AArch32: Rework SMC context save and restore mechanism
[project/bcm63xx/atf.git] / bl32 / sp_min / aarch32 / entrypoint.S
1 /*
2 * Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <arch.h>
8 #include <asm_macros.S>
9 #include <bl_common.h>
10 #include <context.h>
11 #include <el3_common_macros.S>
12 #include <runtime_svc.h>
13 #include <smcc_helpers.h>
14 #include <smcc_macros.S>
15 #include <xlat_tables_defs.h>
16
17 .globl sp_min_vector_table
18 .globl sp_min_entrypoint
19 .globl sp_min_warm_entrypoint
20
21
22 vector_base sp_min_vector_table
23 b sp_min_entrypoint
24 b plat_panic_handler /* Undef */
25 b handle_smc /* Syscall */
26 b plat_panic_handler /* Prefetch abort */
27 b plat_panic_handler /* Data abort */
28 b plat_panic_handler /* Reserved */
29 b plat_panic_handler /* IRQ */
30 b plat_panic_handler /* FIQ */
31
32
33 /*
34 * The Cold boot/Reset entrypoint for SP_MIN
35 */
36 func sp_min_entrypoint
37 #if !RESET_TO_SP_MIN
38 /* ---------------------------------------------------------------
39 * Preceding bootloader has populated r0 with a pointer to a
40 * 'bl_params_t' structure & r1 with a pointer to platform
41 * specific structure
42 * ---------------------------------------------------------------
43 */
44 mov r11, r0
45 mov r12, r1
46
47 /* ---------------------------------------------------------------------
48 * For !RESET_TO_SP_MIN systems, only the primary CPU ever reaches
49 * sp_min_entrypoint() during the cold boot flow, so the cold/warm boot
50 * and primary/secondary CPU logic should not be executed in this case.
51 *
52 * Also, assume that the previous bootloader has already set up the CPU
53 * endianness and has initialised the memory.
54 * ---------------------------------------------------------------------
55 */
56 el3_entrypoint_common \
57 _set_endian=0 \
58 _warm_boot_mailbox=0 \
59 _secondary_cold_boot=0 \
60 _init_memory=0 \
61 _init_c_runtime=1 \
62 _exception_vectors=sp_min_vector_table
63
64 /* ---------------------------------------------------------------------
65 * Relay the previous bootloader's arguments to the platform layer
66 * ---------------------------------------------------------------------
67 */
68 mov r0, r11
69 mov r1, r12
70 #else
71 /* ---------------------------------------------------------------------
72 * For RESET_TO_SP_MIN systems which have a programmable reset address,
73 * sp_min_entrypoint() is executed only on the cold boot path so we can
74 * skip the warm boot mailbox mechanism.
75 * ---------------------------------------------------------------------
76 */
77 el3_entrypoint_common \
78 _set_endian=1 \
79 _warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS \
80 _secondary_cold_boot=!COLD_BOOT_SINGLE_CPU \
81 _init_memory=1 \
82 _init_c_runtime=1 \
83 _exception_vectors=sp_min_vector_table
84
85 /* ---------------------------------------------------------------------
86 * For RESET_TO_SP_MIN systems, BL32 (SP_MIN) is the first bootloader
87 * to run so there's no argument to relay from a previous bootloader.
88 * Zero the arguments passed to the platform layer to reflect that.
89 * ---------------------------------------------------------------------
90 */
91 mov r0, #0
92 mov r1, #0
93 #endif /* RESET_TO_SP_MIN */
94
95 bl sp_min_early_platform_setup
96 bl sp_min_plat_arch_setup
97
98 /* Jump to the main function */
99 bl sp_min_main
100
101 /* -------------------------------------------------------------
102 * Clean the .data & .bss sections to main memory. This ensures
103 * that any global data which was initialised by the primary CPU
104 * is visible to secondary CPUs before they enable their data
105 * caches and participate in coherency.
106 * -------------------------------------------------------------
107 */
108 ldr r0, =__DATA_START__
109 ldr r1, =__DATA_END__
110 sub r1, r1, r0
111 bl clean_dcache_range
112
113 ldr r0, =__BSS_START__
114 ldr r1, =__BSS_END__
115 sub r1, r1, r0
116 bl clean_dcache_range
117
118 bl smc_get_next_ctx
119
120 /* r0 points to `smc_ctx_t` */
121 /* The PSCI cpu_context registers have been copied to `smc_ctx_t` */
122 b sp_min_exit
123 endfunc sp_min_entrypoint
124
125
126 /*
127 * SMC handling function for SP_MIN.
