Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
[openwrt/staging/blogic.git] / drivers / net / ethernet / intel / igc / igc_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13
14 #include <net/ipv6.h>
15
16 #include "igc.h"
17 #include "igc_hw.h"
18 #include "igc_tsn.h"
19
20 #define DRV_VERSION "0.0.1-k"
21 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
22
23 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
24
25 static int debug = -1;
26
27 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
28 MODULE_DESCRIPTION(DRV_SUMMARY);
29 MODULE_LICENSE("GPL v2");
30 MODULE_VERSION(DRV_VERSION);
31 module_param(debug, int, 0);
32 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
33
34 char igc_driver_name[] = "igc";
35 char igc_driver_version[] = DRV_VERSION;
36 static const char igc_driver_string[] = DRV_SUMMARY;
37 static const char igc_copyright[] =
38 "Copyright(c) 2018 Intel Corporation.";
39
40 static const struct igc_info *igc_info_tbl[] = {
41 [board_base] = &igc_base_info,
42 };
43
44 static const struct pci_device_id igc_pci_tbl[] = {
45 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
46 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
47 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
48 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
49 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
54 /* required last entry */
55 {0, }
56 };
57
58 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
59
60 enum latency_range {
61 lowest_latency = 0,
62 low_latency = 1,
63 bulk_latency = 2,
64 latency_invalid = 255
65 };
66
67 /**
68 * igc_power_down_link - Power down the phy/serdes link
69 * @adapter: address of board private structure
70 */
71 static void igc_power_down_link(struct igc_adapter *adapter)
72 {
73 if (adapter->hw.phy.media_type == igc_media_type_copper)
74 igc_power_down_phy_copper_base(&adapter->hw);
75 }
76
77 void igc_reset(struct igc_adapter *adapter)
78 {
79 struct net_device *dev = adapter->netdev;
80 struct igc_hw *hw = &adapter->hw;
81 struct igc_fc_info *fc = &hw->fc;
82 u32 pba, hwm;
83
84 /* Repartition PBA for greater than 9k MTU if required */
85 pba = IGC_PBA_34K;
86
87 /* flow control settings
88 * The high water mark must be low enough to fit one full frame
89 * after transmitting the pause frame. As such we must have enough
90 * space to allow for us to complete our current transmit and then
91 * receive the frame that is in progress from the link partner.
92 * Set it to:
93 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
94 */
95 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
96
97 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
98 fc->low_water = fc->high_water - 16;
99 fc->pause_time = 0xFFFF;
100 fc->send_xon = 1;
101 fc->current_mode = fc->requested_mode;
102
103 hw->mac.ops.reset_hw(hw);
104
105 if (hw->mac.ops.init_hw(hw))
106 netdev_err(dev, "Error on hardware initialization\n");
107
108 if (!netif_running(adapter->netdev))
109 igc_power_down_link(adapter);
110
111 /* Re-enable PTP, where applicable. */
112 igc_ptp_reset(adapter);
113
114 /* Re-enable TSN offloading, where applicable. */
115 igc_tsn_offload_apply(adapter);
116
117 igc_get_phy_info(hw);
118 }
119
120 /**
121 * igc_power_up_link - Power up the phy link
122 * @adapter: address of board private structure
123 */
124 static void igc_power_up_link(struct igc_adapter *adapter)
125 {
126 igc_reset_phy(&adapter->hw);
127
128 if (adapter->hw.phy.media_type == igc_media_type_copper)
129 igc_power_up_phy_copper(&adapter->hw);
130
131 igc_setup_link(&adapter->hw);
132 }
133
134 /**
135 * igc_release_hw_control - release control of the h/w to f/w
136 * @adapter: address of board private structure
137 *
138 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
139 * For ASF and Pass Through versions of f/w this means that the
140 * driver is no longer loaded.
141 */
142 static void igc_release_hw_control(struct igc_adapter *adapter)
143 {
144 struct igc_hw *hw = &adapter->hw;
145 u32 ctrl_ext;
146
147 /* Let firmware take over control of h/w */
148 ctrl_ext = rd32(IGC_CTRL_EXT);
149 wr32(IGC_CTRL_EXT,
150 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
151 }
152
153 /**
154 * igc_get_hw_control - get control of the h/w from f/w
155 * @adapter: address of board private structure
156 *
157 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
158 * For ASF and Pass Through versions of f/w this means that
159 * the driver is loaded.
160 */
161 static void igc_get_hw_control(struct igc_adapter *adapter)
162 {
163 struct igc_hw *hw = &adapter->hw;
164 u32 ctrl_ext;
165
166 /* Let firmware know the driver has taken over */
167 ctrl_ext = rd32(IGC_CTRL_EXT);
168 wr32(IGC_CTRL_EXT,
169 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
170 }
171
172 /**
173 * igc_clean_tx_ring - Free Tx Buffers
174 * @tx_ring: ring to be cleaned
175 */
176 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
177 {
178 u16 i = tx_ring->next_to_clean;
179 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
180
181 while (i != tx_ring->next_to_use) {
182 union igc_adv_tx_desc *eop_desc, *tx_desc;
183
184 /* Free all the Tx ring sk_buffs */
185 dev_kfree_skb_any(tx_buffer->skb);
186
187 /* unmap skb header data */
188 dma_unmap_single(tx_ring->dev,
189 dma_unmap_addr(tx_buffer, dma),
190 dma_unmap_len(tx_buffer, len),
191 DMA_TO_DEVICE);
192
193 /* check for eop_desc to determine the end of the packet */
194 eop_desc = tx_buffer->next_to_watch;
195 tx_desc = IGC_TX_DESC(tx_ring, i);
196
197 /* unmap remaining buffers */
198 while (tx_desc != eop_desc) {
199 tx_buffer++;
200 tx_desc++;
201 i++;
202 if (unlikely(i == tx_ring->count)) {
203 i = 0;
204 tx_buffer = tx_ring->tx_buffer_info;
205 tx_desc = IGC_TX_DESC(tx_ring, 0);
206 }
207
208 /* unmap any remaining paged data */
209 if (dma_unmap_len(tx_buffer, len))
210 dma_unmap_page(tx_ring->dev,
211 dma_unmap_addr(tx_buffer, dma),
212 dma_unmap_len(tx_buffer, len),
213 DMA_TO_DEVICE);
214 }
215
216 /* move us one more past the eop_desc for start of next pkt */
217 tx_buffer++;
218 i++;
219 if (unlikely(i == tx_ring->count)) {
220 i = 0;
221 tx_buffer = tx_ring->tx_buffer_info;
222 }
223 }
224
225 /* reset BQL for queue */
226 netdev_tx_reset_queue(txring_txq(tx_ring));
227
228 /* reset next_to_use and next_to_clean */
229 tx_ring->next_to_use = 0;
230 tx_ring->next_to_clean = 0;
231 }
232
233 /**
234 * igc_free_tx_resources - Free Tx Resources per Queue
235 * @tx_ring: Tx descriptor ring for a specific queue
236 *
237 * Free all transmit software resources
238 */
239 void igc_free_tx_resources(struct igc_ring *tx_ring)
240 {
241 igc_clean_tx_ring(tx_ring);
242
243 vfree(tx_ring->tx_buffer_info);
244 tx_ring->tx_buffer_info = NULL;
245
246 /* if not set, then don't free */
247 if (!tx_ring->desc)
248 return;
249
250 dma_free_coherent(tx_ring->dev, tx_ring->size,
251 tx_ring->desc, tx_ring->dma);
252
253 tx_ring->desc = NULL;
254 }
255
256 /**
257 * igc_free_all_tx_resources - Free Tx Resources for All Queues
258 * @adapter: board private structure
259 *
260 * Free all transmit software resources
261 */
262 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
263 {
264 int i;
265
266 for (i = 0; i < adapter->num_tx_queues; i++)
267 igc_free_tx_resources(adapter->tx_ring[i]);
268 }
269
270 /**
271 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
272 * @adapter: board private structure
273 */
274 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
275 {
276 int i;
277
278 for (i = 0; i < adapter->num_tx_queues; i++)
279 if (adapter->tx_ring[i])
280 igc_clean_tx_ring(adapter->tx_ring[i]);
281 }
282
283 /**
284 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
285 * @tx_ring: tx descriptor ring (for a specific queue) to setup
286 *
287 * Return 0 on success, negative on failure
288 */
289 int igc_setup_tx_resources(struct igc_ring *tx_ring)
290 {
291 struct net_device *ndev = tx_ring->netdev;
292 struct device *dev = tx_ring->dev;
293 int size = 0;
294
295 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
296 tx_ring->tx_buffer_info = vzalloc(size);
297 if (!tx_ring->tx_buffer_info)
298 goto err;
299
300 /* round up to nearest 4K */
301 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
302 tx_ring->size = ALIGN(tx_ring->size, 4096);
303
304 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
305 &tx_ring->dma, GFP_KERNEL);
306
307 if (!tx_ring->desc)
308 goto err;
309
310 tx_ring->next_to_use = 0;
311 tx_ring->next_to_clean = 0;
312
313 return 0;
314
315 err:
316 vfree(tx_ring->tx_buffer_info);
317 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
318 return -ENOMEM;
319 }
320
321 /**
322 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
323 * @adapter: board private structure
324 *
325 * Return 0 on success, negative on failure
326 */
327 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
328 {
329 struct net_device *dev = adapter->netdev;
330 int i, err = 0;
331
332 for (i = 0; i < adapter->num_tx_queues; i++) {
333 err = igc_setup_tx_resources(adapter->tx_ring[i]);
334 if (err) {
335 netdev_err(dev, "Error on Tx queue %u setup\n", i);
336 for (i--; i >= 0; i--)
337 igc_free_tx_resources(adapter->tx_ring[i]);
338 break;
339 }
340 }
341
342 return err;
343 }
344
345 /**
346 * igc_clean_rx_ring - Free Rx Buffers per Queue
347 * @rx_ring: ring to free buffers from
348 */
349 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
350 {
351 u16 i = rx_ring->next_to_clean;
352
353 dev_kfree_skb(rx_ring->skb);
354 rx_ring->skb = NULL;
355
356 /* Free all the Rx ring sk_buffs */
357 while (i != rx_ring->next_to_alloc) {
358 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
359
360 /* Invalidate cache lines that may have been written to by
361 * device so that we avoid corrupting memory.
362 */
363 dma_sync_single_range_for_cpu(rx_ring->dev,
364 buffer_info->dma,
365 buffer_info->page_offset,
366 igc_rx_bufsz(rx_ring),
367 DMA_FROM_DEVICE);
368
369 /* free resources associated with mapping */
370 dma_unmap_page_attrs(rx_ring->dev,
371 buffer_info->dma,
372 igc_rx_pg_size(rx_ring),
373 DMA_FROM_DEVICE,
374 IGC_RX_DMA_ATTR);
375 __page_frag_cache_drain(buffer_info->page,
376 buffer_info->pagecnt_bias);
377
378 i++;
379 if (i == rx_ring->count)
380 i = 0;
381 }
382
383 rx_ring->next_to_alloc = 0;
384 rx_ring->next_to_clean = 0;
385 rx_ring->next_to_use = 0;
386 }
387
388 /**
389 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
390 * @adapter: board private structure
391 */
392 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
393 {
394 int i;
395
396 for (i = 0; i < adapter->num_rx_queues; i++)
397 if (adapter->rx_ring[i])
398 igc_clean_rx_ring(adapter->rx_ring[i]);
399 }
400
401 /**
402 * igc_free_rx_resources - Free Rx Resources
403 * @rx_ring: ring to clean the resources from
404 *
405 * Free all receive software resources
406 */
407 void igc_free_rx_resources(struct igc_ring *rx_ring)
408 {
409 igc_clean_rx_ring(rx_ring);
410
411 vfree(rx_ring->rx_buffer_info);
412 rx_ring->rx_buffer_info = NULL;
413
414 /* if not set, then don't free */
415 if (!rx_ring->desc)
416 return;
417
418 dma_free_coherent(rx_ring->dev, rx_ring->size,
419 rx_ring->desc, rx_ring->dma);
420
421 rx_ring->desc = NULL;
422 }
423
424 /**
425 * igc_free_all_rx_resources - Free Rx Resources for All Queues
426 * @adapter: board private structure
427 *
428 * Free all receive software resources
429 */
430 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
431 {
432 int i;
433
434 for (i = 0; i < adapter->num_rx_queues; i++)
435 igc_free_rx_resources(adapter->rx_ring[i]);
436 }
437
438 /**
439 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
440 * @rx_ring: rx descriptor ring (for a specific queue) to setup
441 *
442 * Returns 0 on success, negative on failure
443 */
444 int igc_setup_rx_resources(struct igc_ring *rx_ring)
445 {
446 struct net_device *ndev = rx_ring->netdev;
447 struct device *dev = rx_ring->dev;
448 int size, desc_len;
449
450 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
451 rx_ring->rx_buffer_info = vzalloc(size);
452 if (!rx_ring->rx_buffer_info)
453 goto err;
454
455 desc_len = sizeof(union igc_adv_rx_desc);
456
457 /* Round up to nearest 4K */
458 rx_ring->size = rx_ring->count * desc_len;
459 rx_ring->size = ALIGN(rx_ring->size, 4096);
460
461 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
462 &rx_ring->dma, GFP_KERNEL);
463
464 if (!rx_ring->desc)
465 goto err;
466
467 rx_ring->next_to_alloc = 0;
468 rx_ring->next_to_clean = 0;
469 rx_ring->next_to_use = 0;
470
471 return 0;
472
473 err:
474 vfree(rx_ring->rx_buffer_info);
475 rx_ring->rx_buffer_info = NULL;
476 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
477 return -ENOMEM;
478 }
479
480 /**
481 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
482 * (Descriptors) for all queues
483 * @adapter: board private structure
484 *
485 * Return 0 on success, negative on failure
486 */
487 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
488 {
489 struct net_device *dev = adapter->netdev;
490 int i, err = 0;
491
492 for (i = 0; i < adapter->num_rx_queues; i++) {
493 err = igc_setup_rx_resources(adapter->rx_ring[i]);
494 if (err) {
495 netdev_err(dev, "Error on Rx queue %u setup\n", i);
496 for (i--; i >= 0; i--)
497 igc_free_rx_resources(adapter->rx_ring[i]);
498 break;
499 }
500 }
501
502 return err;
503 }
504
505 /**
506 * igc_configure_rx_ring - Configure a receive ring after Reset
507 * @adapter: board private structure
508 * @ring: receive ring to be configured
509 *
510 * Configure the Rx unit of the MAC after a reset.
511 */
512 static void igc_configure_rx_ring(struct igc_adapter *adapter,
513 struct igc_ring *ring)
514 {
515 struct igc_hw *hw = &adapter->hw;
516 union igc_adv_rx_desc *rx_desc;
517 int reg_idx = ring->reg_idx;
518 u32 srrctl = 0, rxdctl = 0;
519 u64 rdba = ring->dma;
520
521 /* disable the queue */
522 wr32(IGC_RXDCTL(reg_idx), 0);
523
524 /* Set DMA base address registers */
525 wr32(IGC_RDBAL(reg_idx),
526 rdba & 0x00000000ffffffffULL);
527 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
528 wr32(IGC_RDLEN(reg_idx),
529 ring->count * sizeof(union igc_adv_rx_desc));
530
531 /* initialize head and tail */
532 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
533 wr32(IGC_RDH(reg_idx), 0);
534 writel(0, ring->tail);
535
536 /* reset next-to- use/clean to place SW in sync with hardware */
537 ring->next_to_clean = 0;
538 ring->next_to_use = 0;
539
540 /* set descriptor configuration */
541 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
542 if (ring_uses_large_buffer(ring))
543 srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
544 else
545 srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
546 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
547
548 wr32(IGC_SRRCTL(reg_idx), srrctl);
549
550 rxdctl |= IGC_RX_PTHRESH;
551 rxdctl |= IGC_RX_HTHRESH << 8;
552 rxdctl |= IGC_RX_WTHRESH << 16;
553
554 /* initialize rx_buffer_info */
555 memset(ring->rx_buffer_info, 0,
556 sizeof(struct igc_rx_buffer) * ring->count);
557
558 /* initialize Rx descriptor 0 */
559 rx_desc = IGC_RX_DESC(ring, 0);
560 rx_desc->wb.upper.length = 0;
561
562 /* enable receive descriptor fetching */
563 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
564
565 wr32(IGC_RXDCTL(reg_idx), rxdctl);
566 }
567
568 /**
569 * igc_configure_rx - Configure receive Unit after Reset
570 * @adapter: board private structure
571 *
572 * Configure the Rx unit of the MAC after a reset.
573 */
574 static void igc_configure_rx(struct igc_adapter *adapter)
575 {
576 int i;
577
578 /* Setup the HW Rx Head and Tail Descriptor Pointers and
579 * the Base and Length of the Rx Descriptor Ring
580 */
581 for (i = 0; i < adapter->num_rx_queues; i++)
582 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
583 }
584
585 /**
586 * igc_configure_tx_ring - Configure transmit ring after Reset
587 * @adapter: board private structure
588 * @ring: tx ring to configure
589 *
590 * Configure a transmit ring after a reset.
591 */
592 static void igc_configure_tx_ring(struct igc_adapter *adapter,
593 struct igc_ring *ring)
594 {
595 struct igc_hw *hw = &adapter->hw;
596 int reg_idx = ring->reg_idx;
597 u64 tdba = ring->dma;
598 u32 txdctl = 0;
599
600 /* disable the queue */
601 wr32(IGC_TXDCTL(reg_idx), 0);
602 wrfl();
603 mdelay(10);
604
605 wr32(IGC_TDLEN(reg_idx),
606 ring->count * sizeof(union igc_adv_tx_desc));
607 wr32(IGC_TDBAL(reg_idx),
608 tdba & 0x00000000ffffffffULL);
609 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
610
611 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
612 wr32(IGC_TDH(reg_idx), 0);
613 writel(0, ring->tail);
614
615 txdctl |= IGC_TX_PTHRESH;
616 txdctl |= IGC_TX_HTHRESH << 8;
617 txdctl |= IGC_TX_WTHRESH << 16;
618
619 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
620 wr32(IGC_TXDCTL(reg_idx), txdctl);
621 }
622
623 /**
624 * igc_configure_tx - Configure transmit Unit after Reset
625 * @adapter: board private structure
626 *
627 * Configure the Tx unit of the MAC after a reset.
628 */
629 static void igc_configure_tx(struct igc_adapter *adapter)
630 {
631 int i;
632
633 for (i = 0; i < adapter->num_tx_queues; i++)
634 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
635 }
636
637 /**
638 * igc_setup_mrqc - configure the multiple receive queue control registers
639 * @adapter: Board private structure
640 */
641 static void igc_setup_mrqc(struct igc_adapter *adapter)
642 {
643 struct igc_hw *hw = &adapter->hw;
644 u32 j, num_rx_queues;
645 u32 mrqc, rxcsum;
646 u32 rss_key[10];
647
648 netdev_rss_key_fill(rss_key, sizeof(rss_key));
649 for (j = 0; j < 10; j++)
650 wr32(IGC_RSSRK(j), rss_key[j]);
651
652 num_rx_queues = adapter->rss_queues;
653
654 if (adapter->rss_indir_tbl_init != num_rx_queues) {
655 for (j = 0; j < IGC_RETA_SIZE; j++)
656 adapter->rss_indir_tbl[j] =
657 (j * num_rx_queues) / IGC_RETA_SIZE;
658 adapter->rss_indir_tbl_init = num_rx_queues;
659 }
660 igc_write_rss_indir_tbl(adapter);
661
662 /* Disable raw packet checksumming so that RSS hash is placed in
663 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
664 * offloads as they are enabled by default
665 */
666 rxcsum = rd32(IGC_RXCSUM);
667 rxcsum |= IGC_RXCSUM_PCSD;
668
669 /* Enable Receive Checksum Offload for SCTP */
670 rxcsum |= IGC_RXCSUM_CRCOFL;
671
672 /* Don't need to set TUOFL or IPOFL, they default to 1 */
673 wr32(IGC_RXCSUM, rxcsum);
674
675 /* Generate RSS hash based on packet types, TCP/UDP
676 * port numbers and/or IPv4/v6 src and dst addresses
677 */
678 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
679 IGC_MRQC_RSS_FIELD_IPV4_TCP |
680 IGC_MRQC_RSS_FIELD_IPV6 |
681 IGC_MRQC_RSS_FIELD_IPV6_TCP |
682 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
683
684 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
685 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
686 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
687 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
688
689 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
690
691 wr32(IGC_MRQC, mrqc);
692 }
693
694 /**
695 * igc_setup_rctl - configure the receive control registers
696 * @adapter: Board private structure
697 */
698 static void igc_setup_rctl(struct igc_adapter *adapter)
699 {
700 struct igc_hw *hw = &adapter->hw;
701 u32 rctl;
702
703 rctl = rd32(IGC_RCTL);
704
705 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
706 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
707
708 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
709 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
710
711 /* enable stripping of CRC. Newer features require
712 * that the HW strips the CRC.
