Prepare v2019.07
[project/bcm63xx/u-boot.git] / disk / part_efi.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2008 RuggedCom, Inc.
4 * Richard Retanubun <RichardRetanubun@RuggedCom.com>
5 */
6
7 /*
8 * NOTE:
9 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this
10 * limits the maximum size of addressable storage to < 2 Terra Bytes
11 */
12 #include <asm/unaligned.h>
13 #include <common.h>
14 #include <command.h>
15 #include <fdtdec.h>
16 #include <ide.h>
17 #include <malloc.h>
18 #include <memalign.h>
19 #include <part_efi.h>
20 #include <linux/compiler.h>
21 #include <linux/ctype.h>
22
23 DECLARE_GLOBAL_DATA_PTR;
24
25 /*
26 * GUID for basic data partions.
27 */
28 static const efi_guid_t partition_basic_data_guid = PARTITION_BASIC_DATA_GUID;
29
30 #ifdef CONFIG_HAVE_BLOCK_DEVICE
31 /**
32 * efi_crc32() - EFI version of crc32 function
33 * @buf: buffer to calculate crc32 of
34 * @len - length of buf
35 *
36 * Description: Returns EFI-style CRC32 value for @buf
37 */
38 static inline u32 efi_crc32(const void *buf, u32 len)
39 {
40 return crc32(0, buf, len);
41 }
42
43 /*
44 * Private function prototypes
45 */
46
47 static int pmbr_part_valid(struct partition *part);
48 static int is_pmbr_valid(legacy_mbr * mbr);
49 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
50 gpt_header *pgpt_head, gpt_entry **pgpt_pte);
51 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
52 gpt_header *pgpt_head);
53 static int is_pte_valid(gpt_entry * pte);
54
55 static char *print_efiname(gpt_entry *pte)
56 {
57 static char name[PARTNAME_SZ + 1];
58 int i;
59 for (i = 0; i < PARTNAME_SZ; i++) {
60 u8 c;
61 c = pte->partition_name[i] & 0xff;
62 c = (c && !isprint(c)) ? '.' : c;
63 name[i] = c;
64 }
65 name[PARTNAME_SZ] = 0;
66 return name;
67 }
68
69 static const efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
70
71 static inline int is_bootable(gpt_entry *p)
72 {
73 return p->attributes.fields.legacy_bios_bootable ||
74 !memcmp(&(p->partition_type_guid), &system_guid,
75 sizeof(efi_guid_t));
76 }
77
78 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba,
79 lbaint_t lastlba)
80 {
81 uint32_t crc32_backup = 0;
82 uint32_t calc_crc32;
83
84 /* Check the GPT header signature */
85 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE_UBOOT) {
86 printf("%s signature is wrong: 0x%llX != 0x%llX\n",
87 "GUID Partition Table Header",
88 le64_to_cpu(gpt_h->signature),
89 GPT_HEADER_SIGNATURE_UBOOT);
90 return -1;
91 }
92
93 /* Check the GUID Partition Table CRC */
94 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup));
95 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32));
96
97 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
98 le32_to_cpu(gpt_h->header_size));
99
100 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup));
101
102 if (calc_crc32 != le32_to_cpu(crc32_backup)) {
103 printf("%s CRC is wrong: 0x%x != 0x%x\n",
104 "GUID Partition Table Header",
105 le32_to_cpu(crc32_backup), calc_crc32);
106 return -1;
107 }
108
109 /*
110 * Check that the my_lba entry points to the LBA that contains the GPT
111 */
112 if (le64_to_cpu(gpt_h->my_lba) != lba) {
113 printf("GPT: my_lba incorrect: %llX != " LBAF "\n",
114 le64_to_cpu(gpt_h->my_lba),
115 lba);
116 return -1;
117 }
118
119 /*
120 * Check that the first_usable_lba and that the last_usable_lba are
121 * within the disk.
