AArch32: Disable Secure Cycle Counter
[project/bcm63xx/atf.git] / include / arch / aarch32 / el3_common_macros.S
1 /*
2 * Copyright (c) 2016-2019, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #ifndef EL3_COMMON_MACROS_S
8 #define EL3_COMMON_MACROS_S
9
10 #include <arch.h>
11 #include <asm_macros.S>
12 #include <assert_macros.S>
13
14 /*
15 * Helper macro to initialise EL3 registers we care about.
16 */
17 .macro el3_arch_init_common
18 /* ---------------------------------------------------------------------
19 * SCTLR has already been initialised - read current value before
20 * modifying.
21 *
22 * SCTLR.I: Enable the instruction cache.
23 *
24 * SCTLR.A: Enable Alignment fault checking. All instructions that load
25 * or store one or more registers have an alignment check that the
26 * address being accessed is aligned to the size of the data element(s)
27 * being accessed.
28 * ---------------------------------------------------------------------
29 */
30 ldr r1, =(SCTLR_I_BIT | SCTLR_A_BIT)
31 ldcopr r0, SCTLR
32 orr r0, r0, r1
33 stcopr r0, SCTLR
34 isb
35
36 /* ---------------------------------------------------------------------
37 * Initialise SCR, setting all fields rather than relying on the hw.
38 *
39 * SCR.SIF: Enabled so that Secure state instruction fetches from
40 * Non-secure memory are not permitted.
41 * ---------------------------------------------------------------------
42 */
43 ldr r0, =(SCR_RESET_VAL | SCR_SIF_BIT)
44 stcopr r0, SCR
45
46 /* -----------------------------------------------------
47 * Enable the Asynchronous data abort now that the
48 * exception vectors have been setup.
49 * -----------------------------------------------------
50 */
51 cpsie a
52 isb
53
54 /* ---------------------------------------------------------------------
55 * Initialise NSACR, setting all the fields, except for the
56 * IMPLEMENTATION DEFINED field, rather than relying on the hw. Some
57 * fields are architecturally UNKNOWN on reset.
58 *
59 * NSACR_ENABLE_FP_ACCESS: Represents NSACR.cp11 and NSACR.cp10. The
60 * cp11 field is ignored, but is set to same value as cp10. The cp10
61 * field is set to allow access to Advanced SIMD and floating point
62 * features from both Security states.
63 * ---------------------------------------------------------------------
64 */
65 ldcopr r0, NSACR
66 and r0, r0, #NSACR_IMP_DEF_MASK
67 orr r0, r0, #(NSACR_RESET_VAL | NSACR_ENABLE_FP_ACCESS)
68 stcopr r0, NSACR
69 isb
70
71 /* ---------------------------------------------------------------------
72 * Initialise CPACR, setting all fields rather than relying on hw. Some
73 * fields are architecturally UNKNOWN on reset.
74 *
75 * CPACR.TRCDIS: Trap control for PL0 and PL1 System register accesses
76 * to trace registers. Set to zero to allow access.
77 *
78 * CPACR_ENABLE_FP_ACCESS: Represents CPACR.cp11 and CPACR.cp10. The
79 * cp11 field is ignored, but is set to same value as cp10. The cp10
80 * field is set to allow full access from PL0 and PL1 to floating-point
81 * and Advanced SIMD features.
82 * ---------------------------------------------------------------------
83 */
84 ldr r0, =((CPACR_RESET_VAL | CPACR_ENABLE_FP_ACCESS) & ~(TRCDIS_BIT))
85 stcopr r0, CPACR
86 isb
87
88 /* ---------------------------------------------------------------------
89 * Initialise FPEXC, setting all fields rather than relying on hw. Some
90 * fields are architecturally UNKNOWN on reset and are set to zero
91 * except for field(s) listed below.
92 *
93 * FPEXC.EN: Enable access to Advanced SIMD and floating point features
94 * from all exception levels.
95 *
96 * __SOFTFP__: Predefined macro exposed by soft-float toolchain.
97 * ARMv7 and Cortex-A32(ARMv8/aarch32) has both soft-float and
98 * hard-float variants of toolchain, avoid compiling below code with
99 * soft-float toolchain as "vmsr" instruction will not be recognized.
100 * ---------------------------------------------------------------------
101 */
102 #if ((ARM_ARCH_MAJOR > 7) || defined(ARMV7_SUPPORTS_VFP)) && !(__SOFTFP__)
103 ldr r0, =(FPEXC_RESET_VAL | FPEXC_EN_BIT)
104 vmsr FPEXC, r0
105 isb
106 #endif
107
108 #if (ARM_ARCH_MAJOR > 7)
109 /* ---------------------------------------------------------------------
110 * Initialise SDCR, setting all the fields rather than relying on hw.
111 *
112 * SDCR.SPD: Disable AArch32 privileged debug. Debug exceptions from
113 * Secure EL1 are disabled.
114 *
115 * SDCR.SCCD: Set to one so that cycle counting by PMCCNTR is prohibited
116 * in Secure state. This bit is RES0 in versions of the architecture
117 * earlier than ARMv8.5, setting it to 1 doesn't have any effect on
118 * them.