713 */
714 rctl |= IGC_RCTL_SECRC;
715
716 /* disable store bad packets and clear size bits. */
717 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
718
719 /* enable LPE to allow for reception of jumbo frames */
720 rctl |= IGC_RCTL_LPE;
721
722 /* disable queue 0 to prevent tail write w/o re-config */
723 wr32(IGC_RXDCTL(0), 0);
724
725 /* This is useful for sniffing bad packets. */
726 if (adapter->netdev->features & NETIF_F_RXALL) {
727 /* UPE and MPE will be handled by normal PROMISC logic
728 * in set_rx_mode
729 */
730 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
731 IGC_RCTL_BAM | /* RX All Bcast Pkts */
732 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
733
734 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
735 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
736 }
737
738 wr32(IGC_RCTL, rctl);
739 }
740
741 /**
742 * igc_setup_tctl - configure the transmit control registers
743 * @adapter: Board private structure
744 */
745 static void igc_setup_tctl(struct igc_adapter *adapter)
746 {
747 struct igc_hw *hw = &adapter->hw;
748 u32 tctl;
749
750 /* disable queue 0 which icould be enabled by default */
751 wr32(IGC_TXDCTL(0), 0);
752
753 /* Program the Transmit Control Register */
754 tctl = rd32(IGC_TCTL);
755 tctl &= ~IGC_TCTL_CT;
756 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
757 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
758
759 /* Enable transmits */
760 tctl |= IGC_TCTL_EN;
761
762 wr32(IGC_TCTL, tctl);
763 }
764
765 /**
766 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
767 * @adapter: Pointer to adapter where the filter should be set
768 * @index: Filter index
769 * @type: MAC address filter type (source or destination)
770 * @addr: MAC address
771 * @queue: If non-negative, queue assignment feature is enabled and frames
772 * matching the filter are enqueued onto 'queue'. Otherwise, queue
773 * assignment is disabled.
774 */
775 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
776 enum igc_mac_filter_type type,
777 const u8 *addr, int queue)
778 {
779 struct net_device *dev = adapter->netdev;
780 struct igc_hw *hw = &adapter->hw;
781 u32 ral, rah;
782
783 if (WARN_ON(index >= hw->mac.rar_entry_count))
784 return;
785
786 ral = le32_to_cpup((__le32 *)(addr));
787 rah = le16_to_cpup((__le16 *)(addr + 4));
788
789 if (type == IGC_MAC_FILTER_TYPE_SRC) {
790 rah &= ~IGC_RAH_ASEL_MASK;
791 rah |= IGC_RAH_ASEL_SRC_ADDR;
792 }
793
794 if (queue >= 0) {
795 rah &= ~IGC_RAH_QSEL_MASK;
796 rah |= (queue << IGC_RAH_QSEL_SHIFT);
797 rah |= IGC_RAH_QSEL_ENABLE;
798 }
799
800 rah |= IGC_RAH_AV;
801
802 wr32(IGC_RAL(index), ral);
803 wr32(IGC_RAH(index), rah);
804
805 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
806 }
807
808 /**
809 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
810 * @adapter: Pointer to adapter where the filter should be cleared
811 * @index: Filter index
812 */
813 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
814 {
815 struct net_device *dev = adapter->netdev;
816 struct igc_hw *hw = &adapter->hw;
817
818 if (WARN_ON(index >= hw->mac.rar_entry_count))
819 return;
820
821 wr32(IGC_RAL(index), 0);
822 wr32(IGC_RAH(index), 0);
823
824 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
825 }
826
827 /* Set default MAC address for the PF in the first RAR entry */
828 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
829 {
830 struct net_device *dev = adapter->netdev;
831 u8 *addr = adapter->hw.mac.addr;
832
833 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
834
835 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
836 }
837
838 /**
839 * igc_set_mac - Change the Ethernet Address of the NIC
840 * @netdev: network interface device structure
841 * @p: pointer to an address structure
842 *
843 * Returns 0 on success, negative on failure
844 */
845 static int igc_set_mac(struct net_device *netdev, void *p)
846 {
847 struct igc_adapter *adapter = netdev_priv(netdev);
848 struct igc_hw *hw = &adapter->hw;
849 struct sockaddr *addr = p;
850
851 if (!is_valid_ether_addr(addr->sa_data))
852 return -EADDRNOTAVAIL;
853
854 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
855 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
856
857 /* set the correct pool for the new PF MAC address in entry 0 */
858 igc_set_default_mac_filter(adapter);
859
860 return 0;
861 }
862
863 /**
864 * igc_write_mc_addr_list - write multicast addresses to MTA
865 * @netdev: network interface device structure
866 *
867 * Writes multicast address list to the MTA hash table.
868 * Returns: -ENOMEM on failure
869 * 0 on no addresses written
870 * X on writing X addresses to MTA
871 **/
872 static int igc_write_mc_addr_list(struct net_device *netdev)
873 {
874 struct igc_adapter *adapter = netdev_priv(netdev);
875 struct igc_hw *hw = &adapter->hw;
876 struct netdev_hw_addr *ha;
877 u8 *mta_list;
878 int i;
879
880 if (netdev_mc_empty(netdev)) {
881 /* nothing to program, so clear mc list */
882 igc_update_mc_addr_list(hw, NULL, 0);
883 return 0;
884 }
885
886 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
887 if (!mta_list)
888 return -ENOMEM;
889
890 /* The shared function expects a packed array of only addresses. */
891 i = 0;
892 netdev_for_each_mc_addr(ha, netdev)
893 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
894
895 igc_update_mc_addr_list(hw, mta_list, i);
896 kfree(mta_list);
897
898 return netdev_mc_count(netdev);
899 }
900
901 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
902 {
903 ktime_t cycle_time = adapter->cycle_time;
904 ktime_t base_time = adapter->base_time;
905 u32 launchtime;
906
907 /* FIXME: when using ETF together with taprio, we may have a
908 * case where 'delta' is larger than the cycle_time, this may
909 * cause problems if we don't read the current value of
910 * IGC_BASET, as the value writen into the launchtime
911 * descriptor field may be misinterpreted.
912 */
913 div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
914
915 return cpu_to_le32(launchtime);
916 }
917
918 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
919 struct igc_tx_buffer *first,
920 u32 vlan_macip_lens, u32 type_tucmd,
921 u32 mss_l4len_idx)
922 {
923 struct igc_adv_tx_context_desc *context_desc;
924 u16 i = tx_ring->next_to_use;
925
926 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
927
928 i++;
929 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
930
931 /* set bits to identify this as an advanced context descriptor */
932 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
933
934 /* For i225, context index must be unique per ring. */
935 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
936 mss_l4len_idx |= tx_ring->reg_idx << 4;
937
938 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
939 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
940 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
941
942 /* We assume there is always a valid Tx time available. Invalid times
943 * should have been handled by the upper layers.
944 */
945 if (tx_ring->launchtime_enable) {
946 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
947 ktime_t txtime = first->skb->tstamp;
948
949 first->skb->tstamp = ktime_set(0, 0);
950 context_desc->launch_time = igc_tx_launchtime(adapter,
951 txtime);
952 } else {
953 context_desc->launch_time = 0;
954 }
955 }
956
957 static inline bool igc_ipv6_csum_is_sctp(struct sk_buff *skb)
958 {
959 unsigned int offset = 0;
960
961 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
962
963 return offset == skb_checksum_start_offset(skb);
964 }
965
966 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
967 {
968 struct sk_buff *skb = first->skb;
969 u32 vlan_macip_lens = 0;
970 u32 type_tucmd = 0;
971
972 if (skb->ip_summed != CHECKSUM_PARTIAL) {
973 csum_failed:
974 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
975 !tx_ring->launchtime_enable)
976 return;
977 goto no_csum;
978 }
979
980 switch (skb->csum_offset) {
981 case offsetof(struct tcphdr, check):
982 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
983 /* fall through */
984 case offsetof(struct udphdr, check):
985 break;
986 case offsetof(struct sctphdr, checksum):
987 /* validate that this is actually an SCTP request */
988 if ((first->protocol == htons(ETH_P_IP) &&
989 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
990 (first->protocol == htons(ETH_P_IPV6) &&
991 igc_ipv6_csum_is_sctp(skb))) {
992 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
993 break;
994 }
995 /* fall through */
996 default:
997 skb_checksum_help(skb);
998 goto csum_failed;
999 }
1000
1001 /* update TX checksum flag */
1002 first->tx_flags |= IGC_TX_FLAGS_CSUM;
1003 vlan_macip_lens = skb_checksum_start_offset(skb) -
1004 skb_network_offset(skb);
1005 no_csum:
1006 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1007 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1008
1009 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1010 }
1011
1012 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1013 {
1014 struct net_device *netdev = tx_ring->netdev;
1015
1016 netif_stop_subqueue(netdev, tx_ring->queue_index);
1017
1018 /* memory barriier comment */
1019 smp_mb();
1020
1021 /* We need to check again in a case another CPU has just
1022 * made room available.
1023 */
1024 if (igc_desc_unused(tx_ring) < size)
1025 return -EBUSY;
1026
1027 /* A reprieve! */
1028 netif_wake_subqueue(netdev, tx_ring->queue_index);
1029
1030 u64_stats_update_begin(&tx_ring->tx_syncp2);
1031 tx_ring->tx_stats.restart_queue2++;
1032 u64_stats_update_end(&tx_ring->tx_syncp2);
1033
1034 return 0;
1035 }
1036
1037 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1038 {
1039 if (igc_desc_unused(tx_ring) >= size)
1040 return 0;
1041 return __igc_maybe_stop_tx(tx_ring, size);
1042 }
1043
1044 #define IGC_SET_FLAG(_input, _flag, _result) \
1045 (((_flag) <= (_result)) ? \
1046 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1047 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1048
1049 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1050 {
1051 /* set type for advanced descriptor with frame checksum insertion */
1052 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1053 IGC_ADVTXD_DCMD_DEXT |
1054 IGC_ADVTXD_DCMD_IFCS;
1055
1056 /* set segmentation bits for TSO */
1057 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1058 (IGC_ADVTXD_DCMD_TSE));
1059
1060 /* set timestamp bit if present */
1061 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1062 (IGC_ADVTXD_MAC_TSTAMP));
1063
1064 return cmd_type;
1065 }
1066
1067 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1068 union igc_adv_tx_desc *tx_desc,
1069 u32 tx_flags, unsigned int paylen)
1070 {
1071 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1072
1073 /* insert L4 checksum */
1074 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1075 ((IGC_TXD_POPTS_TXSM << 8) /
1076 IGC_TX_FLAGS_CSUM);
1077
1078 /* insert IPv4 checksum */
1079 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1080 (((IGC_TXD_POPTS_IXSM << 8)) /
1081 IGC_TX_FLAGS_IPV4);
1082
1083 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1084 }
1085
1086 static int igc_tx_map(struct igc_ring *tx_ring,
1087 struct igc_tx_buffer *first,
1088 const u8 hdr_len)
1089 {
1090 struct sk_buff *skb = first->skb;
1091 struct igc_tx_buffer *tx_buffer;
1092 union igc_adv_tx_desc *tx_desc;
1093 u32 tx_flags = first->tx_flags;
1094 skb_frag_t *frag;
1095 u16 i = tx_ring->next_to_use;
1096 unsigned int data_len, size;
1097 dma_addr_t dma;
1098 u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1099
1100 tx_desc = IGC_TX_DESC(tx_ring, i);
1101
1102 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1103
1104 size = skb_headlen(skb);
1105 data_len = skb->data_len;
1106
1107 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1108
1109 tx_buffer = first;
1110
1111 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1112 if (dma_mapping_error(tx_ring->dev, dma))
1113 goto dma_error;
1114
1115 /* record length, and DMA address */
1116 dma_unmap_len_set(tx_buffer, len, size);
1117 dma_unmap_addr_set(tx_buffer, dma, dma);
1118
1119 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1120
1121 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1122 tx_desc->read.cmd_type_len =
1123 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1124
1125 i++;
1126 tx_desc++;
1127 if (i == tx_ring->count) {
1128 tx_desc = IGC_TX_DESC(tx_ring, 0);
1129 i = 0;
1130 }
1131 tx_desc->read.olinfo_status = 0;
1132
1133 dma += IGC_MAX_DATA_PER_TXD;
1134 size -= IGC_MAX_DATA_PER_TXD;
1135
1136 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1137 }
1138
1139 if (likely(!data_len))
1140 break;
1141
1142 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1143
1144 i++;
1145 tx_desc++;
1146 if (i == tx_ring->count) {
1147 tx_desc = IGC_TX_DESC(tx_ring, 0);
1148 i = 0;
1149 }
1150 tx_desc->read.olinfo_status = 0;
1151
1152 size = skb_frag_size(frag);
1153 data_len -= size;
1154
1155 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1156 size, DMA_TO_DEVICE);
1157
1158 tx_buffer = &tx_ring->tx_buffer_info[i];
1159 }
1160
1161 /* write last descriptor with RS and EOP bits */
1162 cmd_type |= size | IGC_TXD_DCMD;
1163 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1164
1165 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1166
1167 /* set the timestamp */
1168 first->time_stamp = jiffies;
1169
1170 skb_tx_timestamp(skb);
1171
1172 /* Force memory writes to complete before letting h/w know there
1173 * are new descriptors to fetch. (Only applicable for weak-ordered
1174 * memory model archs, such as IA-64).
1175 *
1176 * We also need this memory barrier to make certain all of the
1177 * status bits have been updated before next_to_watch is written.
1178 */
1179 wmb();
1180
1181 /* set next_to_watch value indicating a packet is present */
1182 first->next_to_watch = tx_desc;
1183
1184 i++;
1185 if (i == tx_ring->count)
1186 i = 0;
1187
1188 tx_ring->next_to_use = i;
1189
1190 /* Make sure there is space in the ring for the next send. */
1191 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1192
1193 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1194 writel(i, tx_ring->tail);
1195 }
1196
1197 return 0;
1198 dma_error:
1199 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1200 tx_buffer = &tx_ring->tx_buffer_info[i];
1201
1202 /* clear dma mappings for failed tx_buffer_info map */
1203 while (tx_buffer != first) {
1204 if (dma_unmap_len(tx_buffer, len))
1205 dma_unmap_page(tx_ring->dev,
1206 dma_unmap_addr(tx_buffer, dma),
1207 dma_unmap_len(tx_buffer, len),
1208 DMA_TO_DEVICE);
1209 dma_unmap_len_set(tx_buffer, len, 0);
1210
1211 if (i-- == 0)
1212 i += tx_ring->count;
1213 tx_buffer = &tx_ring->tx_buffer_info[i];
1214 }
1215
1216 if (dma_unmap_len(tx_buffer, len))
1217 dma_unmap_single(tx_ring->dev,
1218 dma_unmap_addr(tx_buffer, dma),
1219 dma_unmap_len(tx_buffer, len),
1220 DMA_TO_DEVICE);
1221 dma_unmap_len_set(tx_buffer, len, 0);
1222
1223 dev_kfree_skb_any(tx_buffer->skb);
1224 tx_buffer->skb = NULL;
1225
1226 tx_ring->next_to_use = i;
1227
1228 return -1;
1229 }
1230
1231 static int igc_tso(struct igc_ring *tx_ring,
1232 struct igc_tx_buffer *first,
1233 u8 *hdr_len)
1234 {
1235 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1236 struct sk_buff *skb = first->skb;
1237 union {
1238 struct iphdr *v4;
1239 struct ipv6hdr *v6;
1240 unsigned char *hdr;
1241 } ip;
1242 union {
1243 struct tcphdr *tcp;
1244 struct udphdr *udp;
1245 unsigned char *hdr;
1246 } l4;
1247 u32 paylen, l4_offset;
1248 int err;
1249
1250 if (skb->ip_summed != CHECKSUM_PARTIAL)
1251 return 0;
1252
1253 if (!skb_is_gso(skb))
1254 return 0;
1255
1256 err = skb_cow_head(skb, 0);
1257 if (err < 0)
1258 return err;
1259
1260 ip.hdr = skb_network_header(skb);
1261 l4.hdr = skb_checksum_start(skb);
1262
1263 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1264 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1265
1266 /* initialize outer IP header fields */
1267 if (ip.v4->version == 4) {
1268 unsigned char *csum_start = skb_checksum_start(skb);
1269 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1270
1271 /* IP header will have to cancel out any data that
1272 * is not a part of the outer IP header
1273 */
1274 ip.v4->check = csum_fold(csum_partial(trans_start,
1275 csum_start - trans_start,
1276 0));
1277 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1278
1279 ip.v4->tot_len = 0;
1280 first->tx_flags |= IGC_TX_FLAGS_TSO |
1281 IGC_TX_FLAGS_CSUM |
1282 IGC_TX_FLAGS_IPV4;
1283 } else {
1284 ip.v6->payload_len = 0;
1285 first->tx_flags |= IGC_TX_FLAGS_TSO |
1286 IGC_TX_FLAGS_CSUM;
1287 }
1288
1289 /* determine offset of inner transport header */
1290 l4_offset = l4.hdr - skb->data;
1291
1292 /* remove payload length from inner checksum */
1293 paylen = skb->len - l4_offset;
1294 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1295 /* compute length of segmentation header */
1296 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1297 csum_replace_by_diff(&l4.tcp->check,
1298 (__force __wsum)htonl(paylen));
1299 } else {
1300 /* compute length of segmentation header */
1301 *hdr_len = sizeof(*l4.udp) + l4_offset;
1302 csum_replace_by_diff(&l4.udp->check,
1303 (__force __wsum)htonl(paylen));
1304 }
1305
1306 /* update gso size and bytecount with header size */
1307 first->gso_segs = skb_shinfo(skb)->gso_segs;
1308 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1309
1310 /* MSS L4LEN IDX */
1311 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1312 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1313
1314 /* VLAN MACLEN IPLEN */
1315 vlan_macip_lens = l4.hdr - ip.hdr;
1316 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1317 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1318
1319 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1320 type_tucmd, mss_l4len_idx);
1321
1322 return 1;
1323 }
1324
1325 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1326 struct igc_ring *tx_ring)
1327 {
1328 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1329 __be16 protocol = vlan_get_protocol(skb);
1330 struct igc_tx_buffer *first;
1331 u32 tx_flags = 0;
1332 unsigned short f;
1333 u8 hdr_len = 0;
1334 int tso = 0;
1335
1336 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1337 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1338 * + 2 desc gap to keep tail from touching head,
1339 * + 1 desc for context descriptor,
1340 * otherwise try next time
1341 */
1342 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1343 count += TXD_USE_COUNT(skb_frag_size(
1344 &skb_shinfo(skb)->frags[f]));
1345
1346 if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1347 /* this is a hard error */
1348 return NETDEV_TX_BUSY;
1349 }
1350
1351 /* record the location of the first descriptor for this packet */
1352 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1353 first->skb = skb;
1354 first->bytecount = skb->len;
1355 first->gso_segs = 1;
1356
1357 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1358 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1359
1360 /* FIXME: add support for retrieving timestamps from
1361 * the other timer registers before skipping the
1362 * timestamping request.
1363 */
1364 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1365 !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1366 &adapter->state)) {
1367 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1368 tx_flags |= IGC_TX_FLAGS_TSTAMP;
1369
1370 adapter->ptp_tx_skb = skb_get(skb);
1371 adapter->ptp_tx_start = jiffies;
1372 } else {
1373 adapter->tx_hwtstamp_skipped++;
1374 }
1375 }
1376
1377 /* record initial flags and protocol */
1378 first->tx_flags = tx_flags;
1379 first->protocol = protocol;
1380
1381 tso = igc_tso(tx_ring, first, &hdr_len);
1382 if (tso < 0)
1383 goto out_drop;
1384 else if (!tso)
1385 igc_tx_csum(tx_ring, first);
1386
1387 igc_tx_map(tx_ring, first, hdr_len);
1388
1389 return NETDEV_TX_OK;
1390
1391 out_drop:
1392 dev_kfree_skb_any(first->skb);
1393 first->skb = NULL;
1394
1395 return NETDEV_TX_OK;
1396 }
1397
1398 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1399 struct sk_buff *skb)
1400 {
1401 unsigned int r_idx = skb->queue_mapping;
1402
1403 if (r_idx >= adapter->num_tx_queues)
1404 r_idx = r_idx % adapter->num_tx_queues;
1405
1406 return adapter->tx_ring[r_idx];
1407 }
1408
1409 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1410 struct net_device *netdev)
1411 {
1412 struct igc_adapter *adapter = netdev_priv(netdev);
1413
1414 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1415 * in order to meet this minimum size requirement.
1416 */
1417 if (skb->len < 17) {
1418 if (skb_padto(skb, 17))
1419 return NETDEV_TX_OK;
1420 skb->len = 17;
1421 }
1422
1423 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1424 }
1425
1426 static void igc_rx_checksum(struct igc_ring *ring,
1427 union igc_adv_rx_desc *rx_desc,
1428 struct sk_buff *skb)
1429 {
1430 skb_checksum_none_assert(skb);
1431
1432 /* Ignore Checksum bit is set */
1433 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1434 return;
1435
1436 /* Rx checksum disabled via ethtool */
1437 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1438 return;
1439
1440 /* TCP/UDP checksum error bit is set */
1441 if (igc_test_staterr(rx_desc,
1442 IGC_RXDEXT_STATERR_TCPE |
1443 IGC_RXDEXT_STATERR_IPE)) {
1444 /* work around errata with sctp packets where the TCPE aka
1445 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1446 * packets (aka let the stack check the crc32c)
1447 */
1448 if (!(skb->len == 60 &&
1449 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1450 u64_stats_update_begin(&ring->rx_syncp);
1451 ring->rx_stats.csum_err++;
1452 u64_stats_update_end(&ring->rx_syncp);
1453 }
1454 /* let the stack verify checksum errors */
1455 return;
1456 }
1457 /* It must be a TCP or UDP packet with a valid checksum */
1458 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1459 IGC_RXD_STAT_UDPCS))
1460 skb->ip_summed = CHECKSUM_UNNECESSARY;
1461
1462 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1463 le32_to_cpu(rx_desc->wb.upper.status_error));
1464 }
1465
1466 static inline void igc_rx_hash(struct igc_ring *ring,
1467 union igc_adv_rx_desc *rx_desc,
1468 struct sk_buff *skb)
1469 {
1470 if (ring->netdev->features & NETIF_F_RXHASH)
1471 skb_set_hash(skb,
1472 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1473 PKT_HASH_TYPE_L3);
1474 }
1475
1476 /**
1477 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1478 * @rx_ring: rx descriptor ring packet is being transacted on
1479 * @rx_desc: pointer to the EOP Rx descriptor
1480 * @skb: pointer to current skb being populated
1481 *
1482 * This function checks the ring, descriptor, and packet information in
1483 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
1484 * other fields within the skb.