122 */
123 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) {
124 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n",
125 le64_to_cpu(gpt_h->first_usable_lba), lastlba);
126 return -1;
127 }
128 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) {
129 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n",
130 le64_to_cpu(gpt_h->last_usable_lba), lastlba);
131 return -1;
132 }
133
134 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: "
135 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba),
136 le64_to_cpu(gpt_h->last_usable_lba), lastlba);
137
138 return 0;
139 }
140
141 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e)
142 {
143 uint32_t calc_crc32;
144
145 /* Check the GUID Partition Table Entry Array CRC */
146 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
147 le32_to_cpu(gpt_h->num_partition_entries) *
148 le32_to_cpu(gpt_h->sizeof_partition_entry));
149
150 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) {
151 printf("%s: 0x%x != 0x%x\n",
152 "GUID Partition Table Entry Array CRC is wrong",
153 le32_to_cpu(gpt_h->partition_entry_array_crc32),
154 calc_crc32);
155 return -1;
156 }
157
158 return 0;
159 }
160
161 static void prepare_backup_gpt_header(gpt_header *gpt_h)
162 {
163 uint32_t calc_crc32;
164 uint64_t val;
165
166 /* recalculate the values for the Backup GPT Header */
167 val = le64_to_cpu(gpt_h->my_lba);
168 gpt_h->my_lba = gpt_h->alternate_lba;
169 gpt_h->alternate_lba = cpu_to_le64(val);
170 gpt_h->partition_entry_lba =
171 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1);
172 gpt_h->header_crc32 = 0;
173
174 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
175 le32_to_cpu(gpt_h->header_size));
176 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
177 }
178
179 #if CONFIG_IS_ENABLED(EFI_PARTITION)
180 /*
181 * Public Functions (include/part.h)
182 */
183
184 /*
185 * UUID is displayed as 32 hexadecimal digits, in 5 groups,
186 * separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters
187 */
188 int get_disk_guid(struct blk_desc * dev_desc, char *guid)
189 {
190 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
191 gpt_entry *gpt_pte = NULL;
192 unsigned char *guid_bin;
193
194 /* This function validates AND fills in the GPT header and PTE */
195 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
196 gpt_head, &gpt_pte) != 1) {
197 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
198 if (is_gpt_valid(dev_desc, dev_desc->lba - 1,
199 gpt_head, &gpt_pte) != 1) {
200 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
201 __func__);
202 return -EINVAL;
203 } else {
204 printf("%s: *** Using Backup GPT ***\n",
205 __func__);
206 }
207 }
208
209 guid_bin = gpt_head->disk_guid.b;
210 uuid_bin_to_str(guid_bin, guid, UUID_STR_FORMAT_GUID);
211
212 /* Remember to free pte */
213 free(gpt_pte);
214 return 0;
215 }
216
217 void part_print_efi(struct blk_desc *dev_desc)
218 {
219 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
220 gpt_entry *gpt_pte = NULL;
221 int i = 0;
222 char uuid[UUID_STR_LEN + 1];
223 unsigned char *uuid_bin;
224
225 /* This function validates AND fills in the GPT header and PTE */
226 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
227 gpt_head, &gpt_pte) != 1) {
228 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
229 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
230 gpt_head, &gpt_pte) != 1) {
231 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
232 __func__);
233 return;
234 } else {
235 printf("%s: *** Using Backup GPT ***\n",
236 __func__);
237 }
238 }
239
240 debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
241
242 printf("Part\tStart LBA\tEnd LBA\t\tName\n");
243 printf("\tAttributes\n");
244 printf("\tType GUID\n");
245 printf("\tPartition GUID\n");
246
247 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
248 /* Stop at the first non valid PTE */
249 if (!is_pte_valid(&gpt_pte[i]))
250 break;
251
252 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
253 le64_to_cpu(gpt_pte[i].starting_lba),
254 le64_to_cpu(gpt_pte[i].ending_lba),
255 print_efiname(&gpt_pte[i]));
256 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
257 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b;
258 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
259 printf("\ttype:\t%s\n", uuid);
260 #ifdef CONFIG_PARTITION_TYPE_GUID
261 if (!uuid_guid_get_str(uuid_bin, uuid))
262 printf("\ttype:\t%s\n", uuid);
263 #endif
264 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b;
265 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
266 printf("\tguid:\t%s\n", uuid);
267 }
268
