dev[port]->dev_addr;
2062
2063 /* WA code for COMA mode -- set PHY reset */
2064 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2065 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2066 reg = skge_read32(hw, B2_GP_IO);
2067 reg |= GP_DIR_9 | GP_IO_9;
2068 skge_write32(hw, B2_GP_IO, reg);
2069 }
2070
2071 /* hard reset */
2072 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2073 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2074
2075 /* WA code for COMA mode -- clear PHY reset */
2076 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2077 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2078 reg = skge_read32(hw, B2_GP_IO);
2079 reg |= GP_DIR_9;
2080 reg &= ~GP_IO_9;
2081 skge_write32(hw, B2_GP_IO, reg);
2082 }
2083
2084 /* Set hardware config mode */
2085 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2086 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2087 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2088
2089 /* Clear GMC reset */
2090 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2091 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2092 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2093
2094 if (skge->autoneg == AUTONEG_DISABLE) {
2095 reg = GM_GPCR_AU_ALL_DIS;
2096 gma_write16(hw, port, GM_GP_CTRL,
2097 gma_read16(hw, port, GM_GP_CTRL) | reg);
2098
2099 switch (skge->speed) {
2100 case SPEED_1000:
2101 reg &= ~GM_GPCR_SPEED_100;
2102 reg |= GM_GPCR_SPEED_1000;
2103 break;
2104 case SPEED_100:
2105 reg &= ~GM_GPCR_SPEED_1000;
2106 reg |= GM_GPCR_SPEED_100;
2107 break;
2108 case SPEED_10:
2109 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2110 break;
2111 }
2112
2113 if (skge->duplex == DUPLEX_FULL)
2114 reg |= GM_GPCR_DUP_FULL;
2115 } else
2116 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2117
2118 switch (skge->flow_control) {
2119 case FLOW_MODE_NONE:
2120 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2121 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2122 break;
2123 case FLOW_MODE_LOC_SEND:
2124 /* disable Rx flow-control */
2125 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2126 break;
2127 case FLOW_MODE_SYMMETRIC:
2128 case FLOW_MODE_SYM_OR_REM:
2129 /* enable Tx & Rx flow-control */
2130 break;
2131 }
2132
2133 gma_write16(hw, port, GM_GP_CTRL, reg);
2134 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2135
2136 yukon_init(hw, port);
2137
2138 /* MIB clear */
2139 reg = gma_read16(hw, port, GM_PHY_ADDR);
2140 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2141
2142 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2143 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2144 gma_write16(hw, port, GM_PHY_ADDR, reg);
2145
2146 /* transmit control */
2147 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2148
2149 /* receive control reg: unicast + multicast + no FCS */
2150 gma_write16(hw, port, GM_RX_CTRL,
2151 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2152
2153 /* transmit flow control */
2154 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2155
2156 /* transmit parameter */
2157 gma_write16(hw, port, GM_TX_PARAM,
2158 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2159 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2160 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2161
2162 /* configure the Serial Mode Register */
2163 reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2164 | GM_SMOD_VLAN_ENA
2165 | IPG_DATA_VAL(IPG_DATA_DEF);
2166
2167 if (hw->dev[port]->mtu > ETH_DATA_LEN)
2168 reg |= GM_SMOD_JUMBO_ENA;
2169
2170 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2171
2172 /* physical address: used for pause frames */
2173 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2174 /* virtual address for data */
2175 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2176
2177 /* enable interrupt mask for counter overflows */
2178 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2179 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2180 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2181
2182 /* Initialize Mac Fifo */
2183
2184 /* Configure Rx MAC FIFO */
2185 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2186 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2187
2188 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2189 if (is_yukon_lite_a0(hw))
2190 reg &= ~GMF_RX_F_FL_ON;
2191
2192 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2193 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2194 /*
2195 * because Pause Packet Truncation in GMAC is not working
2196 * we have to increase the Flush Threshold to 64 bytes
2197 * in order to flush pause packets in Rx FIFO on Yukon-1
2198 */
2199 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2200
2201 /* Configure Tx MAC FIFO */
2202 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2203 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2204 }
2205
2206 /* Go into power down mode */
2207 static void yukon_suspend(struct skge_hw *hw, int port)
2208 {
2209 u16 ctrl;
2210
2211 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2212 ctrl |= PHY_M_PC_POL_R_DIS;
2213 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2214
2215 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2216 ctrl |= PHY_CT_RESET;
2217 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2218
2219 /* switch IEEE compatible power down mode on */
2220 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2221 ctrl |= PHY_CT_PDOWN;
2222 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2223 }
2224
2225 static void yukon_stop(struct skge_port *skge)
2226 {
2227 struct skge_hw *hw = skge->hw;
2228 int port = skge->port;
2229
2230 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2231 yukon_reset(hw, port);
2232
2233 gma_write16(hw, port, GM_GP_CTRL,
2234 gma_read16(hw, port, GM_GP_CTRL)
2235 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2236 gma_read16(hw, port, GM_GP_CTRL);
2237
2238 yukon_suspend(hw, port);
2239
2240 /* set GPHY Control reset */
2241 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2242 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2243 }
2244
2245 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2246 {
2247 struct skge_hw *hw = skge->hw;
2248 int port = skge->port;
2249 int i;
2250
2251 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2252 | gma_read32(hw, port, GM_TXO_OK_LO);
2253 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2254 | gma_read32(hw, port, GM_RXO_OK_LO);
2255
2256 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2257 data[i] = gma_read32(hw, port,
2258 skge_stats[i].gma_offset);
2259 }
2260
2261 static void yukon_mac_intr(struct skge_hw *hw, int port)
2262 {
2263 struct net_device *dev = hw->dev[port];
2264 struct skge_port *skge = netdev_priv(dev);
2265 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2266
2267 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2268 "mac interrupt status 0x%x\n", status);
2269
2270 if (status & GM_IS_RX_FF_OR) {
2271 ++dev->stats.rx_fifo_errors;
2272 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2273 }
2274
2275 if (status & GM_IS_TX_FF_UR) {
2276 ++dev->stats.tx_fifo_errors;
2277 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2278 }
2279
2280 }
2281
2282 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2283 {
2284 switch (aux & PHY_M_PS_SPEED_MSK) {
2285 case PHY_M_PS_SPEED_1000:
2286 return SPEED_1000;
2287 case PHY_M_PS_SPEED_100:
2288 return SPEED_100;
2289 default:
2290 return SPEED_10;
2291 }