1485 */
1486 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1487 union igc_adv_rx_desc *rx_desc,
1488 struct sk_buff *skb)
1489 {
1490 igc_rx_hash(rx_ring, rx_desc, skb);
1491
1492 igc_rx_checksum(rx_ring, rx_desc, skb);
1493
1494 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TS) &&
1495 !igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP))
1496 igc_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
1497
1498 skb_record_rx_queue(skb, rx_ring->queue_index);
1499
1500 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1501 }
1502
1503 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1504 const unsigned int size)
1505 {
1506 struct igc_rx_buffer *rx_buffer;
1507
1508 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1509 prefetchw(rx_buffer->page);
1510
1511 /* we are reusing so sync this buffer for CPU use */
1512 dma_sync_single_range_for_cpu(rx_ring->dev,
1513 rx_buffer->dma,
1514 rx_buffer->page_offset,
1515 size,
1516 DMA_FROM_DEVICE);
1517
1518 rx_buffer->pagecnt_bias--;
1519
1520 return rx_buffer;
1521 }
1522
1523 /**
1524 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1525 * @rx_ring: rx descriptor ring to transact packets on
1526 * @rx_buffer: buffer containing page to add
1527 * @skb: sk_buff to place the data into
1528 * @size: size of buffer to be added
1529 *
1530 * This function will add the data contained in rx_buffer->page to the skb.
1531 */
1532 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1533 struct igc_rx_buffer *rx_buffer,
1534 struct sk_buff *skb,
1535 unsigned int size)
1536 {
1537 #if (PAGE_SIZE < 8192)
1538 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1539
1540 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1541 rx_buffer->page_offset, size, truesize);
1542 rx_buffer->page_offset ^= truesize;
1543 #else
1544 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1545 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1546 SKB_DATA_ALIGN(size);
1547 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1548 rx_buffer->page_offset, size, truesize);
1549 rx_buffer->page_offset += truesize;
1550 #endif
1551 }
1552
1553 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1554 struct igc_rx_buffer *rx_buffer,
1555 union igc_adv_rx_desc *rx_desc,
1556 unsigned int size)
1557 {
1558 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1559 #if (PAGE_SIZE < 8192)
1560 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1561 #else
1562 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1563 SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1564 #endif
1565 struct sk_buff *skb;
1566
1567 /* prefetch first cache line of first page */
1568 prefetch(va);
1569 #if L1_CACHE_BYTES < 128
1570 prefetch(va + L1_CACHE_BYTES);
1571 #endif
1572
1573 /* build an skb around the page buffer */
1574 skb = build_skb(va - IGC_SKB_PAD, truesize);
1575 if (unlikely(!skb))
1576 return NULL;
1577
1578 /* update pointers within the skb to store the data */
1579 skb_reserve(skb, IGC_SKB_PAD);
1580 __skb_put(skb, size);
1581
1582 /* update buffer offset */
1583 #if (PAGE_SIZE < 8192)
1584 rx_buffer->page_offset ^= truesize;
1585 #else
1586 rx_buffer->page_offset += truesize;
1587 #endif
1588
1589 return skb;
1590 }
1591
1592 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1593 struct igc_rx_buffer *rx_buffer,
1594 union igc_adv_rx_desc *rx_desc,
1595 unsigned int size)
1596 {
1597 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1598 #if (PAGE_SIZE < 8192)
1599 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1600 #else
1601 unsigned int truesize = SKB_DATA_ALIGN(size);
1602 #endif
1603 unsigned int headlen;
1604 struct sk_buff *skb;
1605
1606 /* prefetch first cache line of first page */
1607 prefetch(va);
1608 #if L1_CACHE_BYTES < 128
1609 prefetch(va + L1_CACHE_BYTES);
1610 #endif
1611
1612 /* allocate a skb to store the frags */
1613 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1614 if (unlikely(!skb))
1615 return NULL;
1616
1617 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP))) {
1618 igc_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
1619 va += IGC_TS_HDR_LEN;
1620 size -= IGC_TS_HDR_LEN;
1621 }
1622
1623 /* Determine available headroom for copy */
1624 headlen = size;
1625 if (headlen > IGC_RX_HDR_LEN)
1626 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1627
1628 /* align pull length to size of long to optimize memcpy performance */
1629 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1630
1631 /* update all of the pointers */
1632 size -= headlen;
1633 if (size) {
1634 skb_add_rx_frag(skb, 0, rx_buffer->page,
1635 (va + headlen) - page_address(rx_buffer->page),
1636 size, truesize);
1637 #if (PAGE_SIZE < 8192)
1638 rx_buffer->page_offset ^= truesize;
1639 #else
1640 rx_buffer->page_offset += truesize;
1641 #endif
1642 } else {
1643 rx_buffer->pagecnt_bias++;
1644 }
1645
1646 return skb;
1647 }
1648
1649 /**
1650 * igc_reuse_rx_page - page flip buffer and store it back on the ring
1651 * @rx_ring: rx descriptor ring to store buffers on
1652 * @old_buff: donor buffer to have page reused
1653 *
1654 * Synchronizes page for reuse by the adapter
1655 */
1656 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1657 struct igc_rx_buffer *old_buff)
1658 {
1659 u16 nta = rx_ring->next_to_alloc;
1660 struct igc_rx_buffer *new_buff;
1661
1662 new_buff = &rx_ring->rx_buffer_info[nta];
1663
1664 /* update, and store next to alloc */
1665 nta++;
1666 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1667
1668 /* Transfer page from old buffer to new buffer.
1669 * Move each member individually to avoid possible store
1670 * forwarding stalls.
1671 */
1672 new_buff->dma = old_buff->dma;
1673 new_buff->page = old_buff->page;
1674 new_buff->page_offset = old_buff->page_offset;
1675 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1676 }
1677
1678 static inline bool igc_page_is_reserved(struct page *page)
1679 {
1680 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1681 }
1682
1683 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1684 {
1685 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1686 struct page *page = rx_buffer->page;
1687
1688 /* avoid re-using remote pages */
1689 if (unlikely(igc_page_is_reserved(page)))
1690 return false;
1691
1692 #if (PAGE_SIZE < 8192)
1693 /* if we are only owner of page we can reuse it */
1694 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1695 return false;
1696 #else
1697 #define IGC_LAST_OFFSET \
1698 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1699
1700 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1701 return false;
1702 #endif
1703
1704 /* If we have drained the page fragment pool we need to update
1705 * the pagecnt_bias and page count so that we fully restock the
1706 * number of references the driver holds.
1707 */
1708 if (unlikely(!pagecnt_bias)) {
1709 page_ref_add(page, USHRT_MAX);
1710 rx_buffer->pagecnt_bias = USHRT_MAX;
1711 }
1712
1713 return true;
1714 }
1715
1716 /**
1717 * igc_is_non_eop - process handling of non-EOP buffers
1718 * @rx_ring: Rx ring being processed
1719 * @rx_desc: Rx descriptor for current buffer
1720 *
1721 * This function updates next to clean. If the buffer is an EOP buffer
1722 * this function exits returning false, otherwise it will place the
1723 * sk_buff in the next buffer to be chained and return true indicating
1724 * that this is in fact a non-EOP buffer.
1725 */
1726 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1727 union igc_adv_rx_desc *rx_desc)
1728 {
1729 u32 ntc = rx_ring->next_to_clean + 1;
1730
1731 /* fetch, update, and store next to clean */
1732 ntc = (ntc < rx_ring->count) ? ntc : 0;
1733 rx_ring->next_to_clean = ntc;
1734
1735 prefetch(IGC_RX_DESC(rx_ring, ntc));
1736
1737 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1738 return false;
1739
1740 return true;
1741 }
1742
1743 /**
1744 * igc_cleanup_headers - Correct corrupted or empty headers
1745 * @rx_ring: rx descriptor ring packet is being transacted on
1746 * @rx_desc: pointer to the EOP Rx descriptor
1747 * @skb: pointer to current skb being fixed
1748 *
1749 * Address the case where we are pulling data in on pages only
1750 * and as such no data is present in the skb header.
1751 *
1752 * In addition if skb is not at least 60 bytes we need to pad it so that
1753 * it is large enough to qualify as a valid Ethernet frame.
1754 *
1755 * Returns true if an error was encountered and skb was freed.
1756 */
1757 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1758 union igc_adv_rx_desc *rx_desc,
1759 struct sk_buff *skb)
1760 {
1761 if (unlikely((igc_test_staterr(rx_desc,
1762 IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) {
1763 struct net_device *netdev = rx_ring->netdev;
1764
1765 if (!(netdev->features & NETIF_F_RXALL)) {
1766 dev_kfree_skb_any(skb);
1767 return true;
1768 }
1769 }
1770
1771 /* if eth_skb_pad returns an error the skb was freed */
1772 if (eth_skb_pad(skb))
1773 return true;
1774
1775 return false;
1776 }
1777
1778 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1779 struct igc_rx_buffer *rx_buffer)
1780 {
1781 if (igc_can_reuse_rx_page(rx_buffer)) {
1782 /* hand second half of page back to the ring */
1783 igc_reuse_rx_page(rx_ring, rx_buffer);
1784 } else {
1785 /* We are not reusing the buffer so unmap it and free
1786 * any references we are holding to it
1787 */
1788 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1789 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1790 IGC_RX_DMA_ATTR);
1791 __page_frag_cache_drain(rx_buffer->page,
1792 rx_buffer->pagecnt_bias);
1793 }
1794
1795 /* clear contents of rx_buffer */
1796 rx_buffer->page = NULL;
1797 }
1798
1799 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1800 {
1801 return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1802 }
1803
1804 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1805 struct igc_rx_buffer *bi)
1806 {
1807 struct page *page = bi->page;
1808 dma_addr_t dma;
1809
1810 /* since we are recycling buffers we should seldom need to alloc */
1811 if (likely(page))
1812 return true;
1813
1814 /* alloc new page for storage */
1815 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1816 if (unlikely(!page)) {
1817 rx_ring->rx_stats.alloc_failed++;
1818 return false;
1819 }
1820
1821 /* map page for use */
1822 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1823 igc_rx_pg_size(rx_ring),
1824 DMA_FROM_DEVICE,
1825 IGC_RX_DMA_ATTR);
1826
1827 /* if mapping failed free memory back to system since
1828 * there isn't much point in holding memory we can't use
1829 */
1830 if (dma_mapping_error(rx_ring->dev, dma)) {
1831 __free_page(page);
1832
1833 rx_ring->rx_stats.alloc_failed++;
1834 return false;
1835 }
1836
1837 bi->dma = dma;
1838 bi->page = page;
1839 bi->page_offset = igc_rx_offset(rx_ring);
1840 bi->pagecnt_bias = 1;
1841
1842 return true;
1843 }
1844
1845 /**
1846 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1847 * @rx_ring: rx descriptor ring
1848 * @cleaned_count: number of buffers to clean
1849 */
1850 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1851 {
1852 union igc_adv_rx_desc *rx_desc;
1853 u16 i = rx_ring->next_to_use;
1854 struct igc_rx_buffer *bi;
1855 u16 bufsz;
1856
1857 /* nothing to do */
1858 if (!cleaned_count)
1859 return;
1860
1861 rx_desc = IGC_RX_DESC(rx_ring, i);
1862 bi = &rx_ring->rx_buffer_info[i];
1863 i -= rx_ring->count;
1864
1865 bufsz = igc_rx_bufsz(rx_ring);
1866
1867 do {
1868 if (!igc_alloc_mapped_page(rx_ring, bi))
1869 break;
1870
1871 /* sync the buffer for use by the device */
1872 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1873 bi->page_offset, bufsz,
1874 DMA_FROM_DEVICE);
1875
1876 /* Refresh the desc even if buffer_addrs didn't change
1877 * because each write-back erases this info.
1878 */
1879 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1880
1881 rx_desc++;
1882 bi++;
1883 i++;
1884 if (unlikely(!i)) {
1885 rx_desc = IGC_RX_DESC(rx_ring, 0);
1886 bi = rx_ring->rx_buffer_info;
1887 i -= rx_ring->count;
1888 }
1889
1890 /* clear the length for the next_to_use descriptor */
1891 rx_desc->wb.upper.length = 0;
1892
1893 cleaned_count--;
1894 } while (cleaned_count);
1895
1896 i += rx_ring->count;
1897
1898 if (rx_ring->next_to_use != i) {
1899 /* record the next descriptor to use */
1900 rx_ring->next_to_use = i;
1901
1902 /* update next to alloc since we have filled the ring */
1903 rx_ring->next_to_alloc = i;
1904
1905 /* Force memory writes to complete before letting h/w
1906 * know there are new descriptors to fetch. (Only
1907 * applicable for weak-ordered memory model archs,
1908 * such as IA-64).
1909 */
1910 wmb();
1911 writel(i, rx_ring->tail);
1912 }
1913 }
1914
1915 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1916 {
1917 unsigned int total_bytes = 0, total_packets = 0;
1918 struct igc_ring *rx_ring = q_vector->rx.ring;
1919 struct sk_buff *skb = rx_ring->skb;
1920 u16 cleaned_count = igc_desc_unused(rx_ring);
1921
1922 while (likely(total_packets < budget)) {
1923 union igc_adv_rx_desc *rx_desc;
1924 struct igc_rx_buffer *rx_buffer;
1925 unsigned int size;
1926
1927 /* return some buffers to hardware, one at a time is too slow */
1928 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1929 igc_alloc_rx_buffers(rx_ring, cleaned_count);
1930 cleaned_count = 0;
1931 }
1932
1933 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1934 size = le16_to_cpu(rx_desc->wb.upper.length);
1935 if (!size)
1936 break;
1937
1938 /* This memory barrier is needed to keep us from reading
1939 * any other fields out of the rx_desc until we know the
1940 * descriptor has been written back
1941 */
1942 dma_rmb();
1943
1944 rx_buffer = igc_get_rx_buffer(rx_ring, size);
1945
1946 /* retrieve a buffer from the ring */
1947 if (skb)
1948 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1949 else if (ring_uses_build_skb(rx_ring))
1950 skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1951 else
1952 skb = igc_construct_skb(rx_ring, rx_buffer,
1953 rx_desc, size);
1954
1955 /* exit if we failed to retrieve a buffer */
1956 if (!skb) {
1957 rx_ring->rx_stats.alloc_failed++;
1958 rx_buffer->pagecnt_bias++;
1959 break;
1960 }
1961
1962 igc_put_rx_buffer(rx_ring, rx_buffer);
1963 cleaned_count++;
1964
1965 /* fetch next buffer in frame if non-eop */
1966 if (igc_is_non_eop(rx_ring, rx_desc))
1967 continue;
1968
1969 /* verify the packet layout is correct */
1970 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1971 skb = NULL;
1972 continue;
1973 }
1974
1975 /* probably a little skewed due to removing CRC */
1976 total_bytes += skb->len;
1977
1978 /* populate checksum, timestamp, VLAN, and protocol */
1979 igc_process_skb_fields(rx_ring, rx_desc, skb);
1980
1981 napi_gro_receive(&q_vector->napi, skb);
1982
1983 /* reset skb pointer */
1984 skb = NULL;
1985
1986 /* update budget accounting */
1987 total_packets++;
1988 }
1989
1990 /* place incomplete frames back on ring for completion */
1991 rx_ring->skb = skb;
1992
1993 u64_stats_update_begin(&rx_ring->rx_syncp);
1994 rx_ring->rx_stats.packets += total_packets;
1995 rx_ring->rx_stats.bytes += total_bytes;
1996 u64_stats_update_end(&rx_ring->rx_syncp);
1997 q_vector->rx.total_packets += total_packets;
1998 q_vector->rx.total_bytes += total_bytes;
1999
2000 if (cleaned_count)
2001 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2002
2003 return total_packets;
2004 }
2005
2006 /**
2007 * igc_clean_tx_irq - Reclaim resources after transmit completes
2008 * @q_vector: pointer to q_vector containing needed info
2009 * @napi_budget: Used to determine if we are in netpoll
2010 *
2011 * returns true if ring is completely cleaned
2012 */
2013 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2014 {
2015 struct igc_adapter *adapter = q_vector->adapter;
2016 unsigned int total_bytes = 0, total_packets = 0;
2017 unsigned int budget = q_vector->tx.work_limit;
2018 struct igc_ring *tx_ring = q_vector->tx.ring;
2019 unsigned int i = tx_ring->next_to_clean;
2020 struct igc_tx_buffer *tx_buffer;
2021 union igc_adv_tx_desc *tx_desc;
2022
2023 if (test_bit(__IGC_DOWN, &adapter->state))
2024 return true;
2025
2026 tx_buffer = &tx_ring->tx_buffer_info[i];
2027 tx_desc = IGC_TX_DESC(tx_ring, i);
2028 i -= tx_ring->count;
2029
2030 do {
2031 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2032
2033 /* if next_to_watch is not set then there is no work pending */
2034 if (!eop_desc)
2035 break;
2036
2037 /* prevent any other reads prior to eop_desc */
2038 smp_rmb();
2039
2040 /* if DD is not set pending work has not been completed */
2041 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2042 break;
2043
2044 /* clear next_to_watch to prevent false hangs */
2045 tx_buffer->next_to_watch = NULL;
2046
2047 /* update the statistics for this packet */
2048 total_bytes += tx_buffer->bytecount;
2049 total_packets += tx_buffer->gso_segs;
2050
2051 /* free the skb */
2052 napi_consume_skb(tx_buffer->skb, napi_budget);
2053
2054 /* unmap skb header data */
2055 dma_unmap_single(tx_ring->dev,
2056 dma_unmap_addr(tx_buffer, dma),
2057 dma_unmap_len(tx_buffer, len),
2058 DMA_TO_DEVICE);
2059
2060 /* clear tx_buffer data */
2061 dma_unmap_len_set(tx_buffer, len, 0);
2062
2063 /* clear last DMA location and unmap remaining buffers */
2064 while (tx_desc != eop_desc) {
2065 tx_buffer++;
2066 tx_desc++;
2067 i++;
2068 if (unlikely(!i)) {
2069 i -= tx_ring->count;
2070 tx_buffer = tx_ring->tx_buffer_info;
2071 tx_desc = IGC_TX_DESC(tx_ring, 0);
2072 }
2073
2074 /* unmap any remaining paged data */
2075 if (dma_unmap_len(tx_buffer, len)) {
2076 dma_unmap_page(tx_ring->dev,
2077 dma_unmap_addr(tx_buffer, dma),
2078 dma_unmap_len(tx_buffer, len),
2079 DMA_TO_DEVICE);
2080 dma_unmap_len_set(tx_buffer, len, 0);
2081 }
2082 }
2083
2084 /* move us one more past the eop_desc for start of next pkt */
2085 tx_buffer++;
2086 tx_desc++;
2087 i++;
2088 if (unlikely(!i)) {
2089 i -= tx_ring->count;
2090 tx_buffer = tx_ring->tx_buffer_info;
2091 tx_desc = IGC_TX_DESC(tx_ring, 0);
2092 }
2093
2094 /* issue prefetch for next Tx descriptor */
2095 prefetch(tx_desc);
2096
2097 /* update budget accounting */
2098 budget--;
2099 } while (likely(budget));
2100
2101 netdev_tx_completed_queue(txring_txq(tx_ring),
2102 total_packets, total_bytes);
2103
2104 i += tx_ring->count;
2105 tx_ring->next_to_clean = i;
2106 u64_stats_update_begin(&tx_ring->tx_syncp);
2107 tx_ring->tx_stats.bytes += total_bytes;
2108 tx_ring->tx_stats.packets += total_packets;
2109 u64_stats_update_end(&tx_ring->tx_syncp);
2110 q_vector->tx.total_bytes += total_bytes;
2111 q_vector->tx.total_packets += total_packets;
2112
2113 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2114 struct igc_hw *hw = &adapter->hw;
2115
2116 /* Detect a transmit hang in hardware, this serializes the
2117 * check with the clearing of time_stamp and movement of i
2118 */
2119 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2120 if (tx_buffer->next_to_watch &&
2121 time_after(jiffies, tx_buffer->time_stamp +
2122 (adapter->tx_timeout_factor * HZ)) &&
2123 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2124 /* detected Tx unit hang */
2125 netdev_err(tx_ring->netdev,
2126 "Detected Tx Unit Hang\n"
2127 " Tx Queue <%d>\n"
2128 " TDH <%x>\n"
2129 " TDT <%x>\n"
2130 " next_to_use <%x>\n"
2131 " next_to_clean <%x>\n"
2132 "buffer_info[next_to_clean]\n"
2133 " time_stamp <%lx>\n"
2134 " next_to_watch <%p>\n"
2135 " jiffies <%lx>\n"
2136 " desc.status <%x>\n",
2137 tx_ring->queue_index,
2138 rd32(IGC_TDH(tx_ring->reg_idx)),
2139 readl(tx_ring->tail),
2140 tx_ring->next_to_use,
2141 tx_ring->next_to_clean,
2142 tx_buffer->time_stamp,
2143 tx_buffer->next_to_watch,
2144 jiffies,
2145 tx_buffer->next_to_watch->wb.status);
2146 netif_stop_subqueue(tx_ring->netdev,
2147 tx_ring->queue_index);
2148
2149 /* we are about to reset, no point in enabling stuff */
2150 return true;
2151 }
2152 }
2153
2154 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2155 if (unlikely(total_packets &&
2156 netif_carrier_ok(tx_ring->netdev) &&
2157 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2158 /* Make sure that anybody stopping the queue after this
2159 * sees the new next_to_clean.