269 /* Remember to free pte */
270 free(gpt_pte);
271 return;
272 }
273
274 int part_get_info_efi(struct blk_desc *dev_desc, int part,
275 disk_partition_t *info)
276 {
277 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
278 gpt_entry *gpt_pte = NULL;
279
280 /* "part" argument must be at least 1 */
281 if (part < 1) {
282 printf("%s: Invalid Argument(s)\n", __func__);
283 return -1;
284 }
285
286 /* This function validates AND fills in the GPT header and PTE */
287 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
288 gpt_head, &gpt_pte) != 1) {
289 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
290 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
291 gpt_head, &gpt_pte) != 1) {
292 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
293 __func__);
294 return -1;
295 } else {
296 printf("%s: *** Using Backup GPT ***\n",
297 __func__);
298 }
299 }
300
301 if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
302 !is_pte_valid(&gpt_pte[part - 1])) {
303 debug("%s: *** ERROR: Invalid partition number %d ***\n",
304 __func__, part);
305 free(gpt_pte);
306 return -1;
307 }
308
309 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */
310 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba);
311 /* The ending LBA is inclusive, to calculate size, add 1 to it */
312 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1
313 - info->start;
314 info->blksz = dev_desc->blksz;
315
316 sprintf((char *)info->name, "%s",
317 print_efiname(&gpt_pte[part - 1]));
318 strcpy((char *)info->type, "U-Boot");
319 info->bootable = is_bootable(&gpt_pte[part - 1]);
320 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
321 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid,
322 UUID_STR_FORMAT_GUID);
323 #endif
324 #ifdef CONFIG_PARTITION_TYPE_GUID
325 uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b,
326 info->type_guid, UUID_STR_FORMAT_GUID);
327 #endif
328
329 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__,
330 info->start, info->size, info->name);
331
332 /* Remember to free pte */
333 free(gpt_pte);
334 return 0;
335 }
336
337 static int part_test_efi(struct blk_desc *dev_desc)
338 {
339 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
340
341 /* Read legacy MBR from block 0 and validate it */
342 if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1)
343 || (is_pmbr_valid(legacymbr) != 1)) {
344 return -1;
345 }
346 return 0;
347 }
348
349 /**
350 * set_protective_mbr(): Set the EFI protective MBR
351 * @param dev_desc - block device descriptor
352 *
353 * @return - zero on success, otherwise error
354 */
355 static int set_protective_mbr(struct blk_desc *dev_desc)
356 {
357 /* Setup the Protective MBR */
358 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, p_mbr, 1, dev_desc->blksz);
359 if (p_mbr == NULL) {
360 printf("%s: calloc failed!\n", __func__);
361 return -1;
362 }
363
364 /* Read MBR to backup boot code if it exists */
365 if (blk_dread(dev_desc, 0, 1, p_mbr) != 1) {
366 pr_err("** Can't read from device %d **\n", dev_desc->devnum);
367 return -1;
368 }
369
370 /* Clear all data in MBR except of backed up boot code */
371 memset((char *)p_mbr + MSDOS_MBR_BOOT_CODE_SIZE, 0, sizeof(*p_mbr) -
372 MSDOS_MBR_BOOT_CODE_SIZE);
373
374 /* Append signature */
375 p_mbr->signature = MSDOS_MBR_SIGNATURE;
376 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
377 p_mbr->partition_record[0].start_sect = 1;
378 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1;
379
380 /* Write MBR sector to the MMC device */
381 if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) {
382 printf("** Can't write to device %d **\n",
383 dev_desc->devnum);
384 return -1;
385 }
386
387 return 0;
388 }
389
390 int write_gpt_table(struct blk_desc *dev_desc,
391 gpt_header *gpt_h, gpt_entry *gpt_e)
392 {
393 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
394 * sizeof(gpt_entry)), dev_desc);
395 u32 calc_crc32;
396
397 debug("max lba: %x\n", (u32) dev_desc->lba);
398 /* Setup the Protective MBR */
399 if (set_protective_mbr(dev_desc) < 0)
400 goto err;
401
402 /* Generate CRC for the Primary GPT Header */
403 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
404 le32_to_cpu(gpt_h->num_partition_entries) *
405 le32_to_cpu(gpt_h->sizeof_partition_entry));
406 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
407
408 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
409 le32_to_cpu(gpt_h->header_size));
410 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
411
412 /* Write the First GPT to the block right after the Legacy MBR */
413 if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1)