2292 }
2293
2294 static void yukon_link_up(struct skge_port *skge)
2295 {
2296 struct skge_hw *hw = skge->hw;
2297 int port = skge->port;
2298 u16 reg;
2299
2300 /* Enable Transmit FIFO Underrun */
2301 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2302
2303 reg = gma_read16(hw, port, GM_GP_CTRL);
2304 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2305 reg |= GM_GPCR_DUP_FULL;
2306
2307 /* enable Rx/Tx */
2308 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2309 gma_write16(hw, port, GM_GP_CTRL, reg);
2310
2311 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2312 skge_link_up(skge);
2313 }
2314
2315 static void yukon_link_down(struct skge_port *skge)
2316 {
2317 struct skge_hw *hw = skge->hw;
2318 int port = skge->port;
2319 u16 ctrl;
2320
2321 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2322 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2323 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2324
2325 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2326 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2327 ctrl |= PHY_M_AN_ASP;
2328 /* restore Asymmetric Pause bit */
2329 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2330 }
2331
2332 skge_link_down(skge);
2333
2334 yukon_init(hw, port);
2335 }
2336
2337 static void yukon_phy_intr(struct skge_port *skge)
2338 {
2339 struct skge_hw *hw = skge->hw;
2340 int port = skge->port;
2341 const char *reason = NULL;
2342 u16 istatus, phystat;
2343
2344 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2345 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2346
2347 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2348 "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2349
2350 if (istatus & PHY_M_IS_AN_COMPL) {
2351 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2352 & PHY_M_AN_RF) {
2353 reason = "remote fault";
2354 goto failed;
2355 }
2356
2357 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2358 reason = "master/slave fault";
2359 goto failed;
2360 }
2361
2362 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2363 reason = "speed/duplex";
2364 goto failed;
2365 }
2366
2367 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2368 ? DUPLEX_FULL : DUPLEX_HALF;
2369 skge->speed = yukon_speed(hw, phystat);
2370
2371 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2372 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2373 case PHY_M_PS_PAUSE_MSK:
2374 skge->flow_status = FLOW_STAT_SYMMETRIC;
2375 break;
2376 case PHY_M_PS_RX_P_EN:
2377 skge->flow_status = FLOW_STAT_REM_SEND;
2378 break;
2379 case PHY_M_PS_TX_P_EN:
2380 skge->flow_status = FLOW_STAT_LOC_SEND;
2381 break;
2382 default:
2383 skge->flow_status = FLOW_STAT_NONE;
2384 }
2385
2386 if (skge->flow_status == FLOW_STAT_NONE ||
2387 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2388 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2389 else
2390 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2391 yukon_link_up(skge);
2392 return;
2393 }
2394
2395 if (istatus & PHY_M_IS_LSP_CHANGE)
2396 skge->speed = yukon_speed(hw, phystat);
2397
2398 if (istatus & PHY_M_IS_DUP_CHANGE)
2399 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2400 if (istatus & PHY_M_IS_LST_CHANGE) {
2401 if (phystat & PHY_M_PS_LINK_UP)
2402 yukon_link_up(skge);
2403 else
2404 yukon_link_down(skge);
2405 }
2406 return;
2407 failed:
2408 pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2409
2410 /* XXX restart autonegotiation? */
2411 }
2412
2413 static void skge_phy_reset(struct skge_port *skge)
2414 {
2415 struct skge_hw *hw = skge->hw;
2416 int port = skge->port;
2417 struct net_device *dev = hw->dev[port];
2418
2419 netif_stop_queue(skge->netdev);
2420 netif_carrier_off(skge->netdev);
2421
2422 spin_lock_bh(&hw->phy_lock);
2423 if (is_genesis(hw)) {
2424 genesis_reset(hw, port);
2425 genesis_mac_init(hw, port);
2426 } else {
2427 yukon_reset(hw, port);
2428 yukon_init(hw, port);
2429 }
2430 spin_unlock_bh(&hw->phy_lock);
2431
2432 skge_set_multicast(dev);
2433 }
2434
2435 /* Basic MII support */
2436 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2437 {
2438 struct mii_ioctl_data *data = if_mii(ifr);
2439 struct skge_port *skge = netdev_priv(dev);
2440 struct skge_hw *hw = skge->hw;
2441 int err = -EOPNOTSUPP;
2442
2443 if (!netif_running(dev))
2444 return -ENODEV; /* Phy still in reset */
2445
2446 switch (cmd) {
2447 case SIOCGMIIPHY:
2448 data->phy_id = hw->phy_addr;
2449
2450 /* fallthru */
2451 case SIOCGMIIREG: {
2452 u16 val = 0;
2453 spin_lock_bh(&hw->phy_lock);
2454
2455 if (is_genesis(hw))
2456 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2457 else
2458 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2459 spin_unlock_bh(&hw->phy_lock);
2460 data->val_out = val;
2461 break;
2462 }
2463
2464 case SIOCSMIIREG:
2465 spin_lock_bh(&hw->phy_lock);
2466 if (is_genesis(hw))
2467 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2468 data->val_in);
2469 else
2470 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2471 data->val_in);
2472 spin_unlock_bh(&hw->phy_lock);
2473 break;
2474 }
2475 return err;
2476 }
2477
2478 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2479 {
2480 u32 end;
2481
2482 start /= 8;
2483 len /= 8;
2484 end = start + len - 1;
2485
2486 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2487 skge_write32(hw, RB_ADDR(q, RB_START), start);
2488 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2489 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2490 skge_write32(hw, RB_ADDR(q, RB_END), end);
2491
2492 if (q == Q_R1 || q == Q_R2) {
2493 /* Set thresholds on receive queue's */
2494 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2495 start + (2*len)/3);
2496 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2497 start + (len/3));
2498 } else {
2499 /* Enable store & forward on Tx queue's because
2500 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2501 */
2502 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2503 }
2504
2505 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2506 }
2507
2508 /* Setup Bus Memory Interface */
2509 static void skge_qset(struct skge_port *skge, u16 q,
2510 const struct skge_element *e)
2511 {
2512 struct skge_hw *hw = skge->hw;
2513 u32 watermark = 0x600;
2514 u64 base = skge->dma + (e->desc - skge->mem);
2515
2516 /* optimization to reduce window on 32bit/33mhz */
2517 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2518 watermark /= 2;
2519
2520 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2521 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2522 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2523 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2524 }
2525
2526 static int skge_up(struct net_device *dev)
2527 {
2528 struct skge_port *skge = netdev_priv(dev);
2529 struct skge_hw *hw = skge->hw;
2530 int port = skge->port;
2531 u32 chunk, ram_addr;
2532 size_t rx_size, tx_size;
2533 int err;
2534
2535 if (!is_valid_ether_addr(dev->dev_addr))
2536 return -EINVAL;
2537
2538 netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2539
2540 if (dev->mtu > RX_BUF_SIZE)
2541 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2542 else
2543 skge->rx_buf_size = RX_BUF_SIZE;
2544
2545
2546 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2547 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2548 skge->mem_size = tx_size + rx_size;
2549 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2550 if (!skge->mem)
2551 return -ENOMEM;
2552