2160 */
2161 smp_mb();
2162 if (__netif_subqueue_stopped(tx_ring->netdev,
2163 tx_ring->queue_index) &&
2164 !(test_bit(__IGC_DOWN, &adapter->state))) {
2165 netif_wake_subqueue(tx_ring->netdev,
2166 tx_ring->queue_index);
2167
2168 u64_stats_update_begin(&tx_ring->tx_syncp);
2169 tx_ring->tx_stats.restart_queue++;
2170 u64_stats_update_end(&tx_ring->tx_syncp);
2171 }
2172 }
2173
2174 return !!budget;
2175 }
2176
2177 static int igc_find_mac_filter(struct igc_adapter *adapter,
2178 enum igc_mac_filter_type type, const u8 *addr)
2179 {
2180 struct igc_hw *hw = &adapter->hw;
2181 int max_entries = hw->mac.rar_entry_count;
2182 u32 ral, rah;
2183 int i;
2184
2185 for (i = 0; i < max_entries; i++) {
2186 ral = rd32(IGC_RAL(i));
2187 rah = rd32(IGC_RAH(i));
2188
2189 if (!(rah & IGC_RAH_AV))
2190 continue;
2191 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2192 continue;
2193 if ((rah & IGC_RAH_RAH_MASK) !=
2194 le16_to_cpup((__le16 *)(addr + 4)))
2195 continue;
2196 if (ral != le32_to_cpup((__le32 *)(addr)))
2197 continue;
2198
2199 return i;
2200 }
2201
2202 return -1;
2203 }
2204
2205 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2206 {
2207 struct igc_hw *hw = &adapter->hw;
2208 int max_entries = hw->mac.rar_entry_count;
2209 u32 rah;
2210 int i;
2211
2212 for (i = 0; i < max_entries; i++) {
2213 rah = rd32(IGC_RAH(i));
2214
2215 if (!(rah & IGC_RAH_AV))
2216 return i;
2217 }
2218
2219 return -1;
2220 }
2221
2222 /**
2223 * igc_add_mac_filter() - Add MAC address filter
2224 * @adapter: Pointer to adapter where the filter should be added
2225 * @type: MAC address filter type (source or destination)
2226 * @addr: MAC address
2227 * @queue: If non-negative, queue assignment feature is enabled and frames
2228 * matching the filter are enqueued onto 'queue'. Otherwise, queue
2229 * assignment is disabled.
2230 *
2231 * Return: 0 in case of success, negative errno code otherwise.
2232 */
2233 static int igc_add_mac_filter(struct igc_adapter *adapter,
2234 enum igc_mac_filter_type type, const u8 *addr,
2235 int queue)
2236 {
2237 struct net_device *dev = adapter->netdev;
2238 int index;
2239
2240 index = igc_find_mac_filter(adapter, type, addr);
2241 if (index >= 0)
2242 goto update_filter;
2243
2244 index = igc_get_avail_mac_filter_slot(adapter);
2245 if (index < 0)
2246 return -ENOSPC;
2247
2248 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2249 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2250 addr, queue);
2251
2252 update_filter:
2253 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2254 return 0;
2255 }
2256
2257 /**
2258 * igc_del_mac_filter() - Delete MAC address filter
2259 * @adapter: Pointer to adapter where the filter should be deleted from
2260 * @type: MAC address filter type (source or destination)
2261 * @addr: MAC address
2262 */
2263 static void igc_del_mac_filter(struct igc_adapter *adapter,
2264 enum igc_mac_filter_type type, const u8 *addr)
2265 {
2266 struct net_device *dev = adapter->netdev;
2267 int index;
2268
2269 index = igc_find_mac_filter(adapter, type, addr);
2270 if (index < 0)
2271 return;
2272
2273 if (index == 0) {
2274 /* If this is the default filter, we don't actually delete it.
2275 * We just reset to its default value i.e. disable queue
2276 * assignment.
2277 */
2278 netdev_dbg(dev, "Disable default MAC filter queue assignment");
2279
2280 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2281 } else {
2282 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2283 index,
2284 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2285 addr);
2286
2287 igc_clear_mac_filter_hw(adapter, index);
2288 }
2289 }
2290
2291 /**
2292 * igc_add_vlan_prio_filter() - Add VLAN priority filter
2293 * @adapter: Pointer to adapter where the filter should be added
2294 * @prio: VLAN priority value
2295 * @queue: Queue number which matching frames are assigned to
2296 *
2297 * Return: 0 in case of success, negative errno code otherwise.
2298 */
2299 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2300 int queue)
2301 {
2302 struct net_device *dev = adapter->netdev;
2303 struct igc_hw *hw = &adapter->hw;
2304 u32 vlanpqf;
2305
2306 vlanpqf = rd32(IGC_VLANPQF);
2307
2308 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2309 netdev_dbg(dev, "VLAN priority filter already in use\n");
2310 return -EEXIST;
2311 }
2312
2313 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2314 vlanpqf |= IGC_VLANPQF_VALID(prio);
2315
2316 wr32(IGC_VLANPQF, vlanpqf);
2317
2318 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2319 prio, queue);
2320 return 0;
2321 }
2322
2323 /**
2324 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2325 * @adapter: Pointer to adapter where the filter should be deleted from
2326 * @prio: VLAN priority value
2327 */
2328 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2329 {
2330 struct igc_hw *hw = &adapter->hw;
2331 u32 vlanpqf;
2332
2333 vlanpqf = rd32(IGC_VLANPQF);
2334
2335 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2336 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2337
2338 wr32(IGC_VLANPQF, vlanpqf);
2339
2340 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2341 prio);
2342 }
2343
2344 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2345 {
2346 struct igc_hw *hw = &adapter->hw;
2347 int i;
2348
2349 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2350 u32 etqf = rd32(IGC_ETQF(i));
2351
2352 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2353 return i;
2354 }
2355
2356 return -1;
2357 }
2358
2359 /**
2360 * igc_add_etype_filter() - Add ethertype filter
2361 * @adapter: Pointer to adapter where the filter should be added
2362 * @etype: Ethertype value
2363 * @queue: If non-negative, queue assignment feature is enabled and frames
2364 * matching the filter are enqueued onto 'queue'. Otherwise, queue
2365 * assignment is disabled.
2366 *
2367 * Return: 0 in case of success, negative errno code otherwise.
2368 */
2369 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
2370 int queue)
2371 {
2372 struct igc_hw *hw = &adapter->hw;
2373 int index;
2374 u32 etqf;
2375
2376 index = igc_get_avail_etype_filter_slot(adapter);
2377 if (index < 0)
2378 return -ENOSPC;
2379
2380 etqf = rd32(IGC_ETQF(index));
2381
2382 etqf &= ~IGC_ETQF_ETYPE_MASK;
2383 etqf |= etype;
2384
2385 if (queue >= 0) {
2386 etqf &= ~IGC_ETQF_QUEUE_MASK;
2387 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
2388 etqf |= IGC_ETQF_QUEUE_ENABLE;
2389 }
2390
2391 etqf |= IGC_ETQF_FILTER_ENABLE;
2392
2393 wr32(IGC_ETQF(index), etqf);
2394
2395 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
2396 etype, queue);
2397 return 0;
2398 }
2399
2400 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
2401 {
2402 struct igc_hw *hw = &adapter->hw;
2403 int i;
2404
2405 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2406 u32 etqf = rd32(IGC_ETQF(i));
2407
2408 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
2409 return i;
2410 }
2411
2412 return -1;
2413 }
2414
2415 /**
2416 * igc_del_etype_filter() - Delete ethertype filter
2417 * @adapter: Pointer to adapter where the filter should be deleted from
2418 * @etype: Ethertype value
2419 */
2420 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
2421 {
2422 struct igc_hw *hw = &adapter->hw;
2423 int index;
2424
2425 index = igc_find_etype_filter(adapter, etype);
2426 if (index < 0)
2427 return;
2428
2429 wr32(IGC_ETQF(index), 0);
2430
2431 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
2432 etype);
2433 }
2434
2435 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
2436 const struct igc_nfc_rule *rule)
2437 {
2438 int err;
2439
2440 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
2441 err = igc_add_etype_filter(adapter, rule->filter.etype,
2442 rule->action);
2443 if (err)
2444 return err;
2445 }
2446
2447 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
2448 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2449 rule->filter.src_addr, rule->action);
2450 if (err)
2451 return err;
2452 }
2453
2454 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
2455 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2456 rule->filter.dst_addr, rule->action);
2457 if (err)
2458 return err;
2459 }
2460
2461 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2462 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2463 VLAN_PRIO_SHIFT;
2464
2465 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
2466 if (err)
2467 return err;
2468 }
2469
2470 return 0;
2471 }
2472
2473 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
2474 const struct igc_nfc_rule *rule)
2475 {
2476 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
2477 igc_del_etype_filter(adapter, rule->filter.etype);
2478
2479 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2480 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2481 VLAN_PRIO_SHIFT;
2482
2483 igc_del_vlan_prio_filter(adapter, prio);
2484 }
2485
2486 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
2487 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2488 rule->filter.src_addr);
2489
2490 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
2491 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2492 rule->filter.dst_addr);
2493 }
2494
2495 /**
2496 * igc_get_nfc_rule() - Get NFC rule
2497 * @adapter: Pointer to adapter
2498 * @location: Rule location
2499 *
2500 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2501 *
2502 * Return: Pointer to NFC rule at @location. If not found, NULL.
2503 */
2504 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
2505 u32 location)
2506 {
2507 struct igc_nfc_rule *rule;
2508
2509 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
2510 if (rule->location == location)
2511 return rule;
2512 if (rule->location > location)
2513 break;
2514 }
2515
2516 return NULL;
2517 }
2518
2519 /**
2520 * igc_del_nfc_rule() - Delete NFC rule
2521 * @adapter: Pointer to adapter
2522 * @rule: Pointer to rule to be deleted
2523 *
2524 * Disable NFC rule in hardware and delete it from adapter.
2525 *
2526 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2527 */
2528 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2529 {
2530 igc_disable_nfc_rule(adapter, rule);
2531
2532 list_del(&rule->list);
2533 adapter->nfc_rule_count--;
2534
2535 kfree(rule);
2536 }
2537
2538 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
2539 {
2540 struct igc_nfc_rule *rule, *tmp;
2541
2542 mutex_lock(&adapter->nfc_rule_lock);
2543
2544 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
2545 igc_del_nfc_rule(adapter, rule);
2546
2547 mutex_unlock(&adapter->nfc_rule_lock);
2548 }
2549
2550 /**
2551 * igc_add_nfc_rule() - Add NFC rule
2552 * @adapter: Pointer to adapter
2553 * @rule: Pointer to rule to be added
2554 *
2555 * Enable NFC rule in hardware and add it to adapter.
2556 *
2557 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2558 *
2559 * Return: 0 on success, negative errno on failure.
2560 */
2561 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2562 {
2563 struct igc_nfc_rule *pred, *cur;
2564 int err;
2565
2566 err = igc_enable_nfc_rule(adapter, rule);
2567 if (err)
2568 return err;
2569
2570 pred = NULL;
2571 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
2572 if (cur->location >= rule->location)
2573 break;
2574 pred = cur;
2575 }
2576
2577 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
2578 adapter->nfc_rule_count++;
2579 return 0;
2580 }
2581
2582 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
2583 {
2584 struct igc_nfc_rule *rule;
2585
2586 mutex_lock(&adapter->nfc_rule_lock);
2587
2588 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
2589 igc_enable_nfc_rule(adapter, rule);
2590
2591 mutex_unlock(&adapter->nfc_rule_lock);
2592 }
2593
2594 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
2595 {
2596 struct igc_adapter *adapter = netdev_priv(netdev);
2597
2598 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
2599 }
2600
2601 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
2602 {
2603 struct igc_adapter *adapter = netdev_priv(netdev);
2604
2605 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
2606 return 0;
2607 }
2608
2609 /**
2610 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2611 * @netdev: network interface device structure
2612 *
2613 * The set_rx_mode entry point is called whenever the unicast or multicast
2614 * address lists or the network interface flags are updated. This routine is
2615 * responsible for configuring the hardware for proper unicast, multicast,
2616 * promiscuous mode, and all-multi behavior.
2617 */
2618 static void igc_set_rx_mode(struct net_device *netdev)
2619 {
2620 struct igc_adapter *adapter = netdev_priv(netdev);
2621 struct igc_hw *hw = &adapter->hw;
2622 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
2623 int count;
2624
2625 /* Check for Promiscuous and All Multicast modes */
2626 if (netdev->flags & IFF_PROMISC) {
2627 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
2628 } else {
2629 if (netdev->flags & IFF_ALLMULTI) {
2630 rctl |= IGC_RCTL_MPE;
2631 } else {
2632 /* Write addresses to the MTA, if the attempt fails
2633 * then we should just turn on promiscuous mode so
2634 * that we can at least receive multicast traffic
2635 */
2636 count = igc_write_mc_addr_list(netdev);
2637 if (count < 0)
2638 rctl |= IGC_RCTL_MPE;
2639 }
2640 }
2641
2642 /* Write addresses to available RAR registers, if there is not
2643 * sufficient space to store all the addresses then enable
2644 * unicast promiscuous mode
2645 */
2646 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
2647 rctl |= IGC_RCTL_UPE;
2648
2649 /* update state of unicast and multicast */
2650 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
2651 wr32(IGC_RCTL, rctl);
2652
2653 #if (PAGE_SIZE < 8192)
2654 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
2655 rlpml = IGC_MAX_FRAME_BUILD_SKB;
2656 #endif
2657 wr32(IGC_RLPML, rlpml);
2658 }
2659
2660 /**
2661 * igc_configure - configure the hardware for RX and TX
2662 * @adapter: private board structure
2663 */
2664 static void igc_configure(struct igc_adapter *adapter)
2665 {
2666 struct net_device *netdev = adapter->netdev;
2667 int i = 0;
2668
2669 igc_get_hw_control(adapter);
2670 igc_set_rx_mode(netdev);
2671
2672 igc_setup_tctl(adapter);
2673 igc_setup_mrqc(adapter);
2674 igc_setup_rctl(adapter);
2675
2676 igc_set_default_mac_filter(adapter);
2677 igc_restore_nfc_rules(adapter);
2678
2679 igc_configure_tx(adapter);
2680 igc_configure_rx(adapter);
2681
2682 igc_rx_fifo_flush_base(&adapter->hw);
2683
2684 /* call igc_desc_unused which always leaves
2685 * at least 1 descriptor unused to make sure
2686 * next_to_use != next_to_clean
2687 */
2688 for (i = 0; i < adapter->num_rx_queues; i++) {
2689 struct igc_ring *ring = adapter->rx_ring[i];
2690
2691 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2692 }
2693 }
2694
2695 /**
2696 * igc_write_ivar - configure ivar for given MSI-X vector
2697 * @hw: pointer to the HW structure
2698 * @msix_vector: vector number we are allocating to a given ring
2699 * @index: row index of IVAR register to write within IVAR table
2700 * @offset: column offset of in IVAR, should be multiple of 8
2701 *
2702 * The IVAR table consists of 2 columns,
2703 * each containing an cause allocation for an Rx and Tx ring, and a
2704 * variable number of rows depending on the number of queues supported.
2705 */
2706 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2707 int index, int offset)
2708 {
2709 u32 ivar = array_rd32(IGC_IVAR0, index);
2710
2711 /* clear any bits that are currently set */
2712 ivar &= ~((u32)0xFF << offset);
2713
2714 /* write vector and valid bit */
2715 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2716
2717 array_wr32(IGC_IVAR0, index, ivar);
2718 }
2719
2720 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2721 {
2722 struct igc_adapter *adapter = q_vector->adapter;
2723 struct igc_hw *hw = &adapter->hw;
2724 int rx_queue = IGC_N0_QUEUE;
2725 int tx_queue = IGC_N0_QUEUE;
2726
2727 if (q_vector->rx.ring)
2728 rx_queue = q_vector->rx.ring->reg_idx;
2729 if (q_vector->tx.ring)
2730 tx_queue = q_vector->tx.ring->reg_idx;
2731
2732 switch (hw->mac.type) {
2733 case igc_i225:
2734 if (rx_queue > IGC_N0_QUEUE)
2735 igc_write_ivar(hw, msix_vector,
2736 rx_queue >> 1,
2737 (rx_queue & 0x1) << 4);
2738 if (tx_queue > IGC_N0_QUEUE)
2739 igc_write_ivar(hw, msix_vector,
2740 tx_queue >> 1,
2741 ((tx_queue & 0x1) << 4) + 8);
2742 q_vector->eims_value = BIT(msix_vector);
2743 break;
2744 default:
2745 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2746 break;
2747 }
2748
2749 /* add q_vector eims value to global eims_enable_mask */
2750 adapter->eims_enable_mask |= q_vector->eims_value;
2751
2752 /* configure q_vector to set itr on first interrupt */
2753 q_vector->set_itr = 1;
2754 }
2755
2756 /**
2757 * igc_configure_msix - Configure MSI-X hardware
2758 * @adapter: Pointer to adapter structure
2759 *
2760 * igc_configure_msix sets up the hardware to properly
2761 * generate MSI-X interrupts.
2762 */
2763 static void igc_configure_msix(struct igc_adapter *adapter)
2764 {
2765 struct igc_hw *hw = &adapter->hw;
2766 int i, vector = 0;
2767 u32 tmp;
2768
2769 adapter->eims_enable_mask = 0;
2770
2771 /* set vector for other causes, i.e. link changes */
2772 switch (hw->mac.type) {
2773 case igc_i225:
2774 /* Turn on MSI-X capability first, or our settings
2775 * won't stick. And it will take days to debug.
2776 */
2777 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2778 IGC_GPIE_PBA | IGC_GPIE_EIAME |
2779 IGC_GPIE_NSICR);
2780
2781 /* enable msix_other interrupt */
2782 adapter->eims_other = BIT(vector);
2783 tmp = (vector++ | IGC_IVAR_VALID) << 8;
2784
2785 wr32(IGC_IVAR_MISC, tmp);
2786 break;
2787 default:
2788 /* do nothing, since nothing else supports MSI-X */
2789 break;
2790 } /* switch (hw->mac.type) */
2791
2792 adapter->eims_enable_mask |= adapter->eims_other;
2793
2794 for (i = 0; i < adapter->num_q_vectors; i++)
2795 igc_assign_vector(adapter->q_vector[i], vector++);
2796
2797 wrfl();
2798 }
2799
2800 /**
2801 * igc_irq_enable - Enable default interrupt generation settings
2802 * @adapter: board private structure
2803 */
2804 static void igc_irq_enable(struct igc_adapter *adapter)
2805 {
2806 struct igc_hw *hw = &adapter->hw;
2807
2808 if (adapter->msix_entries) {
2809 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
2810 u32 regval = rd32(IGC_EIAC);
2811
2812 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
2813 regval = rd32(IGC_EIAM);
2814 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
2815 wr32(IGC_EIMS, adapter->eims_enable_mask);
2816 wr32(IGC_IMS, ims);
2817 } else {
2818 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2819 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2820 }
2821 }
2822
2823 /**
2824 * igc_irq_disable - Mask off interrupt generation on the NIC
2825 * @adapter: board private structure
2826 */
2827 static void igc_irq_disable(struct igc_adapter *adapter)
2828 {
2829 struct igc_hw *hw = &adapter->hw;
2830
2831 if (adapter->msix_entries) {
2832 u32 regval = rd32(IGC_EIAM);
2833
2834 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
2835 wr32(IGC_EIMC, adapter->eims_enable_mask);
2836 regval = rd32(IGC_EIAC);
2837 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
2838 }
2839
2840 wr32(IGC_IAM, 0);
2841 wr32(IGC_IMC, ~0);
2842 wrfl();
2843
2844 if (adapter->msix_entries) {
2845 int vector = 0, i;
2846
2847 synchronize_irq(adapter->msix_entries[vector++].vector);
2848
2849 for (i = 0; i < adapter->num_q_vectors; i++)
2850 synchronize_irq(adapter->msix_entries[vector++].vector);
2851 } else {
2852 synchronize_irq(adapter->pdev->irq);
2853 }
2854 }
2855
2856 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
2857 const u32 max_rss_queues)
2858 {
2859 /* Determine if we need to pair queues. */
2860 /* If rss_queues > half of max_rss_queues, pair the queues in
2861 * order to conserve interrupts due to limited supply.
2862 */
2863 if (adapter->rss_queues > (max_rss_queues / 2))
2864 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
2865 else
2866 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
2867 }
2868
2869 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
2870 {
2871 return IGC_MAX_RX_QUEUES;
2872 }
2873
2874 static void igc_init_queue_configuration(struct igc_adapter *adapter)
2875 {
2876 u32 max_rss_queues;
2877
2878 max_rss_queues = igc_get_max_rss_queues(adapter);
2879 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2880
2881 igc_set_flag_queue_pairs(adapter, max_rss_queues);
2882 }
2883
2884 /**
2885 * igc_reset_q_vector - Reset config for interrupt vector
2886 * @adapter: board private structure to initialize
2887 * @v_idx: Index of vector to be reset
2888 *
2889 * If NAPI is enabled it will delete any references to the
2890 * NAPI struct. This is preparation for igc_free_q_vector.
2891 */
2892 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2893 {
2894 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2895
2896 /* if we're coming from igc_set_interrupt_capability, the vectors are
2897 * not yet allocated
2898 */
2899 if (!q_vector)
2900 return;
2901
2902 if (q_vector->tx.ring)
2903 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2904
2905 if (q_vector->rx.ring)
2906 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2907
2908 netif_napi_del(&q_vector->napi);
2909 }
2910
2911 /**
2912 * igc_free_q_vector - Free memory allocated for specific interrupt vector
2913 * @adapter: board private structure to initialize
2914 * @v_idx: Index of vector to be freed
2915 *
2916 * This function frees the memory allocated to the q_vector.
2917 */
2918 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2919 {
2920 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2921
2922 adapter->q_vector[v_idx] = NULL;
2923
2924 /* igc_get_stats64() might access the rings on this vector,
2925 * we must wait a grace period before freeing it.