128 */
129 func handle_smc
130 /* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */
131 str lr, [sp, #SMC_CTX_LR_MON]
132
133 smcc_save_gp_mode_regs
134
135 /*
136 * `sp` still points to `smc_ctx_t`. Save it to a register
137 * and restore the C runtime stack pointer to `sp`.
138 */
139 mov r2, sp /* handle */
140 ldr sp, [r2, #SMC_CTX_SP_MON]
141
142 ldr r0, [r2, #SMC_CTX_SCR]
143 and r3, r0, #SCR_NS_BIT /* flags */
144
145 /* Switch to Secure Mode*/
146 bic r0, #SCR_NS_BIT
147 stcopr r0, SCR
148 isb
149
150 ldr r0, [r2, #SMC_CTX_GPREG_R0] /* smc_fid */
151 /* Check whether an SMC64 is issued */
152 tst r0, #(FUNCID_CC_MASK << FUNCID_CC_SHIFT)
153 beq 1f
154 /* SMC32 is not detected. Return error back to caller */
155 mov r0, #SMC_UNK
156 str r0, [r2, #SMC_CTX_GPREG_R0]
157 mov r0, r2
158 b sp_min_exit
159 1:
160 /* SMC32 is detected */
161 mov r1, #0 /* cookie */
162 bl handle_runtime_svc
163
164 /* `r0` points to `smc_ctx_t` */
165 b sp_min_exit
166 endfunc handle_smc
167
168 /*
169 * The Warm boot entrypoint for SP_MIN.
170 */
171 func sp_min_warm_entrypoint
172 /*
173 * On the warm boot path, most of the EL3 initialisations performed by
174 * 'el3_entrypoint_common' must be skipped:
175 *
176 * - Only when the platform bypasses the BL1/BL32 (SP_MIN) entrypoint by
177 * programming the reset address do we need to set the CPU endianness.
178 * In other cases, we assume this has been taken care by the
179 * entrypoint code.
180 *
181 * - No need to determine the type of boot, we know it is a warm boot.
182 *
183 * - Do not try to distinguish between primary and secondary CPUs, this
184 * notion only exists for a cold boot.
185 *
186 * - No need to initialise the memory or the C runtime environment,
187 * it has been done once and for all on the cold boot path.
188 */
189 el3_entrypoint_common \
190 _set_endian=PROGRAMMABLE_RESET_ADDRESS \
191 _warm_boot_mailbox=0 \
192 _secondary_cold_boot=0 \
193 _init_memory=0 \
194 _init_c_runtime=0 \
195 _exception_vectors=sp_min_vector_table
196
197 /*
198 * We're about to enable MMU and participate in PSCI state coordination.
199 *
200 * The PSCI implementation invokes platform routines that enable CPUs to
201 * participate in coherency. On a system where CPUs are not
202 * cache-coherent without appropriate platform specific programming,
203 * having caches enabled until such time might lead to coherency issues
204 * (resulting from stale data getting speculatively fetched, among
205 * others). Therefore we keep data caches disabled even after enabling
206 * the MMU for such platforms.
207 *
208 * On systems with hardware-assisted coherency, or on single cluster
209 * platforms, such platform specific programming is not required to
210 * enter coherency (as CPUs already are); and there's no reason to have
211 * caches disabled either.
212 */
213 mov r0, #DISABLE_DCACHE
214 bl bl32_plat_enable_mmu
215
216 #if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY
217 ldcopr r0, SCTLR
218 orr r0, r0, #SCTLR_C_BIT
219 stcopr r0, SCTLR
220 isb
221 #endif
222
223 bl sp_min_warm_boot
224 bl smc_get_next_ctx
225 /* r0 points to `smc_ctx_t` */
226 /* The PSCI cpu_context registers have been copied to `smc_ctx_t` */
227 b sp_min_exit
228 endfunc sp_min_warm_entrypoint
229
230 /*
231 * The function to restore the registers from SMC context and return
232 * to the mode restored to SPSR.
233 *
234 * Arguments : r0 must point to the SMC context to restore from.
235 */
236 func sp_min_exit
237 monitor_exit
238 endfunc sp_min_exit