2553 BUG_ON(skge->dma & 7);
2554
2555 if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2556 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2557 err = -EINVAL;
2558 goto free_pci_mem;
2559 }
2560
2561 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2562 if (err)
2563 goto free_pci_mem;
2564
2565 err = skge_rx_fill(dev);
2566 if (err)
2567 goto free_rx_ring;
2568
2569 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2570 skge->dma + rx_size);
2571 if (err)
2572 goto free_rx_ring;
2573
2574 if (hw->ports == 1) {
2575 err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2576 dev->name, hw);
2577 if (err) {
2578 netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2579 hw->pdev->irq, err);
2580 goto free_tx_ring;
2581 }
2582 }
2583
2584 /* Initialize MAC */
2585 netif_carrier_off(dev);
2586 spin_lock_bh(&hw->phy_lock);
2587 if (is_genesis(hw))
2588 genesis_mac_init(hw, port);
2589 else
2590 yukon_mac_init(hw, port);
2591 spin_unlock_bh(&hw->phy_lock);
2592
2593 /* Configure RAMbuffers - equally between ports and tx/rx */
2594 chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
2595 ram_addr = hw->ram_offset + 2 * chunk * port;
2596
2597 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2598 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2599
2600 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2601 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2602 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2603
2604 /* Start receiver BMU */
2605 wmb();
2606 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2607 skge_led(skge, LED_MODE_ON);
2608
2609 spin_lock_irq(&hw->hw_lock);
2610 hw->intr_mask |= portmask[port];
2611 skge_write32(hw, B0_IMSK, hw->intr_mask);
2612 skge_read32(hw, B0_IMSK);
2613 spin_unlock_irq(&hw->hw_lock);
2614
2615 napi_enable(&skge->napi);
2616
2617 skge_set_multicast(dev);
2618
2619 return 0;
2620
2621 free_tx_ring:
2622 kfree(skge->tx_ring.start);
2623 free_rx_ring:
2624 skge_rx_clean(skge);
2625 kfree(skge->rx_ring.start);
2626 free_pci_mem:
2627 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2628 skge->mem = NULL;
2629
2630 return err;
2631 }
2632
2633 /* stop receiver */
2634 static void skge_rx_stop(struct skge_hw *hw, int port)
2635 {
2636 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2637 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2638 RB_RST_SET|RB_DIS_OP_MD);
2639 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2640 }
2641
2642 static int skge_down(struct net_device *dev)
2643 {
2644 struct skge_port *skge = netdev_priv(dev);
2645 struct skge_hw *hw = skge->hw;
2646 int port = skge->port;
2647
2648 if (!skge->mem)
2649 return 0;
2650
2651 netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2652
2653 netif_tx_disable(dev);
2654
2655 if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2656 del_timer_sync(&skge->link_timer);
2657
2658 napi_disable(&skge->napi);
2659 netif_carrier_off(dev);
2660
2661 spin_lock_irq(&hw->hw_lock);
2662 hw->intr_mask &= ~portmask[port];
2663 skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2664 skge_read32(hw, B0_IMSK);
2665 spin_unlock_irq(&hw->hw_lock);
2666
2667 if (hw->ports == 1)
2668 free_irq(hw->pdev->irq, hw);
2669
2670 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2671 if (is_genesis(hw))
2672 genesis_stop(skge);
2673 else
2674 yukon_stop(skge);
2675
2676 /* Stop transmitter */
2677 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2678 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2679 RB_RST_SET|RB_DIS_OP_MD);
2680
2681
2682 /* Disable Force Sync bit and Enable Alloc bit */
2683 skge_write8(hw, SK_REG(port, TXA_CTRL),
2684 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2685
2686 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2687 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2688 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2689
2690 /* Reset PCI FIFO */
2691 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2692 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2693
2694 /* Reset the RAM Buffer async Tx queue */
2695 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2696
2697 skge_rx_stop(hw, port);
2698
2699 if (is_genesis(hw)) {
2700 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2701 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2702 } else {
2703 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2704 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2705 }
2706
2707 skge_led(skge, LED_MODE_OFF);
2708
2709 netif_tx_lock_bh(dev);
2710 skge_tx_clean(dev);
2711 netif_tx_unlock_bh(dev);
2712
2713 skge_rx_clean(skge);
2714
2715 kfree(skge->rx_ring.start);
2716 kfree(skge->tx_ring.start);
2717 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2718 skge->mem = NULL;
2719 return 0;
2720 }
2721
2722 static inline int skge_avail(const struct skge_ring *ring)
2723 {
2724 smp_mb();
2725 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2726 + (ring->to_clean - ring->to_use) - 1;
2727 }
2728
2729 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2730 struct net_device *dev)
2731 {
2732 struct skge_port *skge = netdev_priv(dev);
2733 struct skge_hw *hw = skge->hw;
2734 struct skge_element *e;
2735 struct skge_tx_desc *td;
2736 int i;
2737 u32 control, len;
2738 dma_addr_t map;
2739
2740 if (skb_padto(skb, ETH_ZLEN))
2741 return NETDEV_TX_OK;
2742
2743 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2744 return NETDEV_TX_BUSY;
2745
2746 e = skge->tx_ring.to_use;
2747 td = e->desc;
2748 BUG_ON(td->control & BMU_OWN);
2749 e->skb = skb;
2750 len = skb_headlen(skb);
2751 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2752 if (pci_dma_mapping_error(hw->pdev, map))
2753 goto mapping_error;
2754
2755 dma_unmap_addr_set(e, mapaddr, map);
2756 dma_unmap_len_set(e, maplen, len);
2757
2758 td->dma_lo = lower_32_bits(map);
2759 td->dma_hi = upper_32_bits(map);
2760
2761 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2762 const int offset = skb_checksum_start_offset(skb);
2763
2764 /* This seems backwards, but it is what the sk98lin
2765 * does. Looks like hardware is wrong?
2766 */
2767 if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2768 hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2769 control = BMU_TCP_CHECK;
2770 else
2771 control = BMU_UDP_CHECK;
2772
2773 td->csum_offs = 0;
2774 td->csum_start = offset;
2775 td->csum_write = offset + skb->csum_offset;
2776 } else
2777 control = BMU_CHECK;
2778
2779 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2780 control |= BMU_EOF | BMU_IRQ_EOF;
2781 else {
2782 struct skge_tx_desc *tf = td;
2783
2784 control |= BMU_STFWD;
2785 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2786 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2787
2788 map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2789 skb_frag_size(frag), DMA_TO_DEVICE);
2790 if (dma_mapping_error(&hw->pdev->dev, map))
2791 goto mapping_unwind;
2792
2793 e = e->next;
2794 e->skb = skb;
2795 tf = e->desc;
2796 BUG_ON(tf->control & BMU_OWN);
2797
2798 tf->dma_lo = lower_32_bits(map);
2799 tf->dma_hi = upper_32_bits(map);
2800 dma_unmap_addr_set(e, mapaddr, map);
2801 dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2802
2803 tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2804 }
2805 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2806 }
2807 /* Make sure all the descriptors written */
2808 wmb();
2809 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2810 wmb();
2811
2812 netdev_sent_queue(dev, skb->len);
