Merge pull request #1051 from Kevin-WangTao/fix_suspend_issue
[project/bcm63xx/atf.git] / bl32 / sp_min / aarch32 / entrypoint.S
1 /*
2 * Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <arch.h>
8 #include <asm_macros.S>
9 #include <bl_common.h>
10 #include <context.h>
11 #include <el3_common_macros.S>
12 #include <runtime_svc.h>
13 #include <smcc_helpers.h>
14 #include <smcc_macros.S>
15 #include <xlat_tables_defs.h>
16
17 .globl sp_min_vector_table
18 .globl sp_min_entrypoint
19 .globl sp_min_warm_entrypoint
20
21 .macro route_fiq_to_sp_min reg
22 /* -----------------------------------------------------
23 * FIQs are secure interrupts trapped by Monitor and non
24 * secure is not allowed to mask the FIQs.
25 * -----------------------------------------------------
26 */
27 ldcopr \reg, SCR
28 orr \reg, \reg, #SCR_FIQ_BIT
29 bic \reg, \reg, #SCR_FW_BIT
30 stcopr \reg, SCR
31 .endm
32
33 vector_base sp_min_vector_table
34 b sp_min_entrypoint
35 b plat_panic_handler /* Undef */
36 b handle_smc /* Syscall */
37 b plat_panic_handler /* Prefetch abort */
38 b plat_panic_handler /* Data abort */
39 b plat_panic_handler /* Reserved */
40 b plat_panic_handler /* IRQ */
41 b handle_fiq /* FIQ */
42
43
44 /*
45 * The Cold boot/Reset entrypoint for SP_MIN
46 */
47 func sp_min_entrypoint
48 #if !RESET_TO_SP_MIN
49 /* ---------------------------------------------------------------
50 * Preceding bootloader has populated r0 with a pointer to a
51 * 'bl_params_t' structure & r1 with a pointer to platform
52 * specific structure
53 * ---------------------------------------------------------------
54 */
55 mov r11, r0
56 mov r12, r1
57
58 /* ---------------------------------------------------------------------
59 * For !RESET_TO_SP_MIN systems, only the primary CPU ever reaches
60 * sp_min_entrypoint() during the cold boot flow, so the cold/warm boot
61 * and primary/secondary CPU logic should not be executed in this case.
62 *
63 * Also, assume that the previous bootloader has already initialised the
64 * SCTLR, including the CPU endianness, and has initialised the memory.
65 * ---------------------------------------------------------------------
66 */
67 el3_entrypoint_common \
68 _init_sctlr=0 \
69 _warm_boot_mailbox=0 \
70 _secondary_cold_boot=0 \
71 _init_memory=0 \
72 _init_c_runtime=1 \
73 _exception_vectors=sp_min_vector_table
74
75 /* ---------------------------------------------------------------------
76 * Relay the previous bootloader's arguments to the platform layer
77 * ---------------------------------------------------------------------
78 */
79 mov r0, r11
80 mov r1, r12
81 #else
82 /* ---------------------------------------------------------------------
83 * For RESET_TO_SP_MIN systems which have a programmable reset address,
84 * sp_min_entrypoint() is executed only on the cold boot path so we can
85 * skip the warm boot mailbox mechanism.
86 * ---------------------------------------------------------------------
87 */
88 el3_entrypoint_common \
89 _init_sctlr=1 \
90 _warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS \
91 _secondary_cold_boot=!COLD_BOOT_SINGLE_CPU \
92 _init_memory=1 \
93 _init_c_runtime=1 \
94 _exception_vectors=sp_min_vector_table
95
96 /* ---------------------------------------------------------------------
97 * For RESET_TO_SP_MIN systems, BL32 (SP_MIN) is the first bootloader
98 * to run so there's no argument to relay from a previous bootloader.
99 * Zero the arguments passed to the platform layer to reflect that.
100 * ---------------------------------------------------------------------
101 */
102 mov r0, #0
103 mov r1, #0
104 #endif /* RESET_TO_SP_MIN */
105
106 #if SP_MIN_WITH_SECURE_FIQ
107 route_fiq_to_sp_min r4
108 #endif
109
110 bl sp_min_early_platform_setup
111 bl sp_min_plat_arch_setup
112
113 /* Jump to the main function */
114 bl sp_min_main
115
116 /* -------------------------------------------------------------
117 * Clean the .data & .bss sections to main memory. This ensures
118 * that any global data which was initialised by the primary CPU
119 * is visible to secondary CPUs before they enable their data
120 * caches and participate in coherency.
121 * -------------------------------------------------------------
122 */
123 ldr r0, =__DATA_START__
124 ldr r1, =__DATA_END__
125 sub r1, r1, r0
126 bl clean_dcache_range
127
128 ldr r0, =__BSS_START__
129 ldr r1, =__BSS_END__
130 sub r1, r1, r0
131 bl clean_dcache_range
132
133 bl smc_get_next_ctx
134
135 /* r0 points to `smc_ctx_t` */
136 /* The PSCI cpu_context registers have been copied to `smc_ctx_t` */
137 b sp_min_exit
138 endfunc sp_min_entrypoint
139
140
141 /*
142 * SMC handling function for SP_MIN.