414 goto err;
415
416 if (blk_dwrite(dev_desc, le64_to_cpu(gpt_h->partition_entry_lba),
417 pte_blk_cnt, gpt_e) != pte_blk_cnt)
418 goto err;
419
420 prepare_backup_gpt_header(gpt_h);
421
422 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba)
423 + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt)
424 goto err;
425
426 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1,
427 gpt_h) != 1)
428 goto err;
429
430 debug("GPT successfully written to block device!\n");
431 return 0;
432
433 err:
434 printf("** Can't write to device %d **\n", dev_desc->devnum);
435 return -1;
436 }
437
438 int gpt_fill_pte(struct blk_desc *dev_desc,
439 gpt_header *gpt_h, gpt_entry *gpt_e,
440 disk_partition_t *partitions, int parts)
441 {
442 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba);
443 lbaint_t last_usable_lba = (lbaint_t)
444 le64_to_cpu(gpt_h->last_usable_lba);
445 int i, k;
446 size_t efiname_len, dosname_len;
447 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
448 char *str_uuid;
449 unsigned char *bin_uuid;
450 #endif
451 #ifdef CONFIG_PARTITION_TYPE_GUID
452 char *str_type_guid;
453 unsigned char *bin_type_guid;
454 #endif
455 size_t hdr_start = gpt_h->my_lba;
456 size_t hdr_end = hdr_start + 1;
457
458 size_t pte_start = gpt_h->partition_entry_lba;
459 size_t pte_end = pte_start +
460 gpt_h->num_partition_entries * gpt_h->sizeof_partition_entry /
461 dev_desc->blksz;
462
463 for (i = 0; i < parts; i++) {
464 /* partition starting lba */
465 lbaint_t start = partitions[i].start;
466 lbaint_t size = partitions[i].size;
467
468 if (start) {
469 offset = start + size;
470 } else {
471 start = offset;
472 offset += size;
473 }
474
475 /*
476 * If our partition overlaps with either the GPT
477 * header, or the partition entry, reject it.
478 */
479 if (((start < hdr_end && hdr_start < (start + size)) ||
480 (start < pte_end && pte_start < (start + size)))) {
481 printf("Partition overlap\n");
482 return -1;
483 }
484
485 gpt_e[i].starting_lba = cpu_to_le64(start);
486
487 if (offset > (last_usable_lba + 1)) {
488 printf("Partitions layout exceds disk size\n");
489 return -1;
490 }
491 /* partition ending lba */
492 if ((i == parts - 1) && (size == 0))
493 /* extend the last partition to maximuim */
494 gpt_e[i].ending_lba = gpt_h->last_usable_lba;
495 else
496 gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
497
498 #ifdef CONFIG_PARTITION_TYPE_GUID
499 str_type_guid = partitions[i].type_guid;
500 bin_type_guid = gpt_e[i].partition_type_guid.b;
501 if (strlen(str_type_guid)) {
502 if (uuid_str_to_bin(str_type_guid, bin_type_guid,
503 UUID_STR_FORMAT_GUID)) {
504 printf("Partition no. %d: invalid type guid: %s\n",
505 i, str_type_guid);
506 return -1;
507 }
508 } else {
509 /* default partition type GUID */
510 memcpy(bin_type_guid,
511 &partition_basic_data_guid, 16);
512 }
513 #else
514 /* partition type GUID */
515 memcpy(gpt_e[i].partition_type_guid.b,
516 &partition_basic_data_guid, 16);
517 #endif
518
519 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
520 str_uuid = partitions[i].uuid;
521 bin_uuid = gpt_e[i].unique_partition_guid.b;
522
523 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_GUID)) {
524 printf("Partition no. %d: invalid guid: %s\n",
525 i, str_uuid);
526 return -1;
527 }
528 #endif
529
530 /* partition attributes */
531 memset(&gpt_e[i].attributes, 0,
532 sizeof(gpt_entry_attributes));
533
534 if (partitions[i].bootable)
535 gpt_e[i].attributes.fields.legacy_bios_bootable = 1;
536
537 /* partition name */
538 efiname_len = sizeof(gpt_e[i].partition_name)
539 / sizeof(efi_char16_t);
540 dosname_len = sizeof(partitions[i].name);
541
542 memset(gpt_e[i].partition_name, 0,
543 sizeof(gpt_e[i].partition_name));
544
545 for (k = 0; k < min(dosname_len, efiname_len); k++)
546 gpt_e[i].partition_name[k] =
547 (efi_char16_t)(partitions[i].name[k]);
548
549 debug("%s: name: %s offset[%d]: 0x" LBAF
550 " size[%d]: 0x" LBAF "\n",
551 __func__, partitions[i].name, i,
552 offset, i, size);
553 }
554
555 return 0;
556 }
557
558 static uint32_t partition_entries_offset(struct blk_desc *dev_desc)
559 {
560 uint32_t offset_blks = 2;
561 uint32_t __maybe_unused offset_bytes;
562 int __maybe_unused config_offset;
563
564 #if defined(CONFIG_EFI_PARTITION_ENTRIES_OFF)
565 /*
566 * Some architectures require their SPL loader at a fixed
567 * address within the first 16KB of the disk. To avoid an
568 * overlap with the partition entries of the EFI partition
569 * table, the first safe offset (in bytes, from the start of
570 * the disk) for the entries can be set in
571 * CONFIG_EFI_PARTITION_ENTRIES_OFF.