2813
2814 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2815
2816 netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2817 "tx queued, slot %td, len %d\n",
2818 e - skge->tx_ring.start, skb->len);
2819
2820 skge->tx_ring.to_use = e->next;
2821 smp_wmb();
2822
2823 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2824 netdev_dbg(dev, "transmit queue full\n");
2825 netif_stop_queue(dev);
2826 }
2827
2828 return NETDEV_TX_OK;
2829
2830 mapping_unwind:
2831 e = skge->tx_ring.to_use;
2832 pci_unmap_single(hw->pdev,
2833 dma_unmap_addr(e, mapaddr),
2834 dma_unmap_len(e, maplen),
2835 PCI_DMA_TODEVICE);
2836 while (i-- > 0) {
2837 e = e->next;
2838 pci_unmap_page(hw->pdev,
2839 dma_unmap_addr(e, mapaddr),
2840 dma_unmap_len(e, maplen),
2841 PCI_DMA_TODEVICE);
2842 }
2843
2844 mapping_error:
2845 if (net_ratelimit())
2846 dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2847 dev_kfree_skb_any(skb);
2848 return NETDEV_TX_OK;
2849 }
2850
2851
2852 /* Free resources associated with this reing element */
2853 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2854 u32 control)
2855 {
2856 /* skb header vs. fragment */
2857 if (control & BMU_STF)
2858 pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
2859 dma_unmap_len(e, maplen),
2860 PCI_DMA_TODEVICE);
2861 else
2862 pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
2863 dma_unmap_len(e, maplen),
2864 PCI_DMA_TODEVICE);
2865 }
2866
2867 /* Free all buffers in transmit ring */
2868 static void skge_tx_clean(struct net_device *dev)
2869 {
2870 struct skge_port *skge = netdev_priv(dev);
2871 struct skge_element *e;
2872
2873 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2874 struct skge_tx_desc *td = e->desc;
2875
2876 skge_tx_unmap(skge->hw->pdev, e, td->control);
2877
2878 if (td->control & BMU_EOF)
2879 dev_kfree_skb(e->skb);
2880 td->control = 0;
2881 }
2882
2883 netdev_reset_queue(dev);
2884 skge->tx_ring.to_clean = e;
2885 }
2886
2887 static void skge_tx_timeout(struct net_device *dev, unsigned int txqueue)
2888 {
2889 struct skge_port *skge = netdev_priv(dev);
2890
2891 netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2892
2893 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2894 skge_tx_clean(dev);
2895 netif_wake_queue(dev);
2896 }
2897
2898 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2899 {
2900 int err;
2901
2902 if (!netif_running(dev)) {
2903 dev->mtu = new_mtu;
2904 return 0;
2905 }
2906
2907 skge_down(dev);
2908
2909 dev->mtu = new_mtu;
2910
2911 err = skge_up(dev);
2912 if (err)
2913 dev_close(dev);
2914
2915 return err;
2916 }
2917
2918 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2919
2920 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2921 {
2922 u32 crc, bit;
2923
2924 crc = ether_crc_le(ETH_ALEN, addr);
2925 bit = ~crc & 0x3f;
2926 filter[bit/8] |= 1 << (bit%8);
2927 }
2928
2929 static void genesis_set_multicast(struct net_device *dev)
2930 {
2931 struct skge_port *skge = netdev_priv(dev);
2932 struct skge_hw *hw = skge->hw;
2933 int port = skge->port;
2934 struct netdev_hw_addr *ha;
2935 u32 mode;
2936 u8 filter[8];
2937
2938 mode = xm_read32(hw, port, XM_MODE);
2939 mode |= XM_MD_ENA_HASH;
2940 if (dev->flags & IFF_PROMISC)
2941 mode |= XM_MD_ENA_PROM;
2942 else
2943 mode &= ~XM_MD_ENA_PROM;
2944
2945 if (dev->flags & IFF_ALLMULTI)
2946 memset(filter, 0xff, sizeof(filter));
2947 else {
2948 memset(filter, 0, sizeof(filter));
2949
2950 if (skge->flow_status == FLOW_STAT_REM_SEND ||
2951 skge->flow_status == FLOW_STAT_SYMMETRIC)
2952 genesis_add_filter(filter, pause_mc_addr);
2953
2954 netdev_for_each_mc_addr(ha, dev)
2955 genesis_add_filter(filter, ha->addr);
2956 }
2957
2958 xm_write32(hw, port, XM_MODE, mode);
2959 xm_outhash(hw, port, XM_HSM, filter);
2960 }
2961
2962 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2963 {
2964 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2965 filter[bit/8] |= 1 << (bit%8);
2966 }
2967
2968 static void yukon_set_multicast(struct net_device *dev)
2969 {
2970 struct skge_port *skge = netdev_priv(dev);
2971 struct skge_hw *hw = skge->hw;
2972 int port = skge->port;
2973 struct netdev_hw_addr *ha;
2974 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2975 skge->flow_status == FLOW_STAT_SYMMETRIC);
2976 u16 reg;
2977 u8 filter[8];
2978
2979 memset(filter, 0, sizeof(filter));
2980
2981 reg = gma_read16(hw, port, GM_RX_CTRL);
2982 reg |= GM_RXCR_UCF_ENA;
2983
2984 if (dev->flags & IFF_PROMISC) /* promiscuous */
2985 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2986 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2987 memset(filter, 0xff, sizeof(filter));
2988 else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2989 reg &= ~GM_RXCR_MCF_ENA;
2990 else {
2991 reg |= GM_RXCR_MCF_ENA;
2992
2993 if (rx_pause)
2994 yukon_add_filter(filter, pause_mc_addr);
2995
2996 netdev_for_each_mc_addr(ha, dev)
2997 yukon_add_filter(filter, ha->addr);
2998 }
2999
3000
3001 gma_write16(hw, port, GM_MC_ADDR_H1,
3002 (u16)filter[0] | ((u16)filter[1] << 8));
3003 gma_write16(hw, port, GM_MC_ADDR_H2,
3004 (u16)filter[2] | ((u16)filter[3] << 8));
3005 gma_write16(hw, port, GM_MC_ADDR_H3,
3006 (u16)filter[4] | ((u16)filter[5] << 8));
3007 gma_write16(hw, port, GM_MC_ADDR_H4,
3008 (u16)filter[6] | ((u16)filter[7] << 8));
3009
3010 gma_write16(hw, port, GM_RX_CTRL, reg);
3011 }
3012
3013 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3014 {
3015 if (is_genesis(hw))
3016 return status >> XMR_FS_LEN_SHIFT;
3017 else
3018 return status >> GMR_FS_LEN_SHIFT;
3019 }
3020
3021 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3022 {
3023 if (is_genesis(hw))
3024 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3025 else
3026 return (status & GMR_FS_ANY_ERR) ||
3027 (status & GMR_FS_RX_OK) == 0;
3028 }
3029
3030 static void skge_set_multicast(struct net_device *dev)
3031 {
3032 struct skge_port *skge = netdev_priv(dev);
3033
3034 if (is_genesis(skge->hw))
3035 genesis_set_multicast(dev);
3036 else
3037 yukon_set_multicast(dev);
3038
3039 }
3040
3041
3042 /* Get receive buffer from descriptor.
3043 * Handles copy of small buffers and reallocation failures
3044 */
3045 static struct sk_buff *skge_rx_get(struct net_device *dev,
3046 struct skge_element *e,
3047 u32 control, u32 status, u16 csum)
3048 {
3049 struct skge_port *skge = netdev_priv(dev);
3050 struct sk_buff *skb;
3051 u16 len = control & BMU_BBC;
3052
3053 netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3054 "rx slot %td status 0x%x len %d\n",
3055 e - skge->rx_ring.start, status, len);
3056
3057 if (len > skge->rx_buf_size)
3058 goto error;
3059
3060 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3061 goto error;
3062
3063 if (bad_phy_status(skge->hw, status))
3064 goto error;
3065
3066 if (phy_length(skge->hw, status) != len)
3067 goto error;
3068
3069 if (len < RX_COPY_THRESHOLD) {
3070 skb = netdev_alloc_skb_ip_align(dev, len);
3071 if (!skb)
3072 goto resubmit;
3073
3074 pci_dma_sync_single_for_cpu(skge->hw->pdev,
3075 dma_unmap_addr(e, mapaddr),
3076 dma_unmap_len(e, maplen),
3077 PCI_DMA_FROMDEVICE);
3078 skb_copy_from_linear_data(e->skb, skb->data, len);
3079 pci_dma_sync_single_for_device(skge->hw->pdev,
3080 dma_unmap_addr(e, mapaddr),
3081 dma_unmap_len(e, maplen),
3082 PCI_DMA_FROMDEVICE);
3083 skge_rx_reuse(e, skge->rx_buf_size);
3084 } else {
3085 struct skge_element ee;
3086 struct sk_buff *nskb;
3087
3088 nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3089 if (!nskb)
3090 goto resubmit;