143 */
144 func handle_smc
145 /* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */
146 str lr, [sp, #SMC_CTX_LR_MON]
147
148 smcc_save_gp_mode_regs
149
150 /*
151 * `sp` still points to `smc_ctx_t`. Save it to a register
152 * and restore the C runtime stack pointer to `sp`.
153 */
154 mov r2, sp /* handle */
155 ldr sp, [r2, #SMC_CTX_SP_MON]
156
157 ldr r0, [r2, #SMC_CTX_SCR]
158 and r3, r0, #SCR_NS_BIT /* flags */
159
160 /* Switch to Secure Mode*/
161 bic r0, #SCR_NS_BIT
162 stcopr r0, SCR
163 isb
164
165 ldr r0, [r2, #SMC_CTX_GPREG_R0] /* smc_fid */
166 /* Check whether an SMC64 is issued */
167 tst r0, #(FUNCID_CC_MASK << FUNCID_CC_SHIFT)
168 beq 1f
169 /* SMC32 is not detected. Return error back to caller */
170 mov r0, #SMC_UNK
171 str r0, [r2, #SMC_CTX_GPREG_R0]
172 mov r0, r2
173 b sp_min_exit
174 1:
175 /* SMC32 is detected */
176 mov r1, #0 /* cookie */
177 bl handle_runtime_svc
178
179 /* `r0` points to `smc_ctx_t` */
180 b sp_min_exit
181 endfunc handle_smc
182
183 /*
184 * Secure Interrupts handling function for SP_MIN.
185 */
186 func handle_fiq
187 #if !SP_MIN_WITH_SECURE_FIQ
188 b plat_panic_handler
189 #else
190 /* FIQ has a +4 offset for lr compared to preferred return address */
191 sub lr, lr, #4
192 /* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */
193 str lr, [sp, #SMC_CTX_LR_MON]
194
195 smcc_save_gp_mode_regs
196
197 /*
198 * AArch32 architectures need to clear the exclusive access when
199 * entering Monitor mode.
200 */
201 clrex
202
203 /* load run-time stack */
204 mov r2, sp
205 ldr sp, [r2, #SMC_CTX_SP_MON]
206
207 /* Switch to Secure Mode */
208 ldr r0, [r2, #SMC_CTX_SCR]
209 bic r0, #SCR_NS_BIT
210 stcopr r0, SCR
211 isb
212
213 push {r2, r3}
214 bl sp_min_fiq
215 pop {r0, r3}
216
217 b sp_min_exit
218 #endif
219 endfunc handle_fiq
220
221 /*
222 * The Warm boot entrypoint for SP_MIN.
223 */
224 func sp_min_warm_entrypoint
225 /*
226 * On the warm boot path, most of the EL3 initialisations performed by
227 * 'el3_entrypoint_common' must be skipped:
228 *
229 * - Only when the platform bypasses the BL1/BL32 (SP_MIN) entrypoint by
230 * programming the reset address do we need to initialied the SCTLR.
231 * In other cases, we assume this has been taken care by the
232 * entrypoint code.
233 *
234 * - No need to determine the type of boot, we know it is a warm boot.
235 *
236 * - Do not try to distinguish between primary and secondary CPUs, this
237 * notion only exists for a cold boot.
238 *
239 * - No need to initialise the memory or the C runtime environment,
240 * it has been done once and for all on the cold boot path.
241 */
242 el3_entrypoint_common \
243 _init_sctlr=PROGRAMMABLE_RESET_ADDRESS \
244 _warm_boot_mailbox=0 \
245 _secondary_cold_boot=0 \
246 _init_memory=0 \
247 _init_c_runtime=0 \
248 _exception_vectors=sp_min_vector_table
249
250 /*
251 * We're about to enable MMU and participate in PSCI state coordination.
252 *
253 * The PSCI implementation invokes platform routines that enable CPUs to
254 * participate in coherency. On a system where CPUs are not
255 * cache-coherent without appropriate platform specific programming,
256 * having caches enabled until such time might lead to coherency issues
257 * (resulting from stale data getting speculatively fetched, among
258 * others). Therefore we keep data caches disabled even after enabling
259 * the MMU for such platforms.
260 *
261 * On systems with hardware-assisted coherency, or on single cluster
262 * platforms, such platform specific programming is not required to
263 * enter coherency (as CPUs already are); and there's no reason to have
264 * caches disabled either.
265 */
266 mov r0, #DISABLE_DCACHE
267 bl bl32_plat_enable_mmu
268
269 #if SP_MIN_WITH_SECURE_FIQ
270 route_fiq_to_sp_min r0
271 #endif
272
273 #if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY
274 ldcopr r0, SCTLR
275 orr r0, r0, #SCTLR_C_BIT
276 stcopr r0, SCTLR
277 isb
278 #endif
279
280 bl sp_min_warm_boot
281 bl smc_get_next_ctx
282 /* r0 points to `smc_ctx_t` */
283 /* The PSCI cpu_context registers have been copied to `smc_ctx_t` */
284 b sp_min_exit
285 endfunc sp_min_warm_entrypoint
286
287 /*
288 * The function to restore the registers from SMC context and return
289 * to the mode restored to SPSR.
290 *
291 * Arguments : r0 must point to the SMC context to restore from.
292 */
293 func sp_min_exit
294 monitor_exit
295 endfunc sp_min_exit