2926 */
2927 if (q_vector)
2928 kfree_rcu(q_vector, rcu);
2929 }
2930
2931 /**
2932 * igc_free_q_vectors - Free memory allocated for interrupt vectors
2933 * @adapter: board private structure to initialize
2934 *
2935 * This function frees the memory allocated to the q_vectors. In addition if
2936 * NAPI is enabled it will delete any references to the NAPI struct prior
2937 * to freeing the q_vector.
2938 */
2939 static void igc_free_q_vectors(struct igc_adapter *adapter)
2940 {
2941 int v_idx = adapter->num_q_vectors;
2942
2943 adapter->num_tx_queues = 0;
2944 adapter->num_rx_queues = 0;
2945 adapter->num_q_vectors = 0;
2946
2947 while (v_idx--) {
2948 igc_reset_q_vector(adapter, v_idx);
2949 igc_free_q_vector(adapter, v_idx);
2950 }
2951 }
2952
2953 /**
2954 * igc_update_itr - update the dynamic ITR value based on statistics
2955 * @q_vector: pointer to q_vector
2956 * @ring_container: ring info to update the itr for
2957 *
2958 * Stores a new ITR value based on packets and byte
2959 * counts during the last interrupt. The advantage of per interrupt
2960 * computation is faster updates and more accurate ITR for the current
2961 * traffic pattern. Constants in this function were computed
2962 * based on theoretical maximum wire speed and thresholds were set based
2963 * on testing data as well as attempting to minimize response time
2964 * while increasing bulk throughput.
2965 * NOTE: These calculations are only valid when operating in a single-
2966 * queue environment.
2967 */
2968 static void igc_update_itr(struct igc_q_vector *q_vector,
2969 struct igc_ring_container *ring_container)
2970 {
2971 unsigned int packets = ring_container->total_packets;
2972 unsigned int bytes = ring_container->total_bytes;
2973 u8 itrval = ring_container->itr;
2974
2975 /* no packets, exit with status unchanged */
2976 if (packets == 0)
2977 return;
2978
2979 switch (itrval) {
2980 case lowest_latency:
2981 /* handle TSO and jumbo frames */
2982 if (bytes / packets > 8000)
2983 itrval = bulk_latency;
2984 else if ((packets < 5) && (bytes > 512))
2985 itrval = low_latency;
2986 break;
2987 case low_latency: /* 50 usec aka 20000 ints/s */
2988 if (bytes > 10000) {
2989 /* this if handles the TSO accounting */
2990 if (bytes / packets > 8000)
2991 itrval = bulk_latency;
2992 else if ((packets < 10) || ((bytes / packets) > 1200))
2993 itrval = bulk_latency;
2994 else if ((packets > 35))
2995 itrval = lowest_latency;
2996 } else if (bytes / packets > 2000) {
2997 itrval = bulk_latency;
2998 } else if (packets <= 2 && bytes < 512) {
2999 itrval = lowest_latency;
3000 }
3001 break;
3002 case bulk_latency: /* 250 usec aka 4000 ints/s */
3003 if (bytes > 25000) {
3004 if (packets > 35)
3005 itrval = low_latency;
3006 } else if (bytes < 1500) {
3007 itrval = low_latency;
3008 }
3009 break;
3010 }
3011
3012 /* clear work counters since we have the values we need */
3013 ring_container->total_bytes = 0;
3014 ring_container->total_packets = 0;
3015
3016 /* write updated itr to ring container */
3017 ring_container->itr = itrval;
3018 }
3019
3020 static void igc_set_itr(struct igc_q_vector *q_vector)
3021 {
3022 struct igc_adapter *adapter = q_vector->adapter;
3023 u32 new_itr = q_vector->itr_val;
3024 u8 current_itr = 0;
3025
3026 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3027 switch (adapter->link_speed) {
3028 case SPEED_10:
3029 case SPEED_100:
3030 current_itr = 0;
3031 new_itr = IGC_4K_ITR;
3032 goto set_itr_now;
3033 default:
3034 break;
3035 }
3036
3037 igc_update_itr(q_vector, &q_vector->tx);
3038 igc_update_itr(q_vector, &q_vector->rx);
3039
3040 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3041
3042 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3043 if (current_itr == lowest_latency &&
3044 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3045 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3046 current_itr = low_latency;
3047
3048 switch (current_itr) {
3049 /* counts and packets in update_itr are dependent on these numbers */
3050 case lowest_latency:
3051 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3052 break;
3053 case low_latency:
3054 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3055 break;
3056 case bulk_latency:
3057 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
3058 break;
3059 default:
3060 break;
3061 }
3062
3063 set_itr_now:
3064 if (new_itr != q_vector->itr_val) {
3065 /* this attempts to bias the interrupt rate towards Bulk
3066 * by adding intermediate steps when interrupt rate is
3067 * increasing
3068 */
3069 new_itr = new_itr > q_vector->itr_val ?
3070 max((new_itr * q_vector->itr_val) /
3071 (new_itr + (q_vector->itr_val >> 2)),
3072 new_itr) : new_itr;
3073 /* Don't write the value here; it resets the adapter's
3074 * internal timer, and causes us to delay far longer than
3075 * we should between interrupts. Instead, we write the ITR
3076 * value at the beginning of the next interrupt so the timing
3077 * ends up being correct.
3078 */
3079 q_vector->itr_val = new_itr;
3080 q_vector->set_itr = 1;
3081 }
3082 }
3083
3084 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3085 {
3086 int v_idx = adapter->num_q_vectors;
3087
3088 if (adapter->msix_entries) {
3089 pci_disable_msix(adapter->pdev);
3090 kfree(adapter->msix_entries);
3091 adapter->msix_entries = NULL;
3092 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3093 pci_disable_msi(adapter->pdev);
3094 }
3095
3096 while (v_idx--)
3097 igc_reset_q_vector(adapter, v_idx);
3098 }
3099
3100 /**
3101 * igc_set_interrupt_capability - set MSI or MSI-X if supported
3102 * @adapter: Pointer to adapter structure
3103 * @msix: boolean value for MSI-X capability
3104 *
3105 * Attempt to configure interrupts using the best available
3106 * capabilities of the hardware and kernel.
3107 */
3108 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3109 bool msix)
3110 {
3111 int numvecs, i;
3112 int err;
3113
3114 if (!msix)
3115 goto msi_only;
3116 adapter->flags |= IGC_FLAG_HAS_MSIX;
3117
3118 /* Number of supported queues. */
3119 adapter->num_rx_queues = adapter->rss_queues;
3120
3121 adapter->num_tx_queues = adapter->rss_queues;
3122
3123 /* start with one vector for every Rx queue */
3124 numvecs = adapter->num_rx_queues;
3125
3126 /* if Tx handler is separate add 1 for every Tx queue */
3127 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3128 numvecs += adapter->num_tx_queues;
3129
3130 /* store the number of vectors reserved for queues */
3131 adapter->num_q_vectors = numvecs;
3132
3133 /* add 1 vector for link status interrupts */
3134 numvecs++;
3135
3136 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3137 GFP_KERNEL);
3138
3139 if (!adapter->msix_entries)
3140 return;
3141
3142 /* populate entry values */
3143 for (i = 0; i < numvecs; i++)
3144 adapter->msix_entries[i].entry = i;
3145
3146 err = pci_enable_msix_range(adapter->pdev,
3147 adapter->msix_entries,
3148 numvecs,
3149 numvecs);
3150 if (err > 0)
3151 return;
3152
3153 kfree(adapter->msix_entries);
3154 adapter->msix_entries = NULL;
3155
3156 igc_reset_interrupt_capability(adapter);
3157
3158 msi_only:
3159 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3160
3161 adapter->rss_queues = 1;
3162 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3163 adapter->num_rx_queues = 1;
3164 adapter->num_tx_queues = 1;
3165 adapter->num_q_vectors = 1;
3166 if (!pci_enable_msi(adapter->pdev))
3167 adapter->flags |= IGC_FLAG_HAS_MSI;
3168 }
3169
3170 /**
3171 * igc_update_ring_itr - update the dynamic ITR value based on packet size
3172 * @q_vector: pointer to q_vector
3173 *
3174 * Stores a new ITR value based on strictly on packet size. This
3175 * algorithm is less sophisticated than that used in igc_update_itr,
3176 * due to the difficulty of synchronizing statistics across multiple
3177 * receive rings. The divisors and thresholds used by this function
3178 * were determined based on theoretical maximum wire speed and testing
3179 * data, in order to minimize response time while increasing bulk
3180 * throughput.
3181 * NOTE: This function is called only when operating in a multiqueue
3182 * receive environment.
3183 */
3184 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3185 {
3186 struct igc_adapter *adapter = q_vector->adapter;
3187 int new_val = q_vector->itr_val;
3188 int avg_wire_size = 0;
3189 unsigned int packets;
3190
3191 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3192 * ints/sec - ITR timer value of 120 ticks.
3193 */
3194 switch (adapter->link_speed) {
3195 case SPEED_10:
3196 case SPEED_100:
3197 new_val = IGC_4K_ITR;
3198 goto set_itr_val;
3199 default:
3200 break;
3201 }
3202
3203 packets = q_vector->rx.total_packets;
3204 if (packets)
3205 avg_wire_size = q_vector->rx.total_bytes / packets;
3206
3207 packets = q_vector->tx.total_packets;
3208 if (packets)
3209 avg_wire_size = max_t(u32, avg_wire_size,
3210 q_vector->tx.total_bytes / packets);
3211
3212 /* if avg_wire_size isn't set no work was done */
3213 if (!avg_wire_size)
3214 goto clear_counts;
3215
3216 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3217 avg_wire_size += 24;
3218
3219 /* Don't starve jumbo frames */
3220 avg_wire_size = min(avg_wire_size, 3000);
3221
3222 /* Give a little boost to mid-size frames */
3223 if (avg_wire_size > 300 && avg_wire_size < 1200)
3224 new_val = avg_wire_size / 3;
3225 else
3226 new_val = avg_wire_size / 2;
3227
3228 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3229 if (new_val < IGC_20K_ITR &&
3230 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3231 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3232 new_val = IGC_20K_ITR;
3233
3234 set_itr_val:
3235 if (new_val != q_vector->itr_val) {
3236 q_vector->itr_val = new_val;
3237 q_vector->set_itr = 1;
3238 }
3239 clear_counts:
3240 q_vector->rx.total_bytes = 0;
3241 q_vector->rx.total_packets = 0;
3242 q_vector->tx.total_bytes = 0;
3243 q_vector->tx.total_packets = 0;
3244 }
3245
3246 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3247 {
3248 struct igc_adapter *adapter = q_vector->adapter;
3249 struct igc_hw *hw = &adapter->hw;
3250
3251 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3252 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3253 if (adapter->num_q_vectors == 1)
3254 igc_set_itr(q_vector);
3255 else
3256 igc_update_ring_itr(q_vector);
3257 }
3258
3259 if (!test_bit(__IGC_DOWN, &adapter->state)) {
3260 if (adapter->msix_entries)
3261 wr32(IGC_EIMS, q_vector->eims_value);
3262 else
3263 igc_irq_enable(adapter);
3264 }
3265 }
3266
3267 static void igc_add_ring(struct igc_ring *ring,
3268 struct igc_ring_container *head)
3269 {
3270 head->ring = ring;
3271 head->count++;
3272 }
3273
3274 /**
3275 * igc_cache_ring_register - Descriptor ring to register mapping
3276 * @adapter: board private structure to initialize
3277 *
3278 * Once we know the feature-set enabled for the device, we'll cache
3279 * the register offset the descriptor ring is assigned to.
3280 */
3281 static void igc_cache_ring_register(struct igc_adapter *adapter)
3282 {
3283 int i = 0, j = 0;
3284
3285 switch (adapter->hw.mac.type) {
3286 case igc_i225:
3287 /* Fall through */
3288 default:
3289 for (; i < adapter->num_rx_queues; i++)
3290 adapter->rx_ring[i]->reg_idx = i;
3291 for (; j < adapter->num_tx_queues; j++)
3292 adapter->tx_ring[j]->reg_idx = j;
3293 break;
3294 }
3295 }
3296
3297 /**
3298 * igc_poll - NAPI Rx polling callback
3299 * @napi: napi polling structure
3300 * @budget: count of how many packets we should handle
3301 */
3302 static int igc_poll(struct napi_struct *napi, int budget)
3303 {
3304 struct igc_q_vector *q_vector = container_of(napi,
3305 struct igc_q_vector,
3306 napi);
3307 bool clean_complete = true;
3308 int work_done = 0;
3309
3310 if (q_vector->tx.ring)
3311 clean_complete = igc_clean_tx_irq(q_vector, budget);
3312
3313 if (q_vector->rx.ring) {
3314 int cleaned = igc_clean_rx_irq(q_vector, budget);
3315
3316 work_done += cleaned;
3317 if (cleaned >= budget)
3318 clean_complete = false;
3319 }
3320
3321 /* If all work not completed, return budget and keep polling */
3322 if (!clean_complete)
3323 return budget;
3324
3325 /* Exit the polling mode, but don't re-enable interrupts if stack might
3326 * poll us due to busy-polling
3327 */
3328 if (likely(napi_complete_done(napi, work_done)))
3329 igc_ring_irq_enable(q_vector);
3330
3331 return min(work_done, budget - 1);
3332 }
3333
3334 /**
3335 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3336 * @adapter: board private structure to initialize
3337 * @v_count: q_vectors allocated on adapter, used for ring interleaving
3338 * @v_idx: index of vector in adapter struct
3339 * @txr_count: total number of Tx rings to allocate
3340 * @txr_idx: index of first Tx ring to allocate
3341 * @rxr_count: total number of Rx rings to allocate
3342 * @rxr_idx: index of first Rx ring to allocate
3343 *
3344 * We allocate one q_vector. If allocation fails we return -ENOMEM.
3345 */
3346 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3347 unsigned int v_count, unsigned int v_idx,
3348 unsigned int txr_count, unsigned int txr_idx,
3349 unsigned int rxr_count, unsigned int rxr_idx)
3350 {
3351 struct igc_q_vector *q_vector;
3352 struct igc_ring *ring;
3353 int ring_count;
3354
3355 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
3356 if (txr_count > 1 || rxr_count > 1)
3357 return -ENOMEM;
3358
3359 ring_count = txr_count + rxr_count;
3360
3361 /* allocate q_vector and rings */
3362 q_vector = adapter->q_vector[v_idx];
3363 if (!q_vector)
3364 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3365 GFP_KERNEL);
3366 else
3367 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3368 if (!q_vector)
3369 return -ENOMEM;
3370
3371 /* initialize NAPI */
3372 netif_napi_add(adapter->netdev, &q_vector->napi,
3373 igc_poll, 64);
3374
3375 /* tie q_vector and adapter together */
3376 adapter->q_vector[v_idx] = q_vector;
3377 q_vector->adapter = adapter;
3378
3379 /* initialize work limits */
3380 q_vector->tx.work_limit = adapter->tx_work_limit;
3381
3382 /* initialize ITR configuration */
3383 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3384 q_vector->itr_val = IGC_START_ITR;
3385
3386 /* initialize pointer to rings */
3387 ring = q_vector->ring;
3388
3389 /* initialize ITR */
3390 if (rxr_count) {
3391 /* rx or rx/tx vector */
3392 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3393 q_vector->itr_val = adapter->rx_itr_setting;
3394 } else {
3395 /* tx only vector */
3396 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3397 q_vector->itr_val = adapter->tx_itr_setting;
3398 }
3399
3400 if (txr_count) {
3401 /* assign generic ring traits */
3402 ring->dev = &adapter->pdev->dev;
3403 ring->netdev = adapter->netdev;
3404
3405 /* configure backlink on ring */
3406 ring->q_vector = q_vector;
3407
3408 /* update q_vector Tx values */
3409 igc_add_ring(ring, &q_vector->tx);
3410
3411 /* apply Tx specific ring traits */
3412 ring->count = adapter->tx_ring_count;
3413 ring->queue_index = txr_idx;
3414
3415 /* assign ring to adapter */
3416 adapter->tx_ring[txr_idx] = ring;
3417
3418 /* push pointer to next ring */
3419 ring++;
3420 }
3421
3422 if (rxr_count) {
3423 /* assign generic ring traits */
3424 ring->dev = &adapter->pdev->dev;
3425 ring->netdev = adapter->netdev;
3426
3427 /* configure backlink on ring */
3428 ring->q_vector = q_vector;
3429
3430 /* update q_vector Rx values */
3431 igc_add_ring(ring, &q_vector->rx);
3432
3433 /* apply Rx specific ring traits */
3434 ring->count = adapter->rx_ring_count;
3435 ring->queue_index = rxr_idx;
3436
3437 /* assign ring to adapter */
3438 adapter->rx_ring[rxr_idx] = ring;
3439 }
3440
3441 return 0;
3442 }
3443
3444 /**
3445 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3446 * @adapter: board private structure to initialize
3447 *
3448 * We allocate one q_vector per queue interrupt. If allocation fails we
3449 * return -ENOMEM.
3450 */
3451 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3452 {
3453 int rxr_remaining = adapter->num_rx_queues;
3454 int txr_remaining = adapter->num_tx_queues;
3455 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3456 int q_vectors = adapter->num_q_vectors;
3457 int err;
3458
3459 if (q_vectors >= (rxr_remaining + txr_remaining)) {
3460 for (; rxr_remaining; v_idx++) {
3461 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3462 0, 0, 1, rxr_idx);
3463
3464 if (err)
3465 goto err_out;
3466
3467 /* update counts and index */
3468 rxr_remaining--;
3469 rxr_idx++;
3470 }
3471 }
3472
3473 for (; v_idx < q_vectors; v_idx++) {
3474 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3475 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3476
3477 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3478 tqpv, txr_idx, rqpv, rxr_idx);
3479
3480 if (err)
3481 goto err_out;
3482
3483 /* update counts and index */
3484 rxr_remaining -= rqpv;
3485 txr_remaining -= tqpv;
3486 rxr_idx++;
3487 txr_idx++;
3488 }
3489
3490 return 0;
3491
3492 err_out:
3493 adapter->num_tx_queues = 0;
3494 adapter->num_rx_queues = 0;
3495 adapter->num_q_vectors = 0;
3496
3497 while (v_idx--)
3498 igc_free_q_vector(adapter, v_idx);
3499
3500 return -ENOMEM;
3501 }
3502
3503 /**
3504 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3505 * @adapter: Pointer to adapter structure
3506 * @msix: boolean for MSI-X capability
3507 *
3508 * This function initializes the interrupts and allocates all of the queues.
3509 */
3510 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3511 {
3512 struct net_device *dev = adapter->netdev;
3513 int err = 0;
3514
3515 igc_set_interrupt_capability(adapter, msix);
3516
3517 err = igc_alloc_q_vectors(adapter);
3518 if (err) {
3519 netdev_err(dev, "Unable to allocate memory for vectors\n");
3520 goto err_alloc_q_vectors;
3521 }
3522
3523 igc_cache_ring_register(adapter);
3524
3525 return 0;
3526
3527 err_alloc_q_vectors:
3528 igc_reset_interrupt_capability(adapter);
3529 return err;
3530 }
3531
3532 /**
3533 * igc_sw_init - Initialize general software structures (struct igc_adapter)
3534 * @adapter: board private structure to initialize
3535 *
3536 * igc_sw_init initializes the Adapter private data structure.
3537 * Fields are initialized based on PCI device information and
3538 * OS network device settings (MTU size).
3539 */
3540 static int igc_sw_init(struct igc_adapter *adapter)
3541 {
3542 struct net_device *netdev = adapter->netdev;
3543 struct pci_dev *pdev = adapter->pdev;
3544 struct igc_hw *hw = &adapter->hw;
3545
3546 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3547
3548 /* set default ring sizes */
3549 adapter->tx_ring_count = IGC_DEFAULT_TXD;
3550 adapter->rx_ring_count = IGC_DEFAULT_RXD;
3551
3552 /* set default ITR values */
3553 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
3554 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
3555
3556 /* set default work limits */
3557 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
3558
3559 /* adjust max frame to be at least the size of a standard frame */
3560 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3561 VLAN_HLEN;
3562 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3563
3564 mutex_init(&adapter->nfc_rule_lock);
3565 INIT_LIST_HEAD(&adapter->nfc_rule_list);
3566 adapter->nfc_rule_count = 0;
3567
3568 spin_lock_init(&adapter->stats64_lock);
3569 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3570 adapter->flags |= IGC_FLAG_HAS_MSIX;
3571
3572 igc_init_queue_configuration(adapter);
3573
3574 /* This call may decrease the number of queues */
3575 if (igc_init_interrupt_scheme(adapter, true)) {
3576 netdev_err(netdev, "Unable to allocate memory for queues\n");
3577 return -ENOMEM;
3578 }
3579
3580 /* Explicitly disable IRQ since the NIC can be in any state. */
3581 igc_irq_disable(adapter);
3582
3583 set_bit(__IGC_DOWN, &adapter->state);
3584
3585 return 0;
3586 }
3587
3588 /**
3589 * igc_up - Open the interface and prepare it to handle traffic
3590 * @adapter: board private structure
3591 */
3592 void igc_up(struct igc_adapter *adapter)
3593 {
3594 struct igc_hw *hw = &adapter->hw;
3595 int i = 0;
3596
3597 /* hardware has been reset, we need to reload some things */
3598 igc_configure(adapter);
3599
3600 clear_bit(__IGC_DOWN, &adapter->state);
3601
3602 for (i = 0; i < adapter->num_q_vectors; i++)
3603 napi_enable(&adapter->q_vector[i]->napi);
3604
3605 if (adapter->msix_entries)
3606 igc_configure_msix(adapter);
3607 else
3608 igc_assign_vector(adapter->q_vector[0], 0);
3609
3610 /* Clear any pending interrupts. */
3611 rd32(IGC_ICR);
3612 igc_irq_enable(adapter);
3613
3614 netif_tx_start_all_queues(adapter->netdev);
3615
3616 /* start the watchdog. */
3617 hw->mac.get_link_status = 1;
3618 schedule_work(&adapter->watchdog_task);
3619 }
3620
3621 /**
3622 * igc_update_stats - Update the board statistics counters
3623 * @adapter: board private structure
3624 */
3625 void igc_update_stats(struct igc_adapter *adapter)
3626 {
3627 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
3628 struct pci_dev *pdev = adapter->pdev;
3629 struct igc_hw *hw = &adapter->hw;
3630 u64 _bytes, _packets;
3631 u64 bytes, packets;
3632 unsigned int start;
3633 u32 mpc;
3634 int i;
3635
3636 /* Prevent stats update while adapter is being reset, or if the pci
3637 * connection is down.