119 * ---------------------------------------------------------------------
120 */
121 ldr r0, =(SDCR_RESET_VAL | SDCR_SPD(SDCR_SPD_DISABLE) | SDCR_SCCD_BIT)
122 stcopr r0, SDCR
123
124 /* ---------------------------------------------------------------------
125 * Initialise PMCR, setting all fields rather than relying
126 * on hw. Some fields are architecturally UNKNOWN on reset.
127 *
128 * PMCR.LP: Set to one so that event counter overflow, that
129 * is recorded in PMOVSCLR[0-30], occurs on the increment
130 * that changes PMEVCNTR<n>[63] from 1 to 0, when ARMv8.5-PMU
131 * is implemented. This bit is RES0 in versions of the architecture
132 * earlier than ARMv8.5, setting it to 1 doesn't have any effect
133 * on them.
134 * This bit is Reserved, UNK/SBZP in ARMv7.
135 *
136 * PMCR.LC: Set to one so that cycle counter overflow, that
137 * is recorded in PMOVSCLR[31], occurs on the increment
138 * that changes PMCCNTR[63] from 1 to 0.
139 * This bit is Reserved, UNK/SBZP in ARMv7.
140 *
141 * PMCR.DP: Set to one to prohibit cycle counting whilst in Secure mode.
142 * ---------------------------------------------------------------------
143 */
144 ldr r0, =(PMCR_RESET_VAL | PMCR_DP_BIT | PMCR_LC_BIT | \
145 PMCR_LP_BIT)
146 #else
147 ldr r0, =(PMCR_RESET_VAL | PMCR_DP_BIT)
148 #endif
149 stcopr r0, PMCR
150
151 /*
152 * If Data Independent Timing (DIT) functionality is implemented,
153 * always enable DIT in EL3
154 */
155 ldcopr r0, ID_PFR0
156 and r0, r0, #(ID_PFR0_DIT_MASK << ID_PFR0_DIT_SHIFT)
157 cmp r0, #ID_PFR0_DIT_SUPPORTED
158 bne 1f
159 mrs r0, cpsr
160 orr r0, r0, #CPSR_DIT_BIT
161 msr cpsr_cxsf, r0
162 1:
163 .endm
164
165 /* -----------------------------------------------------------------------------
166 * This is the super set of actions that need to be performed during a cold boot
167 * or a warm boot in EL3. This code is shared by BL1 and BL32 (SP_MIN).
168 *
169 * This macro will always perform reset handling, architectural initialisations
170 * and stack setup. The rest of the actions are optional because they might not
171 * be needed, depending on the context in which this macro is called. This is
172 * why this macro is parameterised ; each parameter allows to enable/disable
173 * some actions.
174 *
175 * _init_sctlr:
176 * Whether the macro needs to initialise the SCTLR register including
177 * configuring the endianness of data accesses.
178 *
179 * _warm_boot_mailbox:
180 * Whether the macro needs to detect the type of boot (cold/warm). The
181 * detection is based on the platform entrypoint address : if it is zero
182 * then it is a cold boot, otherwise it is a warm boot. In the latter case,
183 * this macro jumps on the platform entrypoint address.
184 *
185 * _secondary_cold_boot:
186 * Whether the macro needs to identify the CPU that is calling it: primary
187 * CPU or secondary CPU. The primary CPU will be allowed to carry on with
188 * the platform initialisations, while the secondaries will be put in a
189 * platform-specific state in the meantime.
190 *
191 * If the caller knows this macro will only be called by the primary CPU
192 * then this parameter can be defined to 0 to skip this step.
193 *
194 * _init_memory:
195 * Whether the macro needs to initialise the memory.
196 *
197 * _init_c_runtime:
198 * Whether the macro needs to initialise the C runtime environment.
199 *
200 * _exception_vectors:
201 * Address of the exception vectors to program in the VBAR_EL3 register.
202 * -----------------------------------------------------------------------------
203 */
204 .macro el3_entrypoint_common \
205 _init_sctlr, _warm_boot_mailbox, _secondary_cold_boot, \
206 _init_memory, _init_c_runtime, _exception_vectors
207
208 /* Make sure we are in Secure Mode */
209 #if ENABLE_ASSERTIONS
210 ldcopr r0, SCR
211 tst r0, #SCR_NS_BIT
212 ASM_ASSERT(eq)
213 #endif
214
215 .if \_init_sctlr
216 /* -------------------------------------------------------------
217 * This is the initialisation of SCTLR and so must ensure that
218 * all fields are explicitly set rather than relying on hw. Some
219 * fields reset to an IMPLEMENTATION DEFINED value.
220 *
221 * SCTLR.TE: Set to zero so that exceptions to an Exception
222 * Level executing at PL1 are taken to A32 state.
223 *
224 * SCTLR.EE: Set the CPU endianness before doing anything that
225 * might involve memory reads or writes. Set to zero to select
226 * Little Endian.
227 *
228 * SCTLR.V: Set to zero to select the normal exception vectors
229 * with base address held in VBAR.