572 */
573 offset_bytes =
574 PAD_TO_BLOCKSIZE(CONFIG_EFI_PARTITION_ENTRIES_OFF, dev_desc);
575 offset_blks = offset_bytes / dev_desc->blksz;
576 #endif
577
578 #if defined(CONFIG_OF_CONTROL)
579 /*
580 * Allow the offset of the first partition entires (in bytes
581 * from the start of the device) to be specified as a property
582 * of the device tree '/config' node.
583 */
584 config_offset = fdtdec_get_config_int(gd->fdt_blob,
585 "u-boot,efi-partition-entries-offset",
586 -EINVAL);
587 if (config_offset != -EINVAL) {
588 offset_bytes = PAD_TO_BLOCKSIZE(config_offset, dev_desc);
589 offset_blks = offset_bytes / dev_desc->blksz;
590 }
591 #endif
592
593 debug("efi: partition entries offset (in blocks): %d\n", offset_blks);
594
595 /*
596 * The earliest LBA this can be at is LBA#2 (i.e. right behind
597 * the (protective) MBR and the GPT header.
598 */
599 if (offset_blks < 2)
600 offset_blks = 2;
601
602 return offset_blks;
603 }
604
605 int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h,
606 char *str_guid, int parts_count)
607 {
608 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE_UBOOT);
609 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
610 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
611 gpt_h->my_lba = cpu_to_le64(1);
612 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
613 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
614 gpt_h->partition_entry_lba =
615 cpu_to_le64(partition_entries_offset(dev_desc));
616 gpt_h->first_usable_lba =
617 cpu_to_le64(le64_to_cpu(gpt_h->partition_entry_lba) + 32);
618 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
619 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
620 gpt_h->header_crc32 = 0;
621 gpt_h->partition_entry_array_crc32 = 0;
622
623 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID))
624 return -1;
625
626 return 0;
627 }
628
629 int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid,
630 disk_partition_t *partitions, int parts_count)
631 {
632 gpt_header *gpt_h;
633 gpt_entry *gpt_e;
634 int ret, size;
635
636 size = PAD_TO_BLOCKSIZE(sizeof(gpt_header), dev_desc);
637 gpt_h = malloc_cache_aligned(size);
638 if (gpt_h == NULL) {
639 printf("%s: calloc failed!\n", __func__);
640 return -1;
641 }
642 memset(gpt_h, 0, size);
643
644 size = PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS * sizeof(gpt_entry),
645 dev_desc);
646 gpt_e = malloc_cache_aligned(size);
647 if (gpt_e == NULL) {
648 printf("%s: calloc failed!\n", __func__);
649 free(gpt_h);
650 return -1;
651 }
652 memset(gpt_e, 0, size);
653
654 /* Generate Primary GPT header (LBA1) */
655 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
656 if (ret)
657 goto err;
658
659 /* Generate partition entries */
660 ret = gpt_fill_pte(dev_desc, gpt_h, gpt_e, partitions, parts_count);
661 if (ret)
662 goto err;
663
664 /* Write GPT partition table */
665 ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
666
667 err:
668 free(gpt_e);
669 free(gpt_h);
670 return ret;
671 }
672
673 static void gpt_convert_efi_name_to_char(char *s, efi_char16_t *es, int n)
674 {
675 char *ess = (char *)es;
676 int i, j;
677
678 memset(s, '\0', n);
679
680 for (i = 0, j = 0; j < n; i += 2, j++) {
681 s[j] = ess[i];
682 if (!ess[i])
683 return;
684 }
685 }
686
687 int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head,
688 gpt_entry **gpt_pte)
689 {
690 /*
691 * This function validates AND
692 * fills in the GPT header and PTE
693 */
694 if (is_gpt_valid(dev_desc,
695 GPT_PRIMARY_PARTITION_TABLE_LBA,
696 gpt_head, gpt_pte) != 1) {
697 printf("%s: *** ERROR: Invalid GPT ***\n",
698 __func__);
699 return -1;
700 }
701
702 /* Free pte before allocating again */
703 free(*gpt_pte);
704
705 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
706 gpt_head, gpt_pte) != 1) {
707 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
708 __func__);
709 return -1;
710 }
711
712 return 0;
713 }
714
715 int gpt_verify_partitions(struct blk_desc *dev_desc,