3091
3092 ee = *e;
3093
3094 skb = ee.skb;
3095 prefetch(skb->data);
3096
3097 if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3098 dev_kfree_skb(nskb);
3099 goto resubmit;
3100 }
3101
3102 pci_unmap_single(skge->hw->pdev,
3103 dma_unmap_addr(&ee, mapaddr),
3104 dma_unmap_len(&ee, maplen),
3105 PCI_DMA_FROMDEVICE);
3106 }
3107
3108 skb_put(skb, len);
3109
3110 if (dev->features & NETIF_F_RXCSUM) {
3111 skb->csum = le16_to_cpu(csum);
3112 skb->ip_summed = CHECKSUM_COMPLETE;
3113 }
3114
3115 skb->protocol = eth_type_trans(skb, dev);
3116
3117 return skb;
3118 error:
3119
3120 netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3121 "rx err, slot %td control 0x%x status 0x%x\n",
3122 e - skge->rx_ring.start, control, status);
3123
3124 if (is_genesis(skge->hw)) {
3125 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3126 dev->stats.rx_length_errors++;
3127 if (status & XMR_FS_FRA_ERR)
3128 dev->stats.rx_frame_errors++;
3129 if (status & XMR_FS_FCS_ERR)
3130 dev->stats.rx_crc_errors++;
3131 } else {
3132 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3133 dev->stats.rx_length_errors++;
3134 if (status & GMR_FS_FRAGMENT)
3135 dev->stats.rx_frame_errors++;
3136 if (status & GMR_FS_CRC_ERR)
3137 dev->stats.rx_crc_errors++;
3138 }
3139
3140 resubmit:
3141 skge_rx_reuse(e, skge->rx_buf_size);
3142 return NULL;
3143 }
3144
3145 /* Free all buffers in Tx ring which are no longer owned by device */
3146 static void skge_tx_done(struct net_device *dev)
3147 {
3148 struct skge_port *skge = netdev_priv(dev);
3149 struct skge_ring *ring = &skge->tx_ring;
3150 struct skge_element *e;
3151 unsigned int bytes_compl = 0, pkts_compl = 0;
3152
3153 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3154
3155 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3156 u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3157
3158 if (control & BMU_OWN)
3159 break;
3160
3161 skge_tx_unmap(skge->hw->pdev, e, control);
3162
3163 if (control & BMU_EOF) {
3164 netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3165 "tx done slot %td\n",
3166 e - skge->tx_ring.start);
3167
3168 pkts_compl++;
3169 bytes_compl += e->skb->len;
3170
3171 dev_consume_skb_any(e->skb);
3172 }
3173 }
3174 netdev_completed_queue(dev, pkts_compl, bytes_compl);
3175 skge->tx_ring.to_clean = e;
3176
3177 /* Can run lockless until we need to synchronize to restart queue. */
3178 smp_mb();
3179
3180 if (unlikely(netif_queue_stopped(dev) &&
3181 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3182 netif_tx_lock(dev);
3183 if (unlikely(netif_queue_stopped(dev) &&
3184 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3185 netif_wake_queue(dev);
3186
3187 }
3188 netif_tx_unlock(dev);
3189 }
3190 }
3191
3192 static int skge_poll(struct napi_struct *napi, int budget)
3193 {
3194 struct skge_port *skge = container_of(napi, struct skge_port, napi);
3195 struct net_device *dev = skge->netdev;
3196 struct skge_hw *hw = skge->hw;
3197 struct skge_ring *ring = &skge->rx_ring;
3198 struct skge_element *e;
3199 int work_done = 0;
3200
3201 skge_tx_done(dev);
3202
3203 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3204
3205 for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3206 struct skge_rx_desc *rd = e->desc;
3207 struct sk_buff *skb;
3208 u32 control;
3209
3210 rmb();
3211 control = rd->control;
3212 if (control & BMU_OWN)
3213 break;
3214
3215 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3216 if (likely(skb)) {
3217 napi_gro_receive(napi, skb);
3218 ++work_done;
3219 }
3220 }
3221 ring->to_clean = e;
3222
3223 /* restart receiver */
3224 wmb();
3225 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3226
3227 if (work_done < budget && napi_complete_done(napi, work_done)) {
3228 unsigned long flags;
3229
3230 spin_lock_irqsave(&hw->hw_lock, flags);
3231 hw->intr_mask |= napimask[skge->port];
3232 skge_write32(hw, B0_IMSK, hw->intr_mask);
3233 skge_read32(hw, B0_IMSK);
3234 spin_unlock_irqrestore(&hw->hw_lock, flags);
3235 }
3236
3237 return work_done;
3238 }
3239
3240 /* Parity errors seem to happen when Genesis is connected to a switch
3241 * with no other ports present. Heartbeat error??
3242 */
3243 static void skge_mac_parity(struct skge_hw *hw, int port)
3244 {
3245 struct net_device *dev = hw->dev[port];
3246
3247 ++dev->stats.tx_heartbeat_errors;
3248
3249 if (is_genesis(hw))
3250 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3251 MFF_CLR_PERR);
3252 else
3253 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3254 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3255 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3256 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3257 }
3258
3259 static void skge_mac_intr(struct skge_hw *hw, int port)
3260 {
3261 if (is_genesis(hw))
3262 genesis_mac_intr(hw, port);
3263 else
3264 yukon_mac_intr(hw, port);
3265 }
3266
3267 /* Handle device specific framing and timeout interrupts */
3268 static void skge_error_irq(struct skge_hw *hw)
3269 {
3270 struct pci_dev *pdev = hw->pdev;
3271 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3272
3273 if (is_genesis(hw)) {
3274 /* clear xmac errors */
3275 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3276 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3277 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3278 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3279 } else {
3280 /* Timestamp (unused) overflow */
3281 if (hwstatus & IS_IRQ_TIST_OV)
3282 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3283 }
3284
3285 if (hwstatus & IS_RAM_RD_PAR) {
3286 dev_err(&pdev->dev, "Ram read data parity error\n");
3287 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3288 }
3289
3290 if (hwstatus & IS_RAM_WR_PAR) {
3291 dev_err(&pdev->dev, "Ram write data parity error\n");
3292 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3293 }
3294
3295 if (hwstatus & IS_M1_PAR_ERR)
3296 skge_mac_parity(hw, 0);
3297
3298 if (hwstatus & IS_M2_PAR_ERR)
3299 skge_mac_parity(hw, 1);
3300
3301 if (hwstatus & IS_R1_PAR_ERR) {
3302 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3303 hw->dev[0]->name);
3304 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3305 }
3306
3307 if (hwstatus & IS_R2_PAR_ERR) {
3308 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3309 hw->dev[1]->name);
3310 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3311 }
3312
3313 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3314 u16 pci_status, pci_cmd;
3315
3316 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3317 pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3318
3319 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3320 pci_cmd, pci_status);
3321
3322 /* Write the error bits back to clear them. */
3323 pci_status &= PCI_STATUS_ERROR_BITS;
3324 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3325 pci_write_config_word(pdev, PCI_COMMAND,
3326 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3327 pci_write_config_word(pdev, PCI_STATUS, pci_status);
3328 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3329
3330 /* if error still set then just ignore it */
3331 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3332 if (hwstatus & IS_IRQ_STAT) {
3333 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3334 hw->intr_mask &= ~IS_HW_ERR;
3335 }
3336 }
3337 }
3338
3339 /*
3340 * Interrupt from PHY are handled in tasklet (softirq)
3341 * because accessing phy registers requires spin wait which might
3342 * cause excess interrupt latency.