3638 */
3639 if (adapter->link_speed == 0)
3640 return;
3641 if (pci_channel_offline(pdev))
3642 return;
3643
3644 packets = 0;
3645 bytes = 0;
3646
3647 rcu_read_lock();
3648 for (i = 0; i < adapter->num_rx_queues; i++) {
3649 struct igc_ring *ring = adapter->rx_ring[i];
3650 u32 rqdpc = rd32(IGC_RQDPC(i));
3651
3652 if (hw->mac.type >= igc_i225)
3653 wr32(IGC_RQDPC(i), 0);
3654
3655 if (rqdpc) {
3656 ring->rx_stats.drops += rqdpc;
3657 net_stats->rx_fifo_errors += rqdpc;
3658 }
3659
3660 do {
3661 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
3662 _bytes = ring->rx_stats.bytes;
3663 _packets = ring->rx_stats.packets;
3664 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
3665 bytes += _bytes;
3666 packets += _packets;
3667 }
3668
3669 net_stats->rx_bytes = bytes;
3670 net_stats->rx_packets = packets;
3671
3672 packets = 0;
3673 bytes = 0;
3674 for (i = 0; i < adapter->num_tx_queues; i++) {
3675 struct igc_ring *ring = adapter->tx_ring[i];
3676
3677 do {
3678 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
3679 _bytes = ring->tx_stats.bytes;
3680 _packets = ring->tx_stats.packets;
3681 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
3682 bytes += _bytes;
3683 packets += _packets;
3684 }
3685 net_stats->tx_bytes = bytes;
3686 net_stats->tx_packets = packets;
3687 rcu_read_unlock();
3688
3689 /* read stats registers */
3690 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
3691 adapter->stats.gprc += rd32(IGC_GPRC);
3692 adapter->stats.gorc += rd32(IGC_GORCL);
3693 rd32(IGC_GORCH); /* clear GORCL */
3694 adapter->stats.bprc += rd32(IGC_BPRC);
3695 adapter->stats.mprc += rd32(IGC_MPRC);
3696 adapter->stats.roc += rd32(IGC_ROC);
3697
3698 adapter->stats.prc64 += rd32(IGC_PRC64);
3699 adapter->stats.prc127 += rd32(IGC_PRC127);
3700 adapter->stats.prc255 += rd32(IGC_PRC255);
3701 adapter->stats.prc511 += rd32(IGC_PRC511);
3702 adapter->stats.prc1023 += rd32(IGC_PRC1023);
3703 adapter->stats.prc1522 += rd32(IGC_PRC1522);
3704
3705 mpc = rd32(IGC_MPC);
3706 adapter->stats.mpc += mpc;
3707 net_stats->rx_fifo_errors += mpc;
3708 adapter->stats.scc += rd32(IGC_SCC);
3709 adapter->stats.ecol += rd32(IGC_ECOL);
3710 adapter->stats.mcc += rd32(IGC_MCC);
3711 adapter->stats.latecol += rd32(IGC_LATECOL);
3712 adapter->stats.dc += rd32(IGC_DC);
3713 adapter->stats.rlec += rd32(IGC_RLEC);
3714 adapter->stats.xonrxc += rd32(IGC_XONRXC);
3715 adapter->stats.xontxc += rd32(IGC_XONTXC);
3716 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
3717 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
3718 adapter->stats.fcruc += rd32(IGC_FCRUC);
3719 adapter->stats.gptc += rd32(IGC_GPTC);
3720 adapter->stats.gotc += rd32(IGC_GOTCL);
3721 rd32(IGC_GOTCH); /* clear GOTCL */
3722 adapter->stats.rnbc += rd32(IGC_RNBC);
3723 adapter->stats.ruc += rd32(IGC_RUC);
3724 adapter->stats.rfc += rd32(IGC_RFC);
3725 adapter->stats.rjc += rd32(IGC_RJC);
3726 adapter->stats.tor += rd32(IGC_TORH);
3727 adapter->stats.tot += rd32(IGC_TOTH);
3728 adapter->stats.tpr += rd32(IGC_TPR);
3729
3730 adapter->stats.ptc64 += rd32(IGC_PTC64);
3731 adapter->stats.ptc127 += rd32(IGC_PTC127);
3732 adapter->stats.ptc255 += rd32(IGC_PTC255);
3733 adapter->stats.ptc511 += rd32(IGC_PTC511);
3734 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
3735 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
3736
3737 adapter->stats.mptc += rd32(IGC_MPTC);
3738 adapter->stats.bptc += rd32(IGC_BPTC);
3739
3740 adapter->stats.tpt += rd32(IGC_TPT);
3741 adapter->stats.colc += rd32(IGC_COLC);
3742 adapter->stats.colc += rd32(IGC_RERC);
3743
3744 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
3745
3746 adapter->stats.tsctc += rd32(IGC_TSCTC);
3747 adapter->stats.tsctfc += rd32(IGC_TSCTFC);
3748
3749 adapter->stats.iac += rd32(IGC_IAC);
3750 adapter->stats.icrxoc += rd32(IGC_ICRXOC);
3751 adapter->stats.icrxptc += rd32(IGC_ICRXPTC);
3752 adapter->stats.icrxatc += rd32(IGC_ICRXATC);
3753 adapter->stats.ictxptc += rd32(IGC_ICTXPTC);
3754 adapter->stats.ictxatc += rd32(IGC_ICTXATC);
3755 adapter->stats.ictxqec += rd32(IGC_ICTXQEC);
3756 adapter->stats.ictxqmtc += rd32(IGC_ICTXQMTC);
3757 adapter->stats.icrxdmtc += rd32(IGC_ICRXDMTC);
3758
3759 /* Fill out the OS statistics structure */
3760 net_stats->multicast = adapter->stats.mprc;
3761 net_stats->collisions = adapter->stats.colc;
3762
3763 /* Rx Errors */
3764
3765 /* RLEC on some newer hardware can be incorrect so build
3766 * our own version based on RUC and ROC
3767 */
3768 net_stats->rx_errors = adapter->stats.rxerrc +
3769 adapter->stats.crcerrs + adapter->stats.algnerrc +
3770 adapter->stats.ruc + adapter->stats.roc +
3771 adapter->stats.cexterr;
3772 net_stats->rx_length_errors = adapter->stats.ruc +
3773 adapter->stats.roc;
3774 net_stats->rx_crc_errors = adapter->stats.crcerrs;
3775 net_stats->rx_frame_errors = adapter->stats.algnerrc;
3776 net_stats->rx_missed_errors = adapter->stats.mpc;
3777
3778 /* Tx Errors */
3779 net_stats->tx_errors = adapter->stats.ecol +
3780 adapter->stats.latecol;
3781 net_stats->tx_aborted_errors = adapter->stats.ecol;
3782 net_stats->tx_window_errors = adapter->stats.latecol;
3783 net_stats->tx_carrier_errors = adapter->stats.tncrs;
3784
3785 /* Tx Dropped needs to be maintained elsewhere */
3786
3787 /* Management Stats */
3788 adapter->stats.mgptc += rd32(IGC_MGTPTC);
3789 adapter->stats.mgprc += rd32(IGC_MGTPRC);
3790 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
3791 }
3792
3793 /**
3794 * igc_down - Close the interface
3795 * @adapter: board private structure
3796 */
3797 void igc_down(struct igc_adapter *adapter)
3798 {
3799 struct net_device *netdev = adapter->netdev;
3800 struct igc_hw *hw = &adapter->hw;
3801 u32 tctl, rctl;
3802 int i = 0;
3803
3804 set_bit(__IGC_DOWN, &adapter->state);
3805
3806 /* disable receives in the hardware */
3807 rctl = rd32(IGC_RCTL);
3808 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
3809 /* flush and sleep below */
3810
3811 /* set trans_start so we don't get spurious watchdogs during reset */
3812 netif_trans_update(netdev);
3813
3814 netif_carrier_off(netdev);
3815 netif_tx_stop_all_queues(netdev);
3816
3817 /* disable transmits in the hardware */
3818 tctl = rd32(IGC_TCTL);
3819 tctl &= ~IGC_TCTL_EN;
3820 wr32(IGC_TCTL, tctl);
3821 /* flush both disables and wait for them to finish */
3822 wrfl();
3823 usleep_range(10000, 20000);
3824
3825 igc_irq_disable(adapter);
3826
3827 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
3828
3829 for (i = 0; i < adapter->num_q_vectors; i++) {
3830 if (adapter->q_vector[i]) {
3831 napi_synchronize(&adapter->q_vector[i]->napi);
3832 napi_disable(&adapter->q_vector[i]->napi);
3833 }
3834 }
3835
3836 del_timer_sync(&adapter->watchdog_timer);
3837 del_timer_sync(&adapter->phy_info_timer);
3838
3839 /* record the stats before reset*/
3840 spin_lock(&adapter->stats64_lock);
3841 igc_update_stats(adapter);
3842 spin_unlock(&adapter->stats64_lock);
3843
3844 adapter->link_speed = 0;
3845 adapter->link_duplex = 0;
3846
3847 if (!pci_channel_offline(adapter->pdev))
3848 igc_reset(adapter);
3849
3850 /* clear VLAN promisc flag so VFTA will be updated if necessary */
3851 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
3852
3853 igc_clean_all_tx_rings(adapter);
3854 igc_clean_all_rx_rings(adapter);
3855 }
3856
3857 void igc_reinit_locked(struct igc_adapter *adapter)
3858 {
3859 WARN_ON(in_interrupt());
3860 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3861 usleep_range(1000, 2000);
3862 igc_down(adapter);
3863 igc_up(adapter);
3864 clear_bit(__IGC_RESETTING, &adapter->state);
3865 }
3866
3867 static void igc_reset_task(struct work_struct *work)
3868 {
3869 struct igc_adapter *adapter;
3870
3871 adapter = container_of(work, struct igc_adapter, reset_task);
3872
3873 igc_rings_dump(adapter);
3874 igc_regs_dump(adapter);
3875 netdev_err(adapter->netdev, "Reset adapter\n");
3876 igc_reinit_locked(adapter);
3877 }
3878
3879 /**
3880 * igc_change_mtu - Change the Maximum Transfer Unit
3881 * @netdev: network interface device structure
3882 * @new_mtu: new value for maximum frame size
3883 *
3884 * Returns 0 on success, negative on failure
3885 */
3886 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
3887 {
3888 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
3889 struct igc_adapter *adapter = netdev_priv(netdev);
3890
3891 /* adjust max frame to be at least the size of a standard frame */
3892 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
3893 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
3894
3895 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3896 usleep_range(1000, 2000);
3897
3898 /* igc_down has a dependency on max_frame_size */
3899 adapter->max_frame_size = max_frame;
3900
3901 if (netif_running(netdev))
3902 igc_down(adapter);
3903
3904 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
3905 netdev->mtu = new_mtu;
3906
3907 if (netif_running(netdev))
3908 igc_up(adapter);
3909 else
3910 igc_reset(adapter);
3911
3912 clear_bit(__IGC_RESETTING, &adapter->state);
3913
3914 return 0;
3915 }
3916
3917 /**
3918 * igc_get_stats - Get System Network Statistics
3919 * @netdev: network interface device structure
3920 *
3921 * Returns the address of the device statistics structure.
3922 * The statistics are updated here and also from the timer callback.
3923 */
3924 static struct net_device_stats *igc_get_stats(struct net_device *netdev)
3925 {
3926 struct igc_adapter *adapter = netdev_priv(netdev);
3927
3928 if (!test_bit(__IGC_RESETTING, &adapter->state))
3929 igc_update_stats(adapter);
3930
3931 /* only return the current stats */
3932 return &netdev->stats;
3933 }
3934
3935 static netdev_features_t igc_fix_features(struct net_device *netdev,
3936 netdev_features_t features)
3937 {
3938 /* Since there is no support for separate Rx/Tx vlan accel
3939 * enable/disable make sure Tx flag is always in same state as Rx.
3940 */
3941 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3942 features |= NETIF_F_HW_VLAN_CTAG_TX;
3943 else
3944 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
3945
3946 return features;
3947 }
3948
3949 static int igc_set_features(struct net_device *netdev,
3950 netdev_features_t features)
3951 {
3952 netdev_features_t changed = netdev->features ^ features;
3953 struct igc_adapter *adapter = netdev_priv(netdev);
3954
3955 /* Add VLAN support */
3956 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
3957 return 0;
3958
3959 if (!(features & NETIF_F_NTUPLE))
3960 igc_flush_nfc_rules(adapter);
3961
3962 netdev->features = features;
3963
3964 if (netif_running(netdev))
3965 igc_reinit_locked(adapter);
3966 else
3967 igc_reset(adapter);
3968
3969 return 1;
3970 }
3971
3972 static netdev_features_t
3973 igc_features_check(struct sk_buff *skb, struct net_device *dev,
3974 netdev_features_t features)
3975 {
3976 unsigned int network_hdr_len, mac_hdr_len;
3977
3978 /* Make certain the headers can be described by a context descriptor */
3979 mac_hdr_len = skb_network_header(skb) - skb->data;
3980 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
3981 return features & ~(NETIF_F_HW_CSUM |
3982 NETIF_F_SCTP_CRC |
3983 NETIF_F_HW_VLAN_CTAG_TX |
3984 NETIF_F_TSO |
3985 NETIF_F_TSO6);
3986
3987 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
3988 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
3989 return features & ~(NETIF_F_HW_CSUM |
3990 NETIF_F_SCTP_CRC |
3991 NETIF_F_TSO |
3992 NETIF_F_TSO6);
3993
3994 /* We can only support IPv4 TSO in tunnels if we can mangle the
3995 * inner IP ID field, so strip TSO if MANGLEID is not supported.
3996 */
3997 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
3998 features &= ~NETIF_F_TSO;
3999
4000 return features;
4001 }
4002
4003 static void igc_tsync_interrupt(struct igc_adapter *adapter)
4004 {
4005 struct igc_hw *hw = &adapter->hw;
4006 u32 tsicr = rd32(IGC_TSICR);
4007 u32 ack = 0;
4008
4009 if (tsicr & IGC_TSICR_TXTS) {
4010 /* retrieve hardware timestamp */
4011 schedule_work(&adapter->ptp_tx_work);
4012 ack |= IGC_TSICR_TXTS;
4013 }
4014
4015 /* acknowledge the interrupts */
4016 wr32(IGC_TSICR, ack);
4017 }
4018
4019 /**
4020 * igc_msix_other - msix other interrupt handler
4021 * @irq: interrupt number
4022 * @data: pointer to a q_vector
4023 */
4024 static irqreturn_t igc_msix_other(int irq, void *data)
4025 {
4026 struct igc_adapter *adapter = data;
4027 struct igc_hw *hw = &adapter->hw;
4028 u32 icr = rd32(IGC_ICR);
4029
4030 /* reading ICR causes bit 31 of EICR to be cleared */
4031 if (icr & IGC_ICR_DRSTA)
4032 schedule_work(&adapter->reset_task);
4033
4034 if (icr & IGC_ICR_DOUTSYNC) {
4035 /* HW is reporting DMA is out of sync */
4036 adapter->stats.doosync++;
4037 }
4038
4039 if (icr & IGC_ICR_LSC) {
4040 hw->mac.get_link_status = 1;
4041 /* guard against interrupt when we're going down */
4042 if (!test_bit(__IGC_DOWN, &adapter->state))
4043 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4044 }
4045
4046 if (icr & IGC_ICR_TS)
4047 igc_tsync_interrupt(adapter);
4048
4049 wr32(IGC_EIMS, adapter->eims_other);
4050
4051 return IRQ_HANDLED;
4052 }
4053
4054 static void igc_write_itr(struct igc_q_vector *q_vector)
4055 {
4056 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4057
4058 if (!q_vector->set_itr)
4059 return;
4060
4061 if (!itr_val)
4062 itr_val = IGC_ITR_VAL_MASK;
4063
4064 itr_val |= IGC_EITR_CNT_IGNR;
4065
4066 writel(itr_val, q_vector->itr_register);
4067 q_vector->set_itr = 0;
4068 }
4069
4070 static irqreturn_t igc_msix_ring(int irq, void *data)
4071 {
4072 struct igc_q_vector *q_vector = data;
4073
4074 /* Write the ITR value calculated from the previous interrupt. */
4075 igc_write_itr(q_vector);
4076
4077 napi_schedule(&q_vector->napi);
4078
4079 return IRQ_HANDLED;
4080 }
4081
4082 /**
4083 * igc_request_msix - Initialize MSI-X interrupts
4084 * @adapter: Pointer to adapter structure
4085 *
4086 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4087 * kernel.
4088 */
4089 static int igc_request_msix(struct igc_adapter *adapter)
4090 {
4091 int i = 0, err = 0, vector = 0, free_vector = 0;
4092 struct net_device *netdev = adapter->netdev;
4093
4094 err = request_irq(adapter->msix_entries[vector].vector,
4095 &igc_msix_other, 0, netdev->name, adapter);
4096 if (err)
4097 goto err_out;
4098
4099 for (i = 0; i < adapter->num_q_vectors; i++) {
4100 struct igc_q_vector *q_vector = adapter->q_vector[i];
4101
4102 vector++;
4103
4104 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4105
4106 if (q_vector->rx.ring && q_vector->tx.ring)
4107 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4108 q_vector->rx.ring->queue_index);
4109 else if (q_vector->tx.ring)
4110 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4111 q_vector->tx.ring->queue_index);
4112 else if (q_vector->rx.ring)
4113 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4114 q_vector->rx.ring->queue_index);
4115 else
4116 sprintf(q_vector->name, "%s-unused", netdev->name);
4117
4118 err = request_irq(adapter->msix_entries[vector].vector,
4119 igc_msix_ring, 0, q_vector->name,
4120 q_vector);
4121 if (err)
4122 goto err_free;
4123 }
4124
4125 igc_configure_msix(adapter);
4126 return 0;
4127
4128 err_free:
4129 /* free already assigned IRQs */
4130 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4131
4132 vector--;
4133 for (i = 0; i < vector; i++) {
4134 free_irq(adapter->msix_entries[free_vector++].vector,
4135 adapter->q_vector[i]);
4136 }
4137 err_out:
4138 return err;
4139 }
4140
4141 /**
4142 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4143 * @adapter: Pointer to adapter structure
4144 *
4145 * This function resets the device so that it has 0 rx queues, tx queues, and
4146 * MSI-X interrupts allocated.
4147 */
4148 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4149 {
4150 igc_free_q_vectors(adapter);
4151 igc_reset_interrupt_capability(adapter);
4152 }
4153
4154 /* Need to wait a few seconds after link up to get diagnostic information from
4155 * the phy
4156 */
4157 static void igc_update_phy_info(struct timer_list *t)
4158 {
4159 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4160
4161 igc_get_phy_info(&adapter->hw);
4162 }
4163
4164 /**
4165 * igc_has_link - check shared code for link and determine up/down
4166 * @adapter: pointer to driver private info
4167 */
4168 bool igc_has_link(struct igc_adapter *adapter)
4169 {
4170 struct igc_hw *hw = &adapter->hw;
4171 bool link_active = false;
4172
4173 /* get_link_status is set on LSC (link status) interrupt or
4174 * rx sequence error interrupt. get_link_status will stay
4175 * false until the igc_check_for_link establishes link
4176 * for copper adapters ONLY
4177 */
4178 switch (hw->phy.media_type) {
4179 case igc_media_type_copper:
4180 if (!hw->mac.get_link_status)
4181 return true;
4182 hw->mac.ops.check_for_link(hw);
4183 link_active = !hw->mac.get_link_status;
4184 break;
4185 default:
4186 case igc_media_type_unknown:
4187 break;
4188 }
4189
4190 if (hw->mac.type == igc_i225 &&
4191 hw->phy.id == I225_I_PHY_ID) {
4192 if (!netif_carrier_ok(adapter->netdev)) {
4193 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4194 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4195 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4196 adapter->link_check_timeout = jiffies;
4197 }
4198 }
4199
4200 return link_active;
4201 }
4202
4203 /**
4204 * igc_watchdog - Timer Call-back
4205 * @t: timer for the watchdog
4206 */
4207 static void igc_watchdog(struct timer_list *t)
4208 {
4209 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4210 /* Do the rest outside of interrupt context */
4211 schedule_work(&adapter->watchdog_task);
4212 }
4213
4214 static void igc_watchdog_task(struct work_struct *work)
4215 {
4216 struct igc_adapter *adapter = container_of(work,
4217 struct igc_adapter,
4218 watchdog_task);
4219 struct net_device *netdev = adapter->netdev;
4220 struct igc_hw *hw = &adapter->hw;
4221 struct igc_phy_info *phy = &hw->phy;
4222 u16 phy_data, retry_count = 20;
4223 u32 link;
4224 int i;
4225
4226 link = igc_has_link(adapter);
4227
4228 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4229 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4230 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4231 else
4232 link = false;
4233 }
4234
4235 if (link) {
4236 /* Cancel scheduled suspend requests. */
4237 pm_runtime_resume(netdev->dev.parent);
4238
4239 if (!netif_carrier_ok(netdev)) {
4240 u32 ctrl;
4241
4242 hw->mac.ops.get_speed_and_duplex(hw,
4243 &adapter->link_speed,
4244 &adapter->link_duplex);
4245
4246 ctrl = rd32(IGC_CTRL);
4247 /* Link status message must follow this format */
4248 netdev_info(netdev,
4249 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4250 adapter->link_speed,
4251 adapter->link_duplex == FULL_DUPLEX ?