716 disk_partition_t *partitions, int parts,
717 gpt_header *gpt_head, gpt_entry **gpt_pte)
718 {
719 char efi_str[PARTNAME_SZ + 1];
720 u64 gpt_part_size;
721 gpt_entry *gpt_e;
722 int ret, i;
723
724 ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte);
725 if (ret)
726 return ret;
727
728 gpt_e = *gpt_pte;
729
730 for (i = 0; i < parts; i++) {
731 if (i == gpt_head->num_partition_entries) {
732 pr_err("More partitions than allowed!\n");
733 return -1;
734 }
735
736 /* Check if GPT and ENV partition names match */
737 gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name,
738 PARTNAME_SZ + 1);
739
740 debug("%s: part: %2d name - GPT: %16s, ENV: %16s ",
741 __func__, i, efi_str, partitions[i].name);
742
743 if (strncmp(efi_str, (char *)partitions[i].name,
744 sizeof(partitions->name))) {
745 pr_err("Partition name: %s does not match %s!\n",
746 efi_str, (char *)partitions[i].name);
747 return -1;
748 }
749
750 /* Check if GPT and ENV sizes match */
751 gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) -
752 le64_to_cpu(gpt_e[i].starting_lba) + 1;
753 debug("size(LBA) - GPT: %8llu, ENV: %8llu ",
754 (unsigned long long)gpt_part_size,
755 (unsigned long long)partitions[i].size);
756
757 if (le64_to_cpu(gpt_part_size) != partitions[i].size) {
758 /* We do not check the extend partition size */
759 if ((i == parts - 1) && (partitions[i].size == 0))
760 continue;
761
762 pr_err("Partition %s size: %llu does not match %llu!\n",
763 efi_str, (unsigned long long)gpt_part_size,
764 (unsigned long long)partitions[i].size);
765 return -1;
766 }
767
768 /*
769 * Start address is optional - check only if provided
770 * in '$partition' variable
771 */
772 if (!partitions[i].start) {
773 debug("\n");
774 continue;
775 }
776
777 /* Check if GPT and ENV start LBAs match */
778 debug("start LBA - GPT: %8llu, ENV: %8llu\n",
779 le64_to_cpu(gpt_e[i].starting_lba),
780 (unsigned long long)partitions[i].start);
781
782 if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) {
783 pr_err("Partition %s start: %llu does not match %llu!\n",
784 efi_str, le64_to_cpu(gpt_e[i].starting_lba),
785 (unsigned long long)partitions[i].start);
786 return -1;
787 }
788 }
789
790 return 0;
791 }
792
793 int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf)
794 {
795 gpt_header *gpt_h;
796 gpt_entry *gpt_e;
797
798 /* determine start of GPT Header in the buffer */
799 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
800 dev_desc->blksz);
801 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA,
802 dev_desc->lba))
803 return -1;
804
805 /* determine start of GPT Entries in the buffer */
806 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
807 dev_desc->blksz);
808 if (validate_gpt_entries(gpt_h, gpt_e))
809 return -1;
810
811 return 0;
812 }
813
814 int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf)
815 {
816 gpt_header *gpt_h;
817 gpt_entry *gpt_e;
818 int gpt_e_blk_cnt;
819 lbaint_t lba;
820 int cnt;
821
822 if (is_valid_gpt_buf(dev_desc, buf))
823 return -1;
824
825 /* determine start of GPT Header in the buffer */
826 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
827 dev_desc->blksz);
828
829 /* determine start of GPT Entries in the buffer */
830 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
831 dev_desc->blksz);
832 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) *
833 le32_to_cpu(gpt_h->sizeof_partition_entry)),
834 dev_desc);
835
836 /* write MBR */
837 lba = 0; /* MBR is always at 0 */
838 cnt = 1; /* MBR (1 block) */
839 if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) {
840 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
841 __func__, "MBR", cnt, lba);
842 return 1;
843 }
844
845 /* write Primary GPT */
846 lba = GPT_PRIMARY_PARTITION_TABLE_LBA;
847 cnt = 1; /* GPT Header (1 block) */
848 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
849 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
850 __func__, "Primary GPT Header", cnt, lba);