3343 */
3344 static void skge_extirq(unsigned long arg)
3345 {
3346 struct skge_hw *hw = (struct skge_hw *) arg;
3347 int port;
3348
3349 for (port = 0; port < hw->ports; port++) {
3350 struct net_device *dev = hw->dev[port];
3351
3352 if (netif_running(dev)) {
3353 struct skge_port *skge = netdev_priv(dev);
3354
3355 spin_lock(&hw->phy_lock);
3356 if (!is_genesis(hw))
3357 yukon_phy_intr(skge);
3358 else if (hw->phy_type == SK_PHY_BCOM)
3359 bcom_phy_intr(skge);
3360 spin_unlock(&hw->phy_lock);
3361 }
3362 }
3363
3364 spin_lock_irq(&hw->hw_lock);
3365 hw->intr_mask |= IS_EXT_REG;
3366 skge_write32(hw, B0_IMSK, hw->intr_mask);
3367 skge_read32(hw, B0_IMSK);
3368 spin_unlock_irq(&hw->hw_lock);
3369 }
3370
3371 static irqreturn_t skge_intr(int irq, void *dev_id)
3372 {
3373 struct skge_hw *hw = dev_id;
3374 u32 status;
3375 int handled = 0;
3376
3377 spin_lock(&hw->hw_lock);
3378 /* Reading this register masks IRQ */
3379 status = skge_read32(hw, B0_SP_ISRC);
3380 if (status == 0 || status == ~0)
3381 goto out;
3382
3383 handled = 1;
3384 status &= hw->intr_mask;
3385 if (status & IS_EXT_REG) {
3386 hw->intr_mask &= ~IS_EXT_REG;
3387 tasklet_schedule(&hw->phy_task);
3388 }
3389
3390 if (status & (IS_XA1_F|IS_R1_F)) {
3391 struct skge_port *skge = netdev_priv(hw->dev[0]);
3392 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3393 napi_schedule(&skge->napi);
3394 }
3395
3396 if (status & IS_PA_TO_TX1)
3397 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3398
3399 if (status & IS_PA_TO_RX1) {
3400 ++hw->dev[0]->stats.rx_over_errors;
3401 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3402 }
3403
3404
3405 if (status & IS_MAC1)
3406 skge_mac_intr(hw, 0);
3407
3408 if (hw->dev[1]) {
3409 struct skge_port *skge = netdev_priv(hw->dev[1]);
3410
3411 if (status & (IS_XA2_F|IS_R2_F)) {
3412 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3413 napi_schedule(&skge->napi);
3414 }
3415
3416 if (status & IS_PA_TO_RX2) {
3417 ++hw->dev[1]->stats.rx_over_errors;
3418 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3419 }
3420
3421 if (status & IS_PA_TO_TX2)
3422 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3423
3424 if (status & IS_MAC2)
3425 skge_mac_intr(hw, 1);
3426 }
3427
3428 if (status & IS_HW_ERR)
3429 skge_error_irq(hw);
3430 out:
3431 skge_write32(hw, B0_IMSK, hw->intr_mask);
3432 skge_read32(hw, B0_IMSK);
3433 spin_unlock(&hw->hw_lock);
3434
3435 return IRQ_RETVAL(handled);
3436 }
3437
3438 #ifdef CONFIG_NET_POLL_CONTROLLER
3439 static void skge_netpoll(struct net_device *dev)
3440 {
3441 struct skge_port *skge = netdev_priv(dev);
3442
3443 disable_irq(dev->irq);
3444 skge_intr(dev->irq, skge->hw);
3445 enable_irq(dev->irq);
3446 }
3447 #endif
3448
3449 static int skge_set_mac_address(struct net_device *dev, void *p)
3450 {
3451 struct skge_port *skge = netdev_priv(dev);
3452 struct skge_hw *hw = skge->hw;
3453 unsigned port = skge->port;
3454 const struct sockaddr *addr = p;
3455 u16 ctrl;
3456
3457 if (!is_valid_ether_addr(addr->sa_data))
3458 return -EADDRNOTAVAIL;
3459
3460 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3461
3462 if (!netif_running(dev)) {
3463 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3464 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3465 } else {
3466 /* disable Rx */
3467 spin_lock_bh(&hw->phy_lock);
3468 ctrl = gma_read16(hw, port, GM_GP_CTRL);
3469 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3470
3471 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3472 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3473
3474 if (is_genesis(hw))
3475 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3476 else {
3477 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3478 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3479 }
3480
3481 gma_write16(hw, port, GM_GP_CTRL, ctrl);
3482 spin_unlock_bh(&hw->phy_lock);
3483 }
3484
3485 return 0;
3486 }
3487
3488 static const struct {
3489 u8 id;
3490 const char *name;
3491 } skge_chips[] = {
3492 { CHIP_ID_GENESIS, "Genesis" },
3493 { CHIP_ID_YUKON, "Yukon" },
3494 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3495 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3496 };
3497
3498 static const char *skge_board_name(const struct skge_hw *hw)
3499 {
3500 int i;
3501 static char buf[16];
3502
3503 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3504 if (skge_chips[i].id == hw->chip_id)
3505 return skge_chips[i].name;
3506
3507 snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3508 return buf;
3509 }
3510
3511
3512 /*
3513 * Setup the board data structure, but don't bring up
3514 * the port(s)
3515 */
3516 static int skge_reset(struct skge_hw *hw)
3517 {
3518 u32 reg;
3519 u16 ctst, pci_status;
3520 u8 t8, mac_cfg, pmd_type;
3521 int i;
3522
3523 ctst = skge_read16(hw, B0_CTST);
3524
3525 /* do a SW reset */
3526 skge_write8(hw, B0_CTST, CS_RST_SET);
3527 skge_write8(hw, B0_CTST, CS_RST_CLR);
3528
3529 /* clear PCI errors, if any */
3530 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3531 skge_write8(hw, B2_TST_CTRL2, 0);
3532
3533 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3534 pci_write_config_word(hw->pdev, PCI_STATUS,
3535 pci_status | PCI_STATUS_ERROR_BITS);
3536 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3537 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3538
3539 /* restore CLK_RUN bits (for Yukon-Lite) */
3540 skge_write16(hw, B0_CTST,
3541 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3542
3543 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3544 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3545 pmd_type = skge_read8(hw, B2_PMD_TYP);
3546 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3547
3548 switch (hw->chip_id) {
3549 case CHIP_ID_GENESIS:
3550 #ifdef CONFIG_SKGE_GENESIS
3551 switch (hw->phy_type) {
3552 case SK_PHY_XMAC:
3553 hw->phy_addr = PHY_ADDR_XMAC;
3554 break;
3555 case SK_PHY_BCOM:
3556 hw->phy_addr = PHY_ADDR_BCOM;
3557 break;
3558 default:
3559 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3560 hw->phy_type);
3561 return -EOPNOTSUPP;
3562 }
3563 break;
3564 #else
3565 dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3566 return -EOPNOTSUPP;
3567 #endif
3568
3569 case CHIP_ID_YUKON:
3570 case CHIP_ID_YUKON_LITE:
3571 case CHIP_ID_YUKON_LP:
3572 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3573 hw->copper = 1;
3574
3575 hw->phy_addr = PHY_ADDR_MARV;
3576 break;
3577
3578 default:
3579 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3580 hw->chip_id);
3581 return -EOPNOTSUPP;
3582 }
3583
3584 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3585 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3586 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3587
3588 /* read the adapters RAM size */
3589 t8 = skge_read8(hw, B2_E_0);
3590 if (is_genesis(hw)) {
3591 if (t8 == 3) {
3592 /* special case: 4 x 64k x 36, offset = 0x80000 */
3593 hw->ram_size = 0x100000;
3594 hw->ram_offset = 0x80000;
3595 } else
3596 hw->ram_size = t8 * 512;
3597 } else if (t8 == 0)
3598 hw->ram_size = 0x20000;
3599 else
3600 hw->ram_size = t8 * 4096;
3601
3602 hw->intr_mask = IS_HW_ERR;
3603
3604 /* Use PHY IRQ for all but fiber based Genesis board */
3605 if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3606 hw->intr_mask |= IS_EXT_REG;
3607
3608 if (is_genesis(hw))
3609 genesis_init(hw);
3610 else {
3611 /* switch power to VCC (WA for VAUX problem) */
3612 skge_write8(hw, B0_POWER_CTRL,
3613 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3614
3615 /* avoid boards with stuck Hardware error bits */