4252 "Full" : "Half",
4253 (ctrl & IGC_CTRL_TFCE) &&
4254 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4255 (ctrl & IGC_CTRL_RFCE) ? "RX" :
4256 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
4257
4258 /* check if SmartSpeed worked */
4259 igc_check_downshift(hw);
4260 if (phy->speed_downgraded)
4261 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4262
4263 /* adjust timeout factor according to speed/duplex */
4264 adapter->tx_timeout_factor = 1;
4265 switch (adapter->link_speed) {
4266 case SPEED_10:
4267 adapter->tx_timeout_factor = 14;
4268 break;
4269 case SPEED_100:
4270 /* maybe add some timeout factor ? */
4271 break;
4272 }
4273
4274 if (adapter->link_speed != SPEED_1000)
4275 goto no_wait;
4276
4277 /* wait for Remote receiver status OK */
4278 retry_read_status:
4279 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
4280 &phy_data)) {
4281 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4282 retry_count) {
4283 msleep(100);
4284 retry_count--;
4285 goto retry_read_status;
4286 } else if (!retry_count) {
4287 netdev_err(netdev, "exceed max 2 second\n");
4288 }
4289 } else {
4290 netdev_err(netdev, "read 1000Base-T Status Reg\n");
4291 }
4292 no_wait:
4293 netif_carrier_on(netdev);
4294
4295 /* link state has changed, schedule phy info update */
4296 if (!test_bit(__IGC_DOWN, &adapter->state))
4297 mod_timer(&adapter->phy_info_timer,
4298 round_jiffies(jiffies + 2 * HZ));
4299 }
4300 } else {
4301 if (netif_carrier_ok(netdev)) {
4302 adapter->link_speed = 0;
4303 adapter->link_duplex = 0;
4304
4305 /* Links status message must follow this format */
4306 netdev_info(netdev, "NIC Link is Down\n");
4307 netif_carrier_off(netdev);
4308
4309 /* link state has changed, schedule phy info update */
4310 if (!test_bit(__IGC_DOWN, &adapter->state))
4311 mod_timer(&adapter->phy_info_timer,
4312 round_jiffies(jiffies + 2 * HZ));
4313
4314 /* link is down, time to check for alternate media */
4315 if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
4316 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4317 schedule_work(&adapter->reset_task);
4318 /* return immediately */
4319 return;
4320 }
4321 }
4322 pm_schedule_suspend(netdev->dev.parent,
4323 MSEC_PER_SEC * 5);
4324
4325 /* also check for alternate media here */
4326 } else if (!netif_carrier_ok(netdev) &&
4327 (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
4328 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4329 schedule_work(&adapter->reset_task);
4330 /* return immediately */
4331 return;
4332 }
4333 }
4334 }
4335
4336 spin_lock(&adapter->stats64_lock);
4337 igc_update_stats(adapter);
4338 spin_unlock(&adapter->stats64_lock);
4339
4340 for (i = 0; i < adapter->num_tx_queues; i++) {
4341 struct igc_ring *tx_ring = adapter->tx_ring[i];
4342
4343 if (!netif_carrier_ok(netdev)) {
4344 /* We've lost link, so the controller stops DMA,
4345 * but we've got queued Tx work that's never going
4346 * to get done, so reset controller to flush Tx.
4347 * (Do the reset outside of interrupt context).
4348 */
4349 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
4350 adapter->tx_timeout_count++;
4351 schedule_work(&adapter->reset_task);
4352 /* return immediately since reset is imminent */
4353 return;
4354 }
4355 }
4356
4357 /* Force detection of hung controller every watchdog period */
4358 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4359 }
4360
4361 /* Cause software interrupt to ensure Rx ring is cleaned */
4362 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4363 u32 eics = 0;
4364
4365 for (i = 0; i < adapter->num_q_vectors; i++)
4366 eics |= adapter->q_vector[i]->eims_value;
4367 wr32(IGC_EICS, eics);
4368 } else {
4369 wr32(IGC_ICS, IGC_ICS_RXDMT0);
4370 }
4371
4372 igc_ptp_tx_hang(adapter);
4373
4374 /* Reset the timer */
4375 if (!test_bit(__IGC_DOWN, &adapter->state)) {
4376 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
4377 mod_timer(&adapter->watchdog_timer,
4378 round_jiffies(jiffies + HZ));
4379 else
4380 mod_timer(&adapter->watchdog_timer,
4381 round_jiffies(jiffies + 2 * HZ));
4382 }
4383 }
4384
4385 /**
4386 * igc_intr_msi - Interrupt Handler
4387 * @irq: interrupt number
4388 * @data: pointer to a network interface device structure
4389 */
4390 static irqreturn_t igc_intr_msi(int irq, void *data)
4391 {
4392 struct igc_adapter *adapter = data;
4393 struct igc_q_vector *q_vector = adapter->q_vector[0];
4394 struct igc_hw *hw = &adapter->hw;
4395 /* read ICR disables interrupts using IAM */
4396 u32 icr = rd32(IGC_ICR);
4397
4398 igc_write_itr(q_vector);
4399
4400 if (icr & IGC_ICR_DRSTA)
4401 schedule_work(&adapter->reset_task);
4402
4403 if (icr & IGC_ICR_DOUTSYNC) {
4404 /* HW is reporting DMA is out of sync */
4405 adapter->stats.doosync++;
4406 }
4407
4408 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4409 hw->mac.get_link_status = 1;
4410 if (!test_bit(__IGC_DOWN, &adapter->state))
4411 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4412 }
4413
4414 napi_schedule(&q_vector->napi);
4415
4416 return IRQ_HANDLED;
4417 }
4418
4419 /**
4420 * igc_intr - Legacy Interrupt Handler
4421 * @irq: interrupt number
4422 * @data: pointer to a network interface device structure
4423 */
4424 static irqreturn_t igc_intr(int irq, void *data)
4425 {
4426 struct igc_adapter *adapter = data;
4427 struct igc_q_vector *q_vector = adapter->q_vector[0];
4428 struct igc_hw *hw = &adapter->hw;
4429 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4430 * need for the IMC write
4431 */
4432 u32 icr = rd32(IGC_ICR);
4433
4434 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4435 * not set, then the adapter didn't send an interrupt
4436 */
4437 if (!(icr & IGC_ICR_INT_ASSERTED))
4438 return IRQ_NONE;
4439
4440 igc_write_itr(q_vector);
4441
4442 if (icr & IGC_ICR_DRSTA)
4443 schedule_work(&adapter->reset_task);
4444
4445 if (icr & IGC_ICR_DOUTSYNC) {
4446 /* HW is reporting DMA is out of sync */
4447 adapter->stats.doosync++;
4448 }
4449
4450 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4451 hw->mac.get_link_status = 1;
4452 /* guard against interrupt when we're going down */
4453 if (!test_bit(__IGC_DOWN, &adapter->state))
4454 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4455 }
4456
4457 napi_schedule(&q_vector->napi);
4458
4459 return IRQ_HANDLED;
4460 }
4461
4462 static void igc_free_irq(struct igc_adapter *adapter)
4463 {
4464 if (adapter->msix_entries) {
4465 int vector = 0, i;
4466
4467 free_irq(adapter->msix_entries[vector++].vector, adapter);
4468
4469 for (i = 0; i < adapter->num_q_vectors; i++)
4470 free_irq(adapter->msix_entries[vector++].vector,
4471 adapter->q_vector[i]);
4472 } else {
4473 free_irq(adapter->pdev->irq, adapter);
4474 }
4475 }
4476
4477 /**
4478 * igc_request_irq - initialize interrupts
4479 * @adapter: Pointer to adapter structure
4480 *
4481 * Attempts to configure interrupts using the best available
4482 * capabilities of the hardware and kernel.
4483 */
4484 static int igc_request_irq(struct igc_adapter *adapter)
4485 {
4486 struct net_device *netdev = adapter->netdev;
4487 struct pci_dev *pdev = adapter->pdev;
4488 int err = 0;
4489
4490 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4491 err = igc_request_msix(adapter);
4492 if (!err)
4493 goto request_done;
4494 /* fall back to MSI */
4495 igc_free_all_tx_resources(adapter);
4496 igc_free_all_rx_resources(adapter);
4497
4498 igc_clear_interrupt_scheme(adapter);
4499 err = igc_init_interrupt_scheme(adapter, false);
4500 if (err)
4501 goto request_done;
4502 igc_setup_all_tx_resources(adapter);
4503 igc_setup_all_rx_resources(adapter);
4504 igc_configure(adapter);
4505 }
4506
4507 igc_assign_vector(adapter->q_vector[0], 0);
4508
4509 if (adapter->flags & IGC_FLAG_HAS_MSI) {
4510 err = request_irq(pdev->irq, &igc_intr_msi, 0,
4511 netdev->name, adapter);
4512 if (!err)
4513 goto request_done;
4514
4515 /* fall back to legacy interrupts */
4516 igc_reset_interrupt_capability(adapter);
4517 adapter->flags &= ~IGC_FLAG_HAS_MSI;
4518 }
4519
4520 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
4521 netdev->name, adapter);
4522
4523 if (err)
4524 netdev_err(netdev, "Error %d getting interrupt\n", err);
4525
4526 request_done:
4527 return err;
4528 }
4529
4530 /**
4531 * __igc_open - Called when a network interface is made active
4532 * @netdev: network interface device structure
4533 * @resuming: boolean indicating if the device is resuming
4534 *
4535 * Returns 0 on success, negative value on failure
4536 *
4537 * The open entry point is called when a network interface is made
4538 * active by the system (IFF_UP). At this point all resources needed
4539 * for transmit and receive operations are allocated, the interrupt
4540 * handler is registered with the OS, the watchdog timer is started,
4541 * and the stack is notified that the interface is ready.
4542 */
4543 static int __igc_open(struct net_device *netdev, bool resuming)
4544 {
4545 struct igc_adapter *adapter = netdev_priv(netdev);
4546 struct pci_dev *pdev = adapter->pdev;
4547 struct igc_hw *hw = &adapter->hw;
4548 int err = 0;
4549 int i = 0;
4550
4551 /* disallow open during test */
4552
4553 if (test_bit(__IGC_TESTING, &adapter->state)) {
4554 WARN_ON(resuming);
4555 return -EBUSY;
4556 }
4557
4558 if (!resuming)
4559 pm_runtime_get_sync(&pdev->dev);
4560
4561 netif_carrier_off(netdev);
4562
4563 /* allocate transmit descriptors */
4564 err = igc_setup_all_tx_resources(adapter);
4565 if (err)
4566 goto err_setup_tx;
4567
4568 /* allocate receive descriptors */
4569 err = igc_setup_all_rx_resources(adapter);
4570 if (err)
4571 goto err_setup_rx;
4572
4573 igc_power_up_link(adapter);
4574
4575 igc_configure(adapter);
4576
4577 err = igc_request_irq(adapter);
4578 if (err)
4579 goto err_req_irq;
4580
4581 /* Notify the stack of the actual queue counts. */
4582 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
4583 if (err)
4584 goto err_set_queues;
4585
4586 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
4587 if (err)
4588 goto err_set_queues;
4589
4590 clear_bit(__IGC_DOWN, &adapter->state);
4591
4592 for (i = 0; i < adapter->num_q_vectors; i++)
4593 napi_enable(&adapter->q_vector[i]->napi);
4594
4595 /* Clear any pending interrupts. */
4596 rd32(IGC_ICR);
4597 igc_irq_enable(adapter);
4598
4599 if (!resuming)
4600 pm_runtime_put(&pdev->dev);
4601
4602 netif_tx_start_all_queues(netdev);
4603
4604 /* start the watchdog. */
4605 hw->mac.get_link_status = 1;
4606 schedule_work(&adapter->watchdog_task);
4607
4608 return IGC_SUCCESS;
4609
4610 err_set_queues:
4611 igc_free_irq(adapter);
4612 err_req_irq:
4613 igc_release_hw_control(adapter);
4614 igc_power_down_link(adapter);
4615 igc_free_all_rx_resources(adapter);
4616 err_setup_rx:
4617 igc_free_all_tx_resources(adapter);
4618 err_setup_tx:
4619 igc_reset(adapter);
4620 if (!resuming)
4621 pm_runtime_put(&pdev->dev);
4622
4623 return err;
4624 }
4625
4626 int igc_open(struct net_device *netdev)
4627 {
4628 return __igc_open(netdev, false);
4629 }
4630
4631 /**
4632 * __igc_close - Disables a network interface
4633 * @netdev: network interface device structure
4634 * @suspending: boolean indicating the device is suspending
4635 *
4636 * Returns 0, this is not allowed to fail
4637 *
4638 * The close entry point is called when an interface is de-activated
4639 * by the OS. The hardware is still under the driver's control, but
4640 * needs to be disabled. A global MAC reset is issued to stop the
4641 * hardware, and all transmit and receive resources are freed.
4642 */
4643 static int __igc_close(struct net_device *netdev, bool suspending)
4644 {
4645 struct igc_adapter *adapter = netdev_priv(netdev);
4646 struct pci_dev *pdev = adapter->pdev;
4647
4648 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
4649
4650 if (!suspending)
4651 pm_runtime_get_sync(&pdev->dev);
4652
4653 igc_down(adapter);
4654
4655 igc_release_hw_control(adapter);
4656
4657 igc_free_irq(adapter);
4658
4659 igc_free_all_tx_resources(adapter);
4660 igc_free_all_rx_resources(adapter);
4661
4662 if (!suspending)
4663 pm_runtime_put_sync(&pdev->dev);
4664
4665 return 0;
4666 }
4667
4668 int igc_close(struct net_device *netdev)
4669 {
4670 if (netif_device_present(netdev) || netdev->dismantle)
4671 return __igc_close(netdev, false);
4672 return 0;
4673 }
4674
4675 /**
4676 * igc_ioctl - Access the hwtstamp interface
4677 * @netdev: network interface device structure
4678 * @ifreq: interface request data
4679 * @cmd: ioctl command
4680 **/
4681 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4682 {
4683 switch (cmd) {
4684 case SIOCGHWTSTAMP:
4685 return igc_ptp_get_ts_config(netdev, ifr);
4686 case SIOCSHWTSTAMP:
4687 return igc_ptp_set_ts_config(netdev, ifr);
4688 default:
4689 return -EOPNOTSUPP;
4690 }
4691 }
4692
4693 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
4694 bool enable)
4695 {
4696 struct igc_ring *ring;
4697 int i;
4698
4699 if (queue < 0 || queue >= adapter->num_tx_queues)
4700 return -EINVAL;
4701
4702 ring = adapter->tx_ring[queue];
4703 ring->launchtime_enable = enable;
4704
4705 if (adapter->base_time)
4706 return 0;
4707
4708 adapter->cycle_time = NSEC_PER_SEC;
4709
4710 for (i = 0; i < adapter->num_tx_queues; i++) {
4711 ring = adapter->tx_ring[i];
4712 ring->start_time = 0;
4713 ring->end_time = NSEC_PER_SEC;
4714 }
4715
4716 return 0;
4717 }
4718
4719 static bool validate_schedule(const struct tc_taprio_qopt_offload *qopt)
4720 {
4721 int queue_uses[IGC_MAX_TX_QUEUES] = { };
4722 size_t n;
4723
4724 if (qopt->cycle_time_extension)
4725 return false;
4726
4727 for (n = 0; n < qopt->num_entries; n++) {
4728 const struct tc_taprio_sched_entry *e;
4729 int i;
4730
4731 e = &qopt->entries[n];
4732
4733 /* i225 only supports "global" frame preemption
4734 * settings.
4735 */
4736 if (e->command != TC_TAPRIO_CMD_SET_GATES)
4737 return false;
4738
4739 for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
4740 if (e->gate_mask & BIT(i))
4741 queue_uses[i]++;
4742
4743 if (queue_uses[i] > 1)
4744 return false;
4745 }
4746 }
4747
4748 return true;
4749 }
4750
4751 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
4752 struct tc_etf_qopt_offload *qopt)
4753 {
4754 struct igc_hw *hw = &adapter->hw;
4755 int err;
4756
4757 if (hw->mac.type != igc_i225)
4758 return -EOPNOTSUPP;
4759
4760 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
4761 if (err)
4762 return err;
4763
4764 return igc_tsn_offload_apply(adapter);
4765 }
4766
4767 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
4768 struct tc_taprio_qopt_offload *qopt)
4769 {
4770 u32 start_time = 0, end_time = 0;
4771 size_t n;
4772
4773 if (!qopt->enable) {
4774 adapter->base_time = 0;
4775 return 0;
4776 }
4777
4778 if (adapter->base_time)
4779 return -EALREADY;
4780
4781 if (!validate_schedule(qopt))
4782 return -EINVAL;
4783
4784 adapter->cycle_time = qopt->cycle_time;
4785 adapter->base_time = qopt->base_time;
4786
4787 /* FIXME: be a little smarter about cases when the gate for a
4788 * queue stays open for more than one entry.
4789 */
4790 for (n = 0; n < qopt->num_entries; n++) {
4791 struct tc_taprio_sched_entry *e = &qopt->entries[n];
4792 int i;
4793
4794 end_time += e->interval;
4795
4796 for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
4797 struct igc_ring *ring = adapter->tx_ring[i];
4798
4799 if (!(e->gate_mask & BIT(i)))
4800 continue;
4801
4802 ring->start_time = start_time;
4803 ring->end_time = end_time;
4804 }
4805
4806 start_time += e->interval;
4807 }
4808
4809 return 0;
4810 }
4811
4812 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
4813 struct tc_taprio_qopt_offload *qopt)
4814 {
4815 struct igc_hw *hw = &adapter->hw;
4816 int err;
4817
4818 if (hw->mac.type != igc_i225)
4819 return -EOPNOTSUPP;
4820
4821 err = igc_save_qbv_schedule(adapter, qopt);
4822 if (err)
4823 return err;
4824
4825 return igc_tsn_offload_apply(adapter);
4826 }
4827
4828 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
4829 void *type_data)
4830 {
4831 struct igc_adapter *adapter = netdev_priv(dev);
4832
4833 switch (type) {
4834 case TC_SETUP_QDISC_TAPRIO:
4835 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
4836
4837 case TC_SETUP_QDISC_ETF:
4838 return igc_tsn_enable_launchtime(adapter, type_data);
4839
4840 default:
4841 return -EOPNOTSUPP;
4842 }
4843 }
4844
4845 static const struct net_device_ops igc_netdev_ops = {
4846 .ndo_open = igc_open,
4847 .ndo_stop = igc_close,
4848 .ndo_start_xmit = igc_xmit_frame,
4849 .ndo_set_rx_mode = igc_set_rx_mode,
4850 .ndo_set_mac_address = igc_set_mac,
4851 .ndo_change_mtu = igc_change_mtu,
4852 .ndo_get_stats = igc_get_stats,
4853 .ndo_fix_features = igc_fix_features,
4854 .ndo_set_features = igc_set_features,
4855 .ndo_features_check = igc_features_check,
4856 .ndo_do_ioctl = igc_ioctl,
4857 .ndo_setup_tc = igc_setup_tc,
4858 };
4859
4860 /* PCIe configuration access */
4861 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4862 {
4863 struct igc_adapter *adapter = hw->back;
4864
4865 pci_read_config_word(adapter->pdev, reg, value);
4866 }
4867
4868 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4869 {
4870 struct igc_adapter *adapter = hw->back;
4871
4872 pci_write_config_word(adapter->pdev, reg, *value);
4873 }
4874
4875 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4876 {
4877 struct igc_adapter *adapter = hw->back;
4878
4879 if (!pci_is_pcie(adapter->pdev))
4880 return -IGC_ERR_CONFIG;
4881
4882 pcie_capability_read_word(adapter->pdev, reg, value);
4883
4884 return IGC_SUCCESS;
4885 }
4886
4887 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4888 {
4889 struct igc_adapter *adapter = hw->back;
4890
4891 if (!pci_is_pcie(adapter->pdev))
4892 return -IGC_ERR_CONFIG;
4893
4894 pcie_capability_write_word(adapter->pdev, reg, *value);
4895
4896 return IGC_SUCCESS;
4897 }
4898
4899 u32 igc_rd32(struct igc_hw *hw, u32 reg)
4900 {
4901 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
4902 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
4903 u32 value = 0;
4904
4905 value = readl(&hw_addr[reg]);
4906
4907 /* reads should not return all F's */
4908 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
4909 struct net_device *netdev = igc->netdev;
4910
4911 hw->hw_addr = NULL;
4912 netif_device_detach(netdev);
4913 netdev_err(netdev, "PCIe link lost, device now detached\n");
4914 WARN(pci_device_is_present(igc->pdev),
4915 "igc: Failed to read reg 0x%x!\n", reg);
4916 }
4917
4918 return value;
4919 }
4920
4921 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
4922 {
4923 struct igc_mac_info *mac = &adapter->hw.mac;
4924
4925 mac->autoneg = 0;
4926
4927 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4928 * for the switch() below to work
4929 */
4930 if ((spd & 1) || (dplx & ~1))
4931 goto err_inval;
4932
4933 switch (spd + dplx) {
4934 case SPEED_10 + DUPLEX_HALF:
4935 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4936 break;
4937 case SPEED_10 + DUPLEX_FULL:
4938 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4939 break;
4940 case SPEED_100 + DUPLEX_HALF:
4941 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4942 break;
4943 case SPEED_100 + DUPLEX_FULL:
4944 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4945 break;
4946 case SPEED_1000 + DUPLEX_FULL:
4947 mac->autoneg = 1;
4948 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4949 break;
4950 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4951 goto err_inval;
4952 case SPEED_2500 + DUPLEX_FULL:
4953 mac->autoneg = 1;
4954 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
4955 break;
4956 case SPEED_2500 + DUPLEX_HALF: /* not supported */
4957 default:
4958 goto err_inval;
4959 }
4960
4961 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4962 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4963
4964 return 0;
4965
4966 err_inval:
4967 netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
4968 return -EINVAL;
4969 }
4970
4971 /**
4972 * igc_probe - Device Initialization Routine
4973 * @pdev: PCI device information struct
4974 * @ent: entry in igc_pci_tbl
4975 *
4976 * Returns 0 on success, negative on failure
4977 *
4978 * igc_probe initializes an adapter identified by a pci_dev structure.