851 return 1;
852 }
853
854 lba = le64_to_cpu(gpt_h->partition_entry_lba);
855 cnt = gpt_e_blk_cnt;
856 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
857 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
858 __func__, "Primary GPT Entries", cnt, lba);
859 return 1;
860 }
861
862 prepare_backup_gpt_header(gpt_h);
863
864 /* write Backup GPT */
865 lba = le64_to_cpu(gpt_h->partition_entry_lba);
866 cnt = gpt_e_blk_cnt;
867 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
868 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
869 __func__, "Backup GPT Entries", cnt, lba);
870 return 1;
871 }
872
873 lba = le64_to_cpu(gpt_h->my_lba);
874 cnt = 1; /* GPT Header (1 block) */
875 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
876 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
877 __func__, "Backup GPT Header", cnt, lba);
878 return 1;
879 }
880
881 return 0;
882 }
883 #endif
884
885 /*
886 * Private functions
887 */
888 /*
889 * pmbr_part_valid(): Check for EFI partition signature
890 *
891 * Returns: 1 if EFI GPT partition type is found.
892 */
893 static int pmbr_part_valid(struct partition *part)
894 {
895 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
896 get_unaligned_le32(&part->start_sect) == 1UL) {
897 return 1;
898 }
899
900 return 0;
901 }
902
903 /*
904 * is_pmbr_valid(): test Protective MBR for validity
905 *
906 * Returns: 1 if PMBR is valid, 0 otherwise.
907 * Validity depends on two things:
908 * 1) MSDOS signature is in the last two bytes of the MBR
909 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
910 */
911 static int is_pmbr_valid(legacy_mbr * mbr)
912 {
913 int i = 0;
914
915 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
916 return 0;
917
918 for (i = 0; i < 4; i++) {
919 if (pmbr_part_valid(&mbr->partition_record[i])) {
920 return 1;
921 }
922 }
923 return 0;
924 }
925
926 /**
927 * is_gpt_valid() - tests one GPT header and PTEs for validity
928 *
929 * lba is the logical block address of the GPT header to test
930 * gpt is a GPT header ptr, filled on return.
931 * ptes is a PTEs ptr, filled on return.
932 *
933 * Description: returns 1 if valid, 0 on error.
934 * If valid, returns pointers to PTEs.
935 */
936 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
937 gpt_header *pgpt_head, gpt_entry **pgpt_pte)
938 {
939 /* Confirm valid arguments prior to allocation. */
940 if (!dev_desc || !pgpt_head) {
941 printf("%s: Invalid Argument(s)\n", __func__);
942 return 0;
943 }
944
945 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, mbr, 1, dev_desc->blksz);
946
947 /* Read MBR Header from device */
948 if (blk_dread(dev_desc, 0, 1, (ulong *)mbr) != 1) {
949 printf("*** ERROR: Can't read MBR header ***\n");
950 return 0;
951 }
952
953 /* Read GPT Header from device */
954 if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) {
955 printf("*** ERROR: Can't read GPT header ***\n");
956 return 0;
957 }
958
959 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba))
960 return 0;
961
962 if (dev_desc->sig_type == SIG_TYPE_NONE) {
963 efi_guid_t empty = {};
964 if (memcmp(&pgpt_head->disk_guid, &empty, sizeof(empty))) {
965 dev_desc->sig_type = SIG_TYPE_GUID;
966 memcpy(&dev_desc->guid_sig, &pgpt_head->disk_guid,
967 sizeof(empty));
968 } else if (mbr->unique_mbr_signature != 0) {
969 dev_desc->sig_type = SIG_TYPE_MBR;
970 dev_desc->mbr_sig = mbr->unique_mbr_signature;
971 }
972 }
973
974 /* Read and allocate Partition Table Entries */
975 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
976 if (*pgpt_pte == NULL) {
977 printf("GPT: Failed to allocate memory for PTE\n");
978 return 0;
979 }
980
981 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) {
982 free(*pgpt_pte);
983 return 0;
984 }
985
986 /* We're done, all's well */
987 return 1;
988 }
989
990 /**
991 * alloc_read_gpt_entries(): reads partition entries from disk
992 * @dev_desc
993 * @gpt - GPT header
994 *
995 * Description: Returns ptes on success, NULL on error.