3616 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3617 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3618 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3619 hw->intr_mask &= ~IS_HW_ERR;
3620 }
3621
3622 /* Clear PHY COMA */
3623 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3624 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3625 reg &= ~PCI_PHY_COMA;
3626 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3627 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3628
3629
3630 for (i = 0; i < hw->ports; i++) {
3631 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3632 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3633 }
3634 }
3635
3636 /* turn off hardware timer (unused) */
3637 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3638 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3639 skge_write8(hw, B0_LED, LED_STAT_ON);
3640
3641 /* enable the Tx Arbiters */
3642 for (i = 0; i < hw->ports; i++)
3643 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3644
3645 /* Initialize ram interface */
3646 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3647
3648 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3649 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3650 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3651 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3652 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3653 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3654 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3655 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3656 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3657 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3658 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3659 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3660
3661 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3662
3663 /* Set interrupt moderation for Transmit only
3664 * Receive interrupts avoided by NAPI
3665 */
3666 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3667 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3668 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3669
3670 /* Leave irq disabled until first port is brought up. */
3671 skge_write32(hw, B0_IMSK, 0);
3672
3673 for (i = 0; i < hw->ports; i++) {
3674 if (is_genesis(hw))
3675 genesis_reset(hw, i);
3676 else
3677 yukon_reset(hw, i);
3678 }
3679
3680 return 0;
3681 }
3682
3683
3684 #ifdef CONFIG_SKGE_DEBUG
3685
3686 static struct dentry *skge_debug;
3687
3688 static int skge_debug_show(struct seq_file *seq, void *v)
3689 {
3690 struct net_device *dev = seq->private;
3691 const struct skge_port *skge = netdev_priv(dev);
3692 const struct skge_hw *hw = skge->hw;
3693 const struct skge_element *e;
3694
3695 if (!netif_running(dev))
3696 return -ENETDOWN;
3697
3698 seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3699 skge_read32(hw, B0_IMSK));
3700
3701 seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3702 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3703 const struct skge_tx_desc *t = e->desc;
3704 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3705 t->control, t->dma_hi, t->dma_lo, t->status,
3706 t->csum_offs, t->csum_write, t->csum_start);
3707 }
3708
3709 seq_puts(seq, "\nRx Ring:\n");
3710 for (e = skge->rx_ring.to_clean; ; e = e->next) {
3711 const struct skge_rx_desc *r = e->desc;
3712
3713 if (r->control & BMU_OWN)
3714 break;
3715
3716 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3717 r->control, r->dma_hi, r->dma_lo, r->status,
3718 r->timestamp, r->csum1, r->csum1_start);
3719 }
3720
3721 return 0;
3722 }
3723 DEFINE_SHOW_ATTRIBUTE(skge_debug);
3724
3725 /*
3726 * Use network device events to create/remove/rename
3727 * debugfs file entries
3728 */
3729 static int skge_device_event(struct notifier_block *unused,
3730 unsigned long event, void *ptr)
3731 {
3732 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3733 struct skge_port *skge;
3734
3735 if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3736 goto done;
3737
3738 skge = netdev_priv(dev);
3739 switch (event) {
3740 case NETDEV_CHANGENAME:
3741 if (skge->debugfs)
3742 skge->debugfs = debugfs_rename(skge_debug,
3743 skge->debugfs,
3744 skge_debug, dev->name);
3745 break;
3746
3747 case NETDEV_GOING_DOWN:
3748 debugfs_remove(skge->debugfs);
3749 skge->debugfs = NULL;
3750 break;
3751
3752 case NETDEV_UP:
3753 skge->debugfs = debugfs_create_file(dev->name, 0444, skge_debug,
3754 dev, &skge_debug_fops);
3755 break;
3756 }
3757
3758 done:
3759 return NOTIFY_DONE;
3760 }
3761
3762 static struct notifier_block skge_notifier = {
3763 .notifier_call = skge_device_event,
3764 };
3765
3766
3767 static __init void skge_debug_init(void)
3768 {
3769 skge_debug = debugfs_create_dir("skge", NULL);
3770
3771 register_netdevice_notifier(&skge_notifier);
3772 }
3773
3774 static __exit void skge_debug_cleanup(void)
3775 {
3776 if (skge_debug) {
3777 unregister_netdevice_notifier(&skge_notifier);
3778 debugfs_remove(skge_debug);
3779 skge_debug = NULL;
3780 }
3781 }
3782
3783 #else
3784 #define skge_debug_init()
3785 #define skge_debug_cleanup()
3786 #endif
3787
3788 static const struct net_device_ops skge_netdev_ops = {
3789 .ndo_open = skge_up,
3790 .ndo_stop = skge_down,
3791 .ndo_start_xmit = skge_xmit_frame,
3792 .ndo_do_ioctl = skge_ioctl,
3793 .ndo_get_stats = skge_get_stats,
3794 .ndo_tx_timeout = skge_tx_timeout,
3795 .ndo_change_mtu = skge_change_mtu,
3796 .ndo_validate_addr = eth_validate_addr,
3797 .ndo_set_rx_mode = skge_set_multicast,
3798 .ndo_set_mac_address = skge_set_mac_address,
3799 #ifdef CONFIG_NET_POLL_CONTROLLER
3800 .ndo_poll_controller = skge_netpoll,
3801 #endif
3802 };
3803
3804
3805 /* Initialize network device */
3806 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3807 int highmem)
3808 {
3809 struct skge_port *skge;
3810 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3811
3812 if (!dev)
3813 return NULL;
3814
3815 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3816 dev->netdev_ops = &skge_netdev_ops;
3817 dev->ethtool_ops = &skge_ethtool_ops;
3818 dev->watchdog_timeo = TX_WATCHDOG;
3819 dev->irq = hw->pdev->irq;
3820
3821 /* MTU range: 60 - 9000 */
3822 dev->min_mtu = ETH_ZLEN;
3823 dev->max_mtu = ETH_JUMBO_MTU;
3824
3825 if (highmem)
3826 dev->features |= NETIF_F_HIGHDMA;
3827
3828 skge = netdev_priv(dev);
3829 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3830 skge->netdev = dev;
3831 skge->hw = hw;
3832 skge->msg_enable = netif_msg_init(debug, default_msg);
3833
3834 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3835 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3836
3837 /* Auto speed and flow control */
3838 skge->autoneg = AUTONEG_ENABLE;
3839 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3840 skge->duplex = -1;
3841 skge->speed = -1;
3842 skge->advertising = skge_supported_modes(hw);
3843
3844 if (device_can_wakeup(&hw->pdev->dev)) {
3845 skge->wol = wol_supported(hw) & WAKE_MAGIC;
3846 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3847 }
3848
3849 hw->dev[port] = dev;
3850
3851 skge->port = port;
3852
3853 /* Only used for Genesis XMAC */
3854 if (is_genesis(hw))
3855 timer_setup(&skge->link_timer, xm_link_timer, 0);
3856 else {
3857 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3858 NETIF_F_RXCSUM;
3859 dev->features |= dev->hw_features;
3860 }
3861
3862 /* read the mac address */
3863 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3864
3865 return dev;
3866 }
3867
3868 static void skge_show_addr(struct net_device *dev)
3869 {
3870 const struct skge_port *skge = netdev_priv(dev);
3871
3872 netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3873 }
3874
3875 static int only_32bit_dma;
3876
3877 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3878 {
3879 struct net_device *dev, *dev1;
3880 struct skge_hw *hw;
3881 int err, using_dac = 0;
3882
3883 err = pci_enable_device(pdev);
3884 if (err) {
3885 dev_err(&pdev->dev, "cannot enable PCI device\n");
3886 goto err_out;
3887 }
3888
3889 err = pci_request_regions(pdev, DRV_NAME);
3890 if (err) {
3891 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3892 goto err_out_disable_pdev;
3893 }
3894
3895 pci_set_master(pdev);
3896
3897 if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3898 using_dac = 1;
3899 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3900 } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3901 using_dac = 0;
3902 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3903 }
3904
3905 if (err) {
3906 dev_err(&pdev->dev, "no usable DMA configuration\n");
3907 goto err_out_free_regions;
3908 }
3909
3910 #ifdef __BIG_ENDIAN
3911 /* byte swap descriptors in hardware */
3912 {
3913 u32 reg;
3914
3915 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3916 reg |= PCI_REV_DESC;
3917 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3918 }
3919 #endif
3920
3921 err = -ENOMEM;
3922 /* space for skge@pci:0000:04:00.0 */
3923 hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3924 + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3925 if (!hw)
3926 goto err_out_free_regions;
3927
3928 sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3929
3930 hw->pdev = pdev;
3931 spin_lock_init(&hw->hw_lock);
3932 spin_lock_init(&hw->phy_lock);
3933 tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3934
3935 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3936 if (!hw->regs) {
3937 dev_err(&pdev->dev, "cannot map device registers\n");
3938 goto err_out_free_hw;
3939 }
3940
3941 err = skge_reset(hw);
3942 if (err)
3943 goto err_out_iounmap;
3944
3945 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3946 DRV_VERSION,
3947 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3948 skge_board_name(hw), hw->chip_rev);
3949
3950 dev = skge_devinit(hw, 0, using_dac);
3951 if (!dev) {
3952 err = -ENOMEM;
3953 goto err_out_led_off;
3954 }
3955
3956 /* Some motherboards are broken and has zero in ROM. */
3957 if (!is_valid_ether_addr(dev->dev_addr))
3958 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3959
3960 err = register_netdev(dev);
3961 if (err) {
3962 dev_err(&pdev->dev, "cannot register net device\n");
3963 goto err_out_free_netdev;
3964 }
3965
3966 skge_show_addr(dev);
3967
3968 if (hw->ports > 1) {
3969 dev1 = skge_devinit(hw, 1, using_dac);
3970 if (!dev1) {
3971 err = -ENOMEM;
3972 goto err_out_unregister;
3973 }
3974
3975 err = register_netdev(dev1);
3976 if (err) {
3977 dev_err(&pdev->dev, "cannot register second net device\n");
3978 goto err_out_free_dev1;
3979 }
3980
3981 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3982 hw->irq_name, hw);
3983 if (err) {
3984 dev_err(&pdev->dev, "cannot assign irq %d\n",
3985 pdev->irq);
3986 goto err_out_unregister_dev1;
3987 }
3988
3989 skge_show_addr(dev1);
3990 }
3991 pci_set_drvdata(pdev, hw);
3992
3993 return 0;
3994
3995 err_out_unregister_dev1:
3996 unregister_netdev(dev1);
3997 err_out_free_dev1:
3998 free_netdev(dev1);
3999 err_out_unregister:
4000 unregister_netdev(dev);
4001 err_out_free_netdev:
4002 free_netdev(dev);
4003 err_out_led_off:
4004 skge_write16(hw, B0_LED, LED_STAT_OFF);
4005 err_out_iounmap:
4006 iounmap(hw->regs);
4007 err_out_free_hw:
4008 kfree(hw);
4009 err_out_free_regions:
4010 pci_release_regions(pdev);
4011 err_out_disable_pdev:
4012 pci_disable_device(pdev);
4013 err_out:
4014 return err;
4015 }
4016
4017 static void skge_remove(struct pci_dev *pdev)
4018 {
4019 struct skge_hw *hw = pci_get_drvdata(pdev);
4020 struct net_device *dev0, *dev1;
4021
4022 if (!hw)
4023 return;
4024
4025 dev1 = hw->dev[1];
4026 if (dev1)
4027 unregister_netdev(dev1);
4028 dev0 = hw->dev[0];
4029 unregister_netdev(dev0);
4030
4031 tasklet_kill(&hw->phy_task);
4032
4033 spin_lock_irq(&hw->hw_lock);
4034 hw->intr_mask = 0;
4035
4036 if (hw->ports > 1) {
4037 skge_write32(hw, B0_IMSK, 0);
4038 skge_read32(hw, B0_IMSK);
4039 }
4040 spin_unlock_irq(&hw->hw_lock);
4041
4042 skge_write16(hw, B0_LED, LED_STAT_OFF);
4043 skge_write8(hw, B0_CTST, CS_RST_SET);
4044
4045 if (hw->ports > 1)
4046 free_irq(pdev->irq, hw);
4047 pci_release_regions(pdev);
4048 pci_disable_device(pdev);
4049 if (dev1)
4050 free_netdev(dev1);
4051 free_netdev(dev0);
4052
4053 iounmap(hw->regs);
4054 kfree(hw);
4055 }
4056
4057 #ifdef CONFIG_PM_SLEEP
4058 static int skge_suspend(struct device *dev)
4059 {
4060 struct skge_hw *hw = dev_get_drvdata(dev);
4061 int i;
4062
4063 if (!hw)
4064 return 0;
4065
4066 for (i = 0; i < hw->ports; i++) {
4067 struct net_device *dev = hw->dev[i];
4068 struct skge_port *skge = netdev_priv(dev);
4069
4070 if (netif_running(dev))
4071 skge_down(dev);
4072
4073 if (skge->wol)
4074 skge_wol_init(skge);
4075 }
4076
4077 skge_write32(hw, B0_IMSK, 0);
4078
4079 return 0;
4080 }
4081
4082 static int skge_resume(struct device *dev)
4083 {
4084 struct skge_hw *hw = dev_get_drvdata(dev);
4085 int i, err;
4086
4087 if (!hw)
4088 return 0;
4089
4090 err = skge_reset(hw);
4091 if (err)
4092 goto out;
4093
4094 for (i = 0; i < hw->ports; i++) {
4095 struct net_device *dev = hw->dev[i];
4096
4097 if (netif_running(dev)) {
4098 err = skge_up(dev);
4099
4100 if (err) {
4101 netdev_err(dev, "could not up: %d\n", err);
4102 dev_close(dev);
4103 goto out;
4104 }
4105 }
4106 }
4107 out:
4108 return err;
4109 }
4110
4111 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4112 #define SKGE_PM_OPS (&skge_pm_ops)
4113
4114 #else
4115
4116 #define SKGE_PM_OPS NULL
4117 #endif /* CONFIG_PM_SLEEP */
4118
4119 static void skge_shutdown(struct pci_dev *pdev)
4120 {
4121 struct skge_hw *hw = pci_get_drvdata(pdev);
4122 int i;
4123
4124 if (!hw)
4125 return;
4126
4127 for (i = 0; i < hw->ports; i++) {
4128 struct net_device *dev = hw->dev[i];
4129 struct skge_port *skge = netdev_priv(dev);
4130
4131 if (skge->wol)
4132 skge_wol_init(skge);
4133 }
4134
4135 pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4136 pci_set_power_state(pdev, PCI_D3hot);
4137 }
4138
4139 static struct pci_driver skge_driver = {
4140 .name = DRV_NAME,
4141 .id_table = skge_id_table,
4142 .probe = skge_probe,
4143 .remove = skge_remove,
4144 .shutdown = skge_shutdown,
4145 .driver.pm = SKGE_PM_OPS,
4146 };
4147
4148 static const struct dmi_system_id skge_32bit_dma_boards[] = {
4149 {
4150 .ident = "Gigabyte nForce boards",
4151 .matches = {
4152 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4153 DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4154 },
4155 },
4156 {
4157 .ident = "ASUS P5NSLI",
4158 .matches = {
4159 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4160 DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4161 },
4162 },
4163 {
4164 .ident = "FUJITSU SIEMENS A8NE-FM",
4165 .matches = {
4166 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4167 DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4168 },
4169 },
4170 {}
4171 };
4172
4173 static int __init skge_init_module(void)
4174 {
4175 if (dmi_check_system(skge_32bit_dma_boards))
4176 only_32bit_dma = 1;
4177 skge_debug_init();
4178 return pci_register_driver(&skge_driver);
4179 }
4180
4181 static void __exit skge_cleanup_module(void)
4182 {
4183 pci_unregister_driver(&skge_driver);
4184 skge_debug_cleanup();
4185 }
4186
4187 module_init(skge_init_module);
4188 module_exit(skge_cleanup_module);