230 *
231 * SCTLR.DSSBS: Set to zero to disable speculation store bypass
232 * safe behaviour upon exception entry to EL3.
233 * -------------------------------------------------------------
234 */
235 ldr r0, =(SCTLR_RESET_VAL & ~(SCTLR_TE_BIT | SCTLR_EE_BIT | \
236 SCTLR_V_BIT | SCTLR_DSSBS_BIT))
237 stcopr r0, SCTLR
238 isb
239 .endif /* _init_sctlr */
240
241 /* Switch to monitor mode */
242 cps #MODE32_mon
243 isb
244
245 .if \_warm_boot_mailbox
246 /* -------------------------------------------------------------
247 * This code will be executed for both warm and cold resets.
248 * Now is the time to distinguish between the two.
249 * Query the platform entrypoint address and if it is not zero
250 * then it means it is a warm boot so jump to this address.
251 * -------------------------------------------------------------
252 */
253 bl plat_get_my_entrypoint
254 cmp r0, #0
255 bxne r0
256 .endif /* _warm_boot_mailbox */
257
258 /* ---------------------------------------------------------------------
259 * Set the exception vectors (VBAR/MVBAR).
260 * ---------------------------------------------------------------------
261 */
262 ldr r0, =\_exception_vectors
263 stcopr r0, VBAR
264 stcopr r0, MVBAR
265 isb
266
267 /* ---------------------------------------------------------------------
268 * It is a cold boot.
269 * Perform any processor specific actions upon reset e.g. cache, TLB
270 * invalidations etc.
271 * ---------------------------------------------------------------------
272 */
273 bl reset_handler
274
275 el3_arch_init_common
276
277 .if \_secondary_cold_boot
278 /* -------------------------------------------------------------
279 * Check if this is a primary or secondary CPU cold boot.
280 * The primary CPU will set up the platform while the
281 * secondaries are placed in a platform-specific state until the
282 * primary CPU performs the necessary actions to bring them out
283 * of that state and allows entry into the OS.
284 * -------------------------------------------------------------
285 */
286 bl plat_is_my_cpu_primary
287 cmp r0, #0
288 bne do_primary_cold_boot
289
290 /* This is a cold boot on a secondary CPU */
291 bl plat_secondary_cold_boot_setup
292 /* plat_secondary_cold_boot_setup() is not supposed to return */
293 no_ret plat_panic_handler
294
295 do_primary_cold_boot:
296 .endif /* _secondary_cold_boot */
297
298 /* ---------------------------------------------------------------------
299 * Initialize memory now. Secondary CPU initialization won't get to this
300 * point.
301 * ---------------------------------------------------------------------
302 */
303
304 .if \_init_memory
305 bl platform_mem_init
306 .endif /* _init_memory */
307
308 /* ---------------------------------------------------------------------
309 * Init C runtime environment:
310 * - Zero-initialise the NOBITS sections. There are 2 of them:
311 * - the .bss section;
312 * - the coherent memory section (if any).
313 * - Relocate the data section from ROM to RAM, if required.
314 * ---------------------------------------------------------------------
315 */
316 .if \_init_c_runtime
317 #if defined(IMAGE_BL32) || (defined(IMAGE_BL2) && BL2_AT_EL3)
318 /* -----------------------------------------------------------------
319 * Invalidate the RW memory used by the image. This
320 * includes the data and NOBITS sections. This is done to
321 * safeguard against possible corruption of this memory by
322 * dirty cache lines in a system cache as a result of use by
323 * an earlier boot loader stage.
324 * -----------------------------------------------------------------
325 */
326 ldr r0, =__RW_START__
327 ldr r1, =__RW_END__
328 sub r1, r1, r0
329 bl inv_dcache_range
330 #endif
331
332 ldr r0, =__BSS_START__
333 ldr r1, =__BSS_SIZE__
334 bl zeromem
335
336 #if USE_COHERENT_MEM
337 ldr r0, =__COHERENT_RAM_START__
338 ldr r1, =__COHERENT_RAM_UNALIGNED_SIZE__
339 bl zeromem
340 #endif
341
342 #ifdef IMAGE_BL1
343 /* -----------------------------------------------------
344 * Copy data from ROM to RAM.
345 * -----------------------------------------------------
346 */
347 ldr r0, =__DATA_RAM_START__
348 ldr r1, =__DATA_ROM_START__
349 ldr r2, =__DATA_SIZE__
350 bl memcpy4
351 #endif
352 .endif /* _init_c_runtime */
353
354 /* ---------------------------------------------------------------------
355 * Allocate a stack whose memory will be marked as Normal-IS-WBWA when
356 * the MMU is enabled. There is no risk of reading stale stack memory
357 * after enabling the MMU as only the primary CPU is running at the
358 * moment.
359 * ---------------------------------------------------------------------
360 */
361 bl plat_set_my_stack
362
363 #if STACK_PROTECTOR_ENABLED
364 .if \_init_c_runtime
365 bl update_stack_protector_canary
366 .endif /* _init_c_runtime */
367 #endif
368 .endm
369
370 #endif /* EL3_COMMON_MACROS_S */