4979 * The OS initialization, configuring the adapter private structure,
4980 * and a hardware reset occur.
4981 */
4982 static int igc_probe(struct pci_dev *pdev,
4983 const struct pci_device_id *ent)
4984 {
4985 struct igc_adapter *adapter;
4986 struct net_device *netdev;
4987 struct igc_hw *hw;
4988 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
4989 int err, pci_using_dac;
4990
4991 err = pci_enable_device_mem(pdev);
4992 if (err)
4993 return err;
4994
4995 pci_using_dac = 0;
4996 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4997 if (!err) {
4998 pci_using_dac = 1;
4999 } else {
5000 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
5001 if (err) {
5002 dev_err(&pdev->dev,
5003 "No usable DMA configuration, aborting\n");
5004 goto err_dma;
5005 }
5006 }
5007
5008 err = pci_request_mem_regions(pdev, igc_driver_name);
5009 if (err)
5010 goto err_pci_reg;
5011
5012 pci_enable_pcie_error_reporting(pdev);
5013
5014 pci_set_master(pdev);
5015
5016 err = -ENOMEM;
5017 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5018 IGC_MAX_TX_QUEUES);
5019
5020 if (!netdev)
5021 goto err_alloc_etherdev;
5022
5023 SET_NETDEV_DEV(netdev, &pdev->dev);
5024
5025 pci_set_drvdata(pdev, netdev);
5026 adapter = netdev_priv(netdev);
5027 adapter->netdev = netdev;
5028 adapter->pdev = pdev;
5029 hw = &adapter->hw;
5030 hw->back = adapter;
5031 adapter->port_num = hw->bus.func;
5032 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5033
5034 err = pci_save_state(pdev);
5035 if (err)
5036 goto err_ioremap;
5037
5038 err = -EIO;
5039 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5040 pci_resource_len(pdev, 0));
5041 if (!adapter->io_addr)
5042 goto err_ioremap;
5043
5044 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5045 hw->hw_addr = adapter->io_addr;
5046
5047 netdev->netdev_ops = &igc_netdev_ops;
5048 igc_ethtool_set_ops(netdev);
5049 netdev->watchdog_timeo = 5 * HZ;
5050
5051 netdev->mem_start = pci_resource_start(pdev, 0);
5052 netdev->mem_end = pci_resource_end(pdev, 0);
5053
5054 /* PCI config space info */
5055 hw->vendor_id = pdev->vendor;
5056 hw->device_id = pdev->device;
5057 hw->revision_id = pdev->revision;
5058 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5059 hw->subsystem_device_id = pdev->subsystem_device;
5060
5061 /* Copy the default MAC and PHY function pointers */
5062 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5063 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5064
5065 /* Initialize skew-specific constants */
5066 err = ei->get_invariants(hw);
5067 if (err)
5068 goto err_sw_init;
5069
5070 /* Add supported features to the features list*/
5071 netdev->features |= NETIF_F_SG;
5072 netdev->features |= NETIF_F_TSO;
5073 netdev->features |= NETIF_F_TSO6;
5074 netdev->features |= NETIF_F_TSO_ECN;
5075 netdev->features |= NETIF_F_RXCSUM;
5076 netdev->features |= NETIF_F_HW_CSUM;
5077 netdev->features |= NETIF_F_SCTP_CRC;
5078 netdev->features |= NETIF_F_HW_TC;
5079
5080 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5081 NETIF_F_GSO_GRE_CSUM | \
5082 NETIF_F_GSO_IPXIP4 | \
5083 NETIF_F_GSO_IPXIP6 | \
5084 NETIF_F_GSO_UDP_TUNNEL | \
5085 NETIF_F_GSO_UDP_TUNNEL_CSUM)
5086
5087 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5088 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5089
5090 /* setup the private structure */
5091 err = igc_sw_init(adapter);
5092 if (err)
5093 goto err_sw_init;
5094
5095 /* copy netdev features into list of user selectable features */
5096 netdev->hw_features |= NETIF_F_NTUPLE;
5097 netdev->hw_features |= netdev->features;
5098
5099 if (pci_using_dac)
5100 netdev->features |= NETIF_F_HIGHDMA;
5101
5102 /* MTU range: 68 - 9216 */
5103 netdev->min_mtu = ETH_MIN_MTU;
5104 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5105
5106 /* before reading the NVM, reset the controller to put the device in a
5107 * known good starting state
5108 */
5109 hw->mac.ops.reset_hw(hw);
5110
5111 if (igc_get_flash_presence_i225(hw)) {
5112 if (hw->nvm.ops.validate(hw) < 0) {
5113 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5114 err = -EIO;
5115 goto err_eeprom;
5116 }
5117 }
5118
5119 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5120 /* copy the MAC address out of the NVM */
5121 if (hw->mac.ops.read_mac_addr(hw))
5122 dev_err(&pdev->dev, "NVM Read Error\n");
5123 }
5124
5125 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5126
5127 if (!is_valid_ether_addr(netdev->dev_addr)) {
5128 dev_err(&pdev->dev, "Invalid MAC Address\n");
5129 err = -EIO;
5130 goto err_eeprom;
5131 }
5132
5133 /* configure RXPBSIZE and TXPBSIZE */
5134 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
5135 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
5136
5137 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
5138 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
5139
5140 INIT_WORK(&adapter->reset_task, igc_reset_task);
5141 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
5142
5143 /* Initialize link properties that are user-changeable */
5144 adapter->fc_autoneg = true;
5145 hw->mac.autoneg = true;
5146 hw->phy.autoneg_advertised = 0xaf;
5147
5148 hw->fc.requested_mode = igc_fc_default;
5149 hw->fc.current_mode = igc_fc_default;
5150
5151 /* By default, support wake on port A */
5152 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
5153
5154 /* initialize the wol settings based on the eeprom settings */
5155 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
5156 adapter->wol |= IGC_WUFC_MAG;
5157
5158 device_set_wakeup_enable(&adapter->pdev->dev,
5159 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
5160
5161 /* reset the hardware with the new settings */
5162 igc_reset(adapter);
5163
5164 /* let the f/w know that the h/w is now under the control of the
5165 * driver.
5166 */
5167 igc_get_hw_control(adapter);
5168
5169 strncpy(netdev->name, "eth%d", IFNAMSIZ);
5170 err = register_netdev(netdev);
5171 if (err)
5172 goto err_register;
5173
5174 /* carrier off reporting is important to ethtool even BEFORE open */
5175 netif_carrier_off(netdev);
5176
5177 /* do hw tstamp init after resetting */
5178 igc_ptp_init(adapter);
5179
5180 /* Check if Media Autosense is enabled */
5181 adapter->ei = *ei;
5182
5183 /* print pcie link status and MAC address */
5184 pcie_print_link_status(pdev);
5185 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
5186
5187 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
5188
5189 pm_runtime_put_noidle(&pdev->dev);
5190
5191 return 0;
5192
5193 err_register:
5194 igc_release_hw_control(adapter);
5195 err_eeprom:
5196 if (!igc_check_reset_block(hw))
5197 igc_reset_phy(hw);
5198 err_sw_init:
5199 igc_clear_interrupt_scheme(adapter);
5200 iounmap(adapter->io_addr);
5201 err_ioremap:
5202 free_netdev(netdev);
5203 err_alloc_etherdev:
5204 pci_release_mem_regions(pdev);
5205 err_pci_reg:
5206 err_dma:
5207 pci_disable_device(pdev);
5208 return err;
5209 }
5210
5211 /**
5212 * igc_remove - Device Removal Routine
5213 * @pdev: PCI device information struct
5214 *
5215 * igc_remove is called by the PCI subsystem to alert the driver
5216 * that it should release a PCI device. This could be caused by a
5217 * Hot-Plug event, or because the driver is going to be removed from
5218 * memory.
5219 */
5220 static void igc_remove(struct pci_dev *pdev)
5221 {
5222 struct net_device *netdev = pci_get_drvdata(pdev);
5223 struct igc_adapter *adapter = netdev_priv(netdev);
5224
5225 pm_runtime_get_noresume(&pdev->dev);
5226
5227 igc_flush_nfc_rules(adapter);
5228
5229 igc_ptp_stop(adapter);
5230
5231 set_bit(__IGC_DOWN, &adapter->state);
5232
5233 del_timer_sync(&adapter->watchdog_timer);
5234 del_timer_sync(&adapter->phy_info_timer);
5235
5236 cancel_work_sync(&adapter->reset_task);
5237 cancel_work_sync(&adapter->watchdog_task);
5238
5239 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5240 * would have already happened in close and is redundant.
5241 */
5242 igc_release_hw_control(adapter);
5243 unregister_netdev(netdev);
5244
5245 igc_clear_interrupt_scheme(adapter);
5246 pci_iounmap(pdev, adapter->io_addr);
5247 pci_release_mem_regions(pdev);
5248
5249 free_netdev(netdev);
5250
5251 pci_disable_pcie_error_reporting(pdev);
5252
5253 pci_disable_device(pdev);
5254 }
5255
5256 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
5257 bool runtime)
5258 {
5259 struct net_device *netdev = pci_get_drvdata(pdev);
5260 struct igc_adapter *adapter = netdev_priv(netdev);
5261 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
5262 struct igc_hw *hw = &adapter->hw;
5263 u32 ctrl, rctl, status;
5264 bool wake;
5265
5266 rtnl_lock();
5267 netif_device_detach(netdev);
5268
5269 if (netif_running(netdev))
5270 __igc_close(netdev, true);
5271
5272 igc_ptp_suspend(adapter);
5273
5274 igc_clear_interrupt_scheme(adapter);
5275 rtnl_unlock();
5276
5277 status = rd32(IGC_STATUS);
5278 if (status & IGC_STATUS_LU)
5279 wufc &= ~IGC_WUFC_LNKC;
5280
5281 if (wufc) {
5282 igc_setup_rctl(adapter);
5283 igc_set_rx_mode(netdev);
5284
5285 /* turn on all-multi mode if wake on multicast is enabled */
5286 if (wufc & IGC_WUFC_MC) {
5287 rctl = rd32(IGC_RCTL);
5288 rctl |= IGC_RCTL_MPE;
5289 wr32(IGC_RCTL, rctl);
5290 }
5291
5292 ctrl = rd32(IGC_CTRL);
5293 ctrl |= IGC_CTRL_ADVD3WUC;
5294 wr32(IGC_CTRL, ctrl);
5295
5296 /* Allow time for pending master requests to run */
5297 igc_disable_pcie_master(hw);
5298
5299 wr32(IGC_WUC, IGC_WUC_PME_EN);
5300 wr32(IGC_WUFC, wufc);
5301 } else {
5302 wr32(IGC_WUC, 0);
5303 wr32(IGC_WUFC, 0);
5304 }
5305
5306 wake = wufc || adapter->en_mng_pt;
5307 if (!wake)
5308 igc_power_down_link(adapter);
5309 else
5310 igc_power_up_link(adapter);
5311
5312 if (enable_wake)
5313 *enable_wake = wake;
5314
5315 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5316 * would have already happened in close and is redundant.
5317 */
5318 igc_release_hw_control(adapter);
5319
5320 pci_disable_device(pdev);
5321
5322 return 0;
5323 }
5324
5325 #ifdef CONFIG_PM
5326 static int __maybe_unused igc_runtime_suspend(struct device *dev)
5327 {
5328 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
5329 }
5330
5331 static void igc_deliver_wake_packet(struct net_device *netdev)
5332 {
5333 struct igc_adapter *adapter = netdev_priv(netdev);
5334 struct igc_hw *hw = &adapter->hw;
5335 struct sk_buff *skb;
5336 u32 wupl;
5337
5338 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
5339
5340 /* WUPM stores only the first 128 bytes of the wake packet.
5341 * Read the packet only if we have the whole thing.
5342 */
5343 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
5344 return;
5345
5346 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
5347 if (!skb)
5348 return;
5349
5350 skb_put(skb, wupl);
5351
5352 /* Ensure reads are 32-bit aligned */
5353 wupl = roundup(wupl, 4);
5354
5355 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
5356
5357 skb->protocol = eth_type_trans(skb, netdev);
5358 netif_rx(skb);
5359 }
5360
5361 static int __maybe_unused igc_resume(struct device *dev)
5362 {
5363 struct pci_dev *pdev = to_pci_dev(dev);
5364 struct net_device *netdev = pci_get_drvdata(pdev);
5365 struct igc_adapter *adapter = netdev_priv(netdev);
5366 struct igc_hw *hw = &adapter->hw;
5367 u32 err, val;
5368
5369 pci_set_power_state(pdev, PCI_D0);
5370 pci_restore_state(pdev);
5371 pci_save_state(pdev);
5372
5373 if (!pci_device_is_present(pdev))
5374 return -ENODEV;
5375 err = pci_enable_device_mem(pdev);
5376 if (err) {
5377 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
5378 return err;
5379 }
5380 pci_set_master(pdev);
5381
5382 pci_enable_wake(pdev, PCI_D3hot, 0);
5383 pci_enable_wake(pdev, PCI_D3cold, 0);
5384
5385 if (igc_init_interrupt_scheme(adapter, true)) {
5386 netdev_err(netdev, "Unable to allocate memory for queues\n");
5387 return -ENOMEM;
5388 }
5389
5390 igc_reset(adapter);
5391
5392 /* let the f/w know that the h/w is now under the control of the
5393 * driver.
5394 */
5395 igc_get_hw_control(adapter);
5396
5397 val = rd32(IGC_WUS);
5398 if (val & WAKE_PKT_WUS)
5399 igc_deliver_wake_packet(netdev);
5400
5401 wr32(IGC_WUS, ~0);
5402
5403 rtnl_lock();
5404 if (!err && netif_running(netdev))
5405 err = __igc_open(netdev, true);
5406
5407 if (!err)
5408 netif_device_attach(netdev);
5409 rtnl_unlock();
5410
5411 return err;
5412 }
5413
5414 static int __maybe_unused igc_runtime_resume(struct device *dev)
5415 {
5416 return igc_resume(dev);
5417 }
5418
5419 static int __maybe_unused igc_suspend(struct device *dev)
5420 {
5421 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
5422 }
5423
5424 static int __maybe_unused igc_runtime_idle(struct device *dev)
5425 {
5426 struct net_device *netdev = dev_get_drvdata(dev);
5427 struct igc_adapter *adapter = netdev_priv(netdev);
5428
5429 if (!igc_has_link(adapter))
5430 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
5431
5432 return -EBUSY;
5433 }
5434 #endif /* CONFIG_PM */
5435
5436 static void igc_shutdown(struct pci_dev *pdev)
5437 {
5438 bool wake;
5439
5440 __igc_shutdown(pdev, &wake, 0);
5441
5442 if (system_state == SYSTEM_POWER_OFF) {
5443 pci_wake_from_d3(pdev, wake);
5444 pci_set_power_state(pdev, PCI_D3hot);
5445 }
5446 }
5447
5448 /**
5449 * igc_io_error_detected - called when PCI error is detected
5450 * @pdev: Pointer to PCI device
5451 * @state: The current PCI connection state
5452 *
5453 * This function is called after a PCI bus error affecting
5454 * this device has been detected.
5455 **/
5456 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
5457 pci_channel_state_t state)
5458 {
5459 struct net_device *netdev = pci_get_drvdata(pdev);
5460 struct igc_adapter *adapter = netdev_priv(netdev);
5461
5462 netif_device_detach(netdev);
5463
5464 if (state == pci_channel_io_perm_failure)
5465 return PCI_ERS_RESULT_DISCONNECT;
5466
5467 if (netif_running(netdev))
5468 igc_down(adapter);
5469 pci_disable_device(pdev);
5470
5471 /* Request a slot reset. */
5472 return PCI_ERS_RESULT_NEED_RESET;
5473 }
5474
5475 /**
5476 * igc_io_slot_reset - called after the PCI bus has been reset.
5477 * @pdev: Pointer to PCI device
5478 *
5479 * Restart the card from scratch, as if from a cold-boot. Implementation
5480 * resembles the first-half of the igc_resume routine.
5481 **/
5482 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
5483 {
5484 struct net_device *netdev = pci_get_drvdata(pdev);
5485 struct igc_adapter *adapter = netdev_priv(netdev);
5486 struct igc_hw *hw = &adapter->hw;
5487 pci_ers_result_t result;
5488
5489 if (pci_enable_device_mem(pdev)) {
5490 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
5491 result = PCI_ERS_RESULT_DISCONNECT;
5492 } else {
5493 pci_set_master(pdev);
5494 pci_restore_state(pdev);
5495 pci_save_state(pdev);
5496
5497 pci_enable_wake(pdev, PCI_D3hot, 0);
5498 pci_enable_wake(pdev, PCI_D3cold, 0);
5499
5500 /* In case of PCI error, adapter loses its HW address
5501 * so we should re-assign it here.
5502 */
5503 hw->hw_addr = adapter->io_addr;
5504
5505 igc_reset(adapter);
5506 wr32(IGC_WUS, ~0);
5507 result = PCI_ERS_RESULT_RECOVERED;
5508 }
5509
5510 return result;
5511 }
5512
5513 /**
5514 * igc_io_resume - called when traffic can start to flow again.
5515 * @pdev: Pointer to PCI device
5516 *
5517 * This callback is called when the error recovery driver tells us that
5518 * its OK to resume normal operation. Implementation resembles the
5519 * second-half of the igc_resume routine.
5520 */
5521 static void igc_io_resume(struct pci_dev *pdev)
5522 {
5523 struct net_device *netdev = pci_get_drvdata(pdev);
5524 struct igc_adapter *adapter = netdev_priv(netdev);
5525
5526 rtnl_lock();
5527 if (netif_running(netdev)) {
5528 if (igc_open(netdev)) {
5529 netdev_err(netdev, "igc_open failed after reset\n");
5530 return;
5531 }
5532 }
5533
5534 netif_device_attach(netdev);
5535
5536 /* let the f/w know that the h/w is now under the control of the
5537 * driver.
5538 */
5539 igc_get_hw_control(adapter);
5540 rtnl_unlock();
5541 }
5542
5543 static const struct pci_error_handlers igc_err_handler = {
5544 .error_detected = igc_io_error_detected,
5545 .slot_reset = igc_io_slot_reset,
5546 .resume = igc_io_resume,
5547 };
5548
5549 #ifdef CONFIG_PM
5550 static const struct dev_pm_ops igc_pm_ops = {
5551 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
5552 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
5553 igc_runtime_idle)
5554 };
5555 #endif
5556
5557 static struct pci_driver igc_driver = {
5558 .name = igc_driver_name,
5559 .id_table = igc_pci_tbl,
5560 .probe = igc_probe,
5561 .remove = igc_remove,
5562 #ifdef CONFIG_PM
5563 .driver.pm = &igc_pm_ops,
5564 #endif
5565 .shutdown = igc_shutdown,
5566 .err_handler = &igc_err_handler,
5567 };
5568
5569 /**
5570 * igc_reinit_queues - return error
5571 * @adapter: pointer to adapter structure
5572 */
5573 int igc_reinit_queues(struct igc_adapter *adapter)
5574 {
5575 struct net_device *netdev = adapter->netdev;
5576 int err = 0;
5577
5578 if (netif_running(netdev))
5579 igc_close(netdev);
5580
5581 igc_reset_interrupt_capability(adapter);
5582
5583 if (igc_init_interrupt_scheme(adapter, true)) {
5584 netdev_err(netdev, "Unable to allocate memory for queues\n");
5585 return -ENOMEM;
5586 }
5587
5588 if (netif_running(netdev))
5589 err = igc_open(netdev);
5590
5591 return err;
5592 }
5593
5594 /**
5595 * igc_get_hw_dev - return device
5596 * @hw: pointer to hardware structure
5597 *
5598 * used by hardware layer to print debugging information
5599 */
5600 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
5601 {
5602 struct igc_adapter *adapter = hw->back;
5603
5604 return adapter->netdev;
5605 }
5606
5607 /**
5608 * igc_init_module - Driver Registration Routine
5609 *
5610 * igc_init_module is the first routine called when the driver is
5611 * loaded. All it does is register with the PCI subsystem.
5612 */
5613 static int __init igc_init_module(void)
5614 {
5615 int ret;
5616
5617 pr_info("%s - version %s\n",
5618 igc_driver_string, igc_driver_version);
5619
5620 pr_info("%s\n", igc_copyright);
5621
5622 ret = pci_register_driver(&igc_driver);
5623 return ret;
5624 }
5625
5626 module_init(igc_init_module);
5627
5628 /**
5629 * igc_exit_module - Driver Exit Cleanup Routine
5630 *
5631 * igc_exit_module is called just before the driver is removed
5632 * from memory.
5633 */
5634 static void __exit igc_exit_module(void)
5635 {
5636 pci_unregister_driver(&igc_driver);
5637 }
5638
5639 module_exit(igc_exit_module);
5640 /* igc_main.c */