996 * Allocates space for PTEs based on information found in @gpt.
997 * Notes: remember to free pte when you're done!
998 */
999 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
1000 gpt_header *pgpt_head)
1001 {
1002 size_t count = 0, blk_cnt;
1003 lbaint_t blk;
1004 gpt_entry *pte = NULL;
1005
1006 if (!dev_desc || !pgpt_head) {
1007 printf("%s: Invalid Argument(s)\n", __func__);
1008 return NULL;
1009 }
1010
1011 count = le32_to_cpu(pgpt_head->num_partition_entries) *
1012 le32_to_cpu(pgpt_head->sizeof_partition_entry);
1013
1014 debug("%s: count = %u * %u = %lu\n", __func__,
1015 (u32) le32_to_cpu(pgpt_head->num_partition_entries),
1016 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry),
1017 (ulong)count);
1018
1019 /* Allocate memory for PTE, remember to FREE */
1020 if (count != 0) {
1021 pte = memalign(ARCH_DMA_MINALIGN,
1022 PAD_TO_BLOCKSIZE(count, dev_desc));
1023 }
1024
1025 if (count == 0 || pte == NULL) {
1026 printf("%s: ERROR: Can't allocate %#lX bytes for GPT Entries\n",
1027 __func__, (ulong)count);
1028 return NULL;
1029 }
1030
1031 /* Read GPT Entries from device */
1032 blk = le64_to_cpu(pgpt_head->partition_entry_lba);
1033 blk_cnt = BLOCK_CNT(count, dev_desc);
1034 if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) {
1035 printf("*** ERROR: Can't read GPT Entries ***\n");
1036 free(pte);
1037 return NULL;
1038 }
1039 return pte;
1040 }
1041
1042 /**
1043 * is_pte_valid(): validates a single Partition Table Entry
1044 * @gpt_entry - Pointer to a single Partition Table Entry
1045 *
1046 * Description: returns 1 if valid, 0 on error.
1047 */
1048 static int is_pte_valid(gpt_entry * pte)
1049 {
1050 efi_guid_t unused_guid;
1051
1052 if (!pte) {
1053 printf("%s: Invalid Argument(s)\n", __func__);
1054 return 0;
1055 }
1056
1057 /* Only one validation for now:
1058 * The GUID Partition Type != Unused Entry (ALL-ZERO)
1059 */
1060 memset(unused_guid.b, 0, sizeof(unused_guid.b));
1061
1062 if (memcmp(pte->partition_type_guid.b, unused_guid.b,
1063 sizeof(unused_guid.b)) == 0) {
1064
1065 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
1066 (unsigned int)(uintptr_t)pte);
1067
1068 return 0;
1069 } else {
1070 return 1;
1071 }
1072 }
1073
1074 /*
1075 * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to
1076 * check EFI first, since a DOS partition is often used as a 'protective MBR'
1077 * with EFI.
1078 */
1079 U_BOOT_PART_TYPE(a_efi) = {
1080 .name = "EFI",
1081 .part_type = PART_TYPE_EFI,
1082 .max_entries = GPT_ENTRY_NUMBERS,
1083 .get_info = part_get_info_ptr(part_get_info_efi),
1084 .print = part_print_ptr(part_print_efi),
1085 .test = part_test_efi,
1086 };
1